Skip to content
2000
image of Flavonoids and their Conjugates: Potential Molecules for Therapeutics

Abstract

Plants can produce a wide range of bioactive compounds. High concentrations of phytochemicals prevent the accumulation of free radical damage in fruits and vegetables. Flavonoids a group of natural products with different phenolic structures are found in fruits, vegetables, grains, bark, roots, stems, flowers, tea, and wine. These natural products are known for their health benefits, and thus efforts are being made to isolate these flavonoids. Flavonoids are now recognised as important components of many nutraceutical, medical, pharmaceutical, and cosmetic products. This is attributed to their antioxidant, anti-inflammatory, anti-mutagenic, and anti-cancer properties and their ability to alter the activity of important cellular enzymes. Information about how flavonoids work is still not fully understood. However, it has been widely known that plant-derived derivatives have had many biological activities for centuries. Current flavonoid research and development trends include the isolation, identification, characterisation, and activity of flavonoids and their potential health benefits. Bioinformatics information is also used to estimate economic potential and productivity. This article discusses current research, mechanisms of action, functions, and uses of flavonoids, predictions of flavonoids as potential anti-inflammatory agents, and future recommendations. Due to the antioxidant, anti-proliferative, anti-tumour, anti-microbial, estrogenic, acetylcholinesterase, and anti-inflammatory activities of flavonoids they are also used as therapeutics in cancer, cardiovascular diseases, neurodegenerative diseases, and other diseases. It also covers the mechanism of action of flavonoids, which highlights the role of flavonoids as kinase inhibitors and their effect on membrane-bound receptors. Tyrosinase is involved in several human pigmentation-related diseases, among which hyperpigmentation can be treated by using flavonoid-based drugs as tyrosinase inhibitors. This review will provide researchers in the discipline of medicinal chemistry with the opportunity to develop options, improve quality, and use various flavonoid derivatives and their conjugates as therapeutics and in the treatment of various diseases.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728381361250820054106
2025-09-08
2025-11-06
Loading full text...

Full text loading...

References

  1. Gibson E.L. Wardle J. Watts C.J. Fruit and vegetable consumption, nutritional knowledge and beliefs in mothers and children. Appetite 1998 31 2 0 228 10.1006/appe.1998.0180
    [Google Scholar]
  2. Samrot A Mathew A. Shylee L Evaluation of bioactivity of various Indian medicinal plants – An in-vitro study. Internet J Intern Med 2009 8 2
    [Google Scholar]
  3. Koche Dipak Shirsat Rupali Imran Syed Bhadange D.G. Phytochemical screening of eight traditionally used ethnomedicinal plants from Akola District (MS), India. Int J Pharm Bio Sci 2010 1 4 B-256
    [Google Scholar]
  4. Koche D. Shirsat R. Kawale M.A.H.E.S.H. An overview of major classes of phytochemicals: Their types and role in disease prevention. Hislopia Journal 2016 9 1 976 2124
    [Google Scholar]
  5. Rao B.N. Bioactive phytochemicals in Indian foods and their potential in health promotion and disease prevention. Asia Pac J Clin Nutr 2003 12 1 9 22 12737006
    [Google Scholar]
  6. Hahn Nancy I Are phytoestrogens nature's cure for what ails us? A look at the research. J Am Diet Assoc 1998 98 9 974 976 10.1016/s0002‑8223(98)00223‑5
    [Google Scholar]
  7. Gharaghanipor N. Arzani A. Rahimmalek M. Ravash R. Physiological and transcriptome indicators of salt tolerance in wild and cultivated barley. Front Plant Sci 2022 13 819282 10.3389/fpls.2022.819282 35498693
    [Google Scholar]
  8. Pei R. Liu X. Bolling B. Flavonoids and gut health. Curr Opin Biotechnol 2020 61 153 159 10.1016/j.copbio.2019.12.018 31954357
    [Google Scholar]
  9. Deng Y. Lu S. Biosynthesis and regulation of phenylpropanoids in plants. Crit Rev Plant Sci 2017 36 4 257 290 10.1080/07352689.2017.1402852
    [Google Scholar]
  10. Glagoleva A.Y. Vikhorev A.V. Shmakov N.A. Morozov S.V. Chernyak E.I. Vasiliev G.V. Shatskaya N.V. Khlestkina E.K. Shoeva O.Y. Features of the activity of the phenylpropanoid biosynthesis pathway in melanin-accumulating barley grains. Front Plant Sci 2022 13 923717 10.3389/fpls.2022.923717 35898231
    [Google Scholar]
  11. Hung H.C. Joshipura K.J. Jiang R. Hu F.B. Hunter D. Smith-Warner S.A. Colditz G.A. Rosner B. Spiegelman D. Willett W.C. Fruit and vegetable intake and risk of major chronic disease. J Natl Cancer Inst 2004 96 21 1577 1584 10.1093/jnci/djh296 15523086
    [Google Scholar]
  12. Patel K. Kumar V. Rahman M. Verma A. Patel D.K. New insights into the medicinal importance, physiological functions and bioanalytical aspects of an important bioactive compound of foods ‘Hyperin’: Health benefits of the past, the present, the future. Beni Suef Univ J Basic Appl Sci 2018 7 1 31 42 10.1016/j.bjbas.2017.05.009
    [Google Scholar]
  13. Lagunas-Herrera H. Tortoriello J. Herrera-Ruiz M. Martínez-Henández G.B. Zamilpa A. Santamaría L.A. Lorenzana M.G. Lombardo-Earl G. Jiménez-Ferrer E. Acute and chronic antihypertensive effect of fractions, tiliroside and scopoletin from Malva parviflora . Biol Pharm Bull 2019 42 1 18 25 10.1248/bpb.b18‑00355 30606987
    [Google Scholar]
  14. Panche A.N. Diwan A.D. Chandra S.R. Flavonoids: An overview. J Nutr Sci 2016 5 e47 10.1017/jns.2016.41 28620474
    [Google Scholar]
  15. Khan M.K. Zill-E-Huma Dangles O. A comprehensive review on flavanones, the major citrus polyphenols. J Food Compos Anal 2014 33 1 85 104 10.1016/j.jfca.2013.11.004
    [Google Scholar]
  16. Ullah A. Munir S. Badshah S.L. Khan N. Ghani L. Poulson B.G. Emwas A.H. Jaremko M. Important flavonoids and their role as a therapeutic agent. Molecules 2020 25 22 5243 10.3390/molecules25225243 33187049
    [Google Scholar]
  17. Alseekh S. Perez de Souza L. Benina M. Fernie A.R. The style and substance of plant flavonoid decoration; Towards defining both structure and function. Phytochemistry 2020 174 112347 10.1016/j.phytochem.2020.112347 32203741
    [Google Scholar]
  18. Tohge T. Fernie A.R. Combining genetic diversity, informatics and metabolomics to facilitate annotation of plant gene function. Nat Protoc 2010 5 6 1210 1227 10.1038/nprot.2010.82 20539294
    [Google Scholar]
  19. Rodríguez-García C. Sánchez-Quesada C. Gaforio J.J. Dietary flavonoids as cancer chemopreventive agents: An updated review of human studies. Antioxidants 2019 8 5 137 10.3390/antiox8050137 31109072
    [Google Scholar]
  20. Safe S. Jayaraman A. Chapkin R.S. Howard M. Mohankumar K. Shrestha R. Flavonoids: Structure–function and mechanisms of action and opportunities for drug development. Toxicol Res 2021 37 2 147 162 10.1007/s43188‑020‑00080‑z 33868973
    [Google Scholar]
  21. Hostetler G.L. Ralston R.A. Schwartz S.J. Flavones: Food sources, bioavailability, metabolism, and bioactivity. Adv Nutr 2017 8 3 423 435 10.3945/an.116.012948 28507008
    [Google Scholar]
  22. Leonte D. Ungureanu D. Zaharia V. Flavones and related compounds: Synthesis and biological activity. Molecules 2023 28 18 6528 10.3390/molecules28186528 37764304
    [Google Scholar]
  23. Motghare A.P. Katolkar P.P. Chacherkar P.A. Baheti J.R. Flavones and their derivatives: Synthetic and pharmacological importance. Asian J Pharm Clin Res 2022 15 7 25 34 10.22159/ajpcr.2022.v15i7.45190
    [Google Scholar]
  24. Hertog M.G.L. Hollman P.C.H. van de Putte B. Content of potentially anticarcinogenic flavonoids of tea infusions, wines, and fruit juices. J Agric Food Chem 1993 41 8 1242 1246 10.1021/jf00032a015
    [Google Scholar]
  25. Downs L.E. Wolfe D.M. Schreiner P.R. Organic base-mediated condensation of pyridine-carboxaldehydes to Azachalcones. Adv Synth Catal 2005 347 2-3 235 238 10.1002/adsc.200404318
    [Google Scholar]
  26. Gupta S. Maurya P. Upadhyay A. Kushwaha P. Krishna S. Siddiqi M.I. Sashidhara K.V. Banerjee D. Synthesis and bio-evaluation of indole-chalcone based benzopyrans as promising antiligase and antiproliferative agents. Eur J Med Chem 2018 143 1981 1996 10.1016/j.ejmech.2017.11.015 29146133
    [Google Scholar]
  27. Gaonkar S.L. Vignesh U.N. Synthesis and pharmacological properties of chalcones: A review. Res Chem Intermed 2017 43 11 6043 6077 10.1007/s11164‑017‑2977‑5
    [Google Scholar]
  28. Rammohan A. Reddy J.S. Sravya G. Rao C.N. Zyryanov G.V. Chalcone synthesis, properties and medicinal applications: A review. Environ Chem Lett 2020 18 2 433 458 10.1007/s10311‑019‑00959‑w
    [Google Scholar]
  29. Hueda Maria Chavarri Polyphenols: Food sources and health benefits. Functional Food - Improve Health through Adequate Food IntechOpen 2017 10.5772/intechopen.68862
    [Google Scholar]
  30. Liu S. Lou Y. Li Y. Zhang J. Li P. Yang B. Gu Q. Review of phytochemical and nutritional characteristics and food applications of Citrus L. fruits. Front Nutr 2022 9 968604 10.3389/fnut.2022.968604 35923210
    [Google Scholar]
  31. Hădărugă D.I. Hădărugă N.G. Jafari S.M. Rashidinejad A. Simal-Gandara J. Flavanones in plants and humans. Handbook of Food Bioactive Ingredients Cham Springer 2023 10.1007/978‑3‑030‑81404‑5_6‑1
    [Google Scholar]
  32. Fowler Z.L. Koffas M.A.G. Biosynthesis and biotechnological production of flavanones: Current state and perspectives. Appl Microbiol Biotechnol 2009 83 5 799 808 10.1007/s00253‑009‑2039‑z 19475406
    [Google Scholar]
  33. Iwashina T. Flavonoid properties of five families newly incorporated into the order Caryophyllales. Bull Natl Mus Nat Sci 2013 39 1 25 51
    [Google Scholar]
  34. Luo Y. Jian Y. Liu Y. Jiang S. Muhammad D. Wang W. Flavanols from nature: A phytochemistry and biological activity review. Molecules 2022 27 3 719 10.3390/molecules27030719 35163984
    [Google Scholar]
  35. Křížová L. Dadáková K. Kašparovská J. Kašparovský T. Isoflavones. Molecules 2019 24 6 1076 10.3390/molecules24061076 30893792
    [Google Scholar]
  36. Jiang L. Han L. Zhang W. Gao Y. Xu X. Chen J. Feng S. Fan Z. Li J. Li X. Yin H. Fan P. Elucidation of the key flavonol biosynthetic pathway in golden Camellia and its application in genetic modification of tomato fruit metabolism. Hortic Res 2025 12 2 uhae308 10.1093/hr/uhae308 39944987
    [Google Scholar]
  37. Hsiao Y.H. Ho C.T. Pan M.H. Bioavailability and health benefits of major isoflavone aglycones and their metabolites. J Funct Foods 2020 74 104164 10.1016/j.jff.2020.104164
    [Google Scholar]
  38. Kanadys W. Barańska A. Błaszczuk A. Polz-Dacewicz M. Drop B. Kanecki K. Malm M. Evaluation of clinical meaningfulness of red clover ( Trifolium pratense L.) extract to relieve hot flushes and menopausal symptoms in peri- and post-menopausal women: A systematic review and meta-analysis of randomized controlled trials. Nutrients 2021 13 4 1258 10.3390/nu13041258 33920485
    [Google Scholar]
  39. Aoki T. Akashi T. Ayabe S. Flavonoids of leguminous plants: Structure, biological activity, and biosynthesis. J Plant Res 2000 113 4 475 488 10.1007/PL00013958
    [Google Scholar]
  40. Yu J. Bi X. Yu B. Chen D. Isoflavones: Anti-inflammatory benefit and possible caveats. Nutrients 2016 8 6 361 10.3390/nu8060361 27294954
    [Google Scholar]
  41. Ottaviani J.I. Britten A. Lucarelli D. Luben R. Mulligan A.A. Lentjes M.A. Fong R. Gray N. Grace P.B. Mawson D.H. Tym A. Wierzbicki A. Forouhi N.G. Khaw K.T. Schroeter H. Kuhnle G.G.C. Biomarker-estimated flavan-3-ol intake is associated with lower blood pressure in cross-sectional analysis in EPIC Norfolk. Sci Rep 2020 10 1 17964 10.1038/s41598‑020‑74863‑7 33087825
    [Google Scholar]
  42. Ottaviani J.I. Kwik-Uribe C. Keen C.L. Schroeter H. Intake of dietary procyanidins does not contribute to the pool of circulating flavanols in humans. Am J Clin Nutr 2012 95 4 851 858 10.3945/ajcn.111.028340 22378733
    [Google Scholar]
  43. Vogiatzoglou A. Mulligan A.A. Luben R.N. Lentjes M.A.H. Heiss C. Kelm M. Merx M.W. Spencer J.P.E. Schroeter H. Kuhnle G.G.C. Assessment of the dietary intake of total flavan-3-ols, monomeric flavan-3-ols, proanthocyanidins and theaflavins in the European Union. Br J Nutr 2014 111 8 1463 1473 10.1017/S0007114513003930 24331295
    [Google Scholar]
  44. Chen S. Jia Y. Wu Y. Ren F. Anthocyanin and its bioavailability, health benefits, and applications: A comprehensive review. Food Rev Int 2024 40 10 3666 3689 10.1080/87559129.2024.2369696
    [Google Scholar]
  45. Giusti M.M. Wrolstad R.E. Acylated anthocyanins from edible sources and their applications in food systems. Trends Biotechnol 2003 14 3 217 225 10.1016/s1369‑703x(02)00sssss221‑8
    [Google Scholar]
  46. Lu Z. Wang X. Lin X. Mostafa S. Zou H. Wang L. Jin B. Plant anthocyanins: Classification, biosynthesis, regulation, bioactivity, and health benefits. Plant Physiol Biochem 2024 217 109268 10.1016/j.plaphy.2024.109268 39520908
    [Google Scholar]
  47. Xu M. Fang D. Kimatu B.M. Lyu L. Wu W. Cao F. Li W. Recent advances in anthocyanin-based films and its application in sustainable intelligent food packaging: A review. Food Control 2024 162 110431 10.1016/j.foodcont.2024.110431
    [Google Scholar]
  48. Mattioli R. Francioso A. Mosca L. Silva P. Anthocyanins: A comprehensive review of their chemical properties and health effects on cardiovascular and neurodegenerative diseases. Molecules 2020 25 17 3809 10.3390/molecules25173809 32825684
    [Google Scholar]
  49. Liu Y. Weng W. Gao R. Liu Y. New insights for cellular and molecular mechanisms of ageing and ageing-related diseases: Herbal medicine as a potential therapeutic approach. Oxid Med Cell Longev 2019 2019 1 25 10.1155/2019/4598167
    [Google Scholar]
  50. Castelli V. Grassi D. Bocale R. d’Angelo M. Antonosante A. Cimini A. Ferri C. Desideri G. Diet and brain health: Which role for polyphenols? Curr Pharm Des 2018 24 2 227 238 10.2174/1381612824666171213100449 29237377
    [Google Scholar]
  51. Zhao L. Yuan X. Wang J. Feng Y. Ji F. Li Z. Bian J. A review on flavones targeting serine/threonine protein kinases for potential anticancer drugs. Bioorg Med Chem 2019 27 5 677 685 10.1016/j.bmc.2019.01.027 30733087
    [Google Scholar]
  52. Chae H.S. Xu R. Won J.Y. Chin Y.W. Yim H. Molecular targets of genistein and its related flavonoids to exert anticancer effects. Int J Mol Sci 2019 20 10 2420 10.3390/ijms20102420 31100782
    [Google Scholar]
  53. Akiyama T. Ishida J. Nakagawa S. Ogawara H. Watanabe S. Itoh N. Shibuya M. Fukami Y. Genistein, a specific inhibitor of tyrosine-specific protein kinases. J Biol Chem 1987 262 12 5592 5595 10.1016/S0021‑9258(18)45614‑1 3106339
    [Google Scholar]
  54. Hou D.X. Kumamoto T. Flavonoids as protein kinase inhibitors for cancer chemoprevention: Direct binding and molecular modeling. Antioxid Redox Signal 2010 13 5 691 719 10.1089/ars.2009.2816 20070239
    [Google Scholar]
  55. Goettert M. Schattel V. Koch P. Merfort I. Laufer S. Biological evaluation and structural determinants of p38α mitogen-activated-protein kinase and c-Jun-N-terminal kinase 3 inhibition by flavonoids. ChemBioChem 2010 11 18 2579 2588 10.1002/cbic.201000487 21108268
    [Google Scholar]
  56. Lolli G. Cozza G. Mazzorana M. Tibaldi E. Cesaro L. Donella-Deana A. Meggio F. Venerando A. Franchin C. Sarno S. Battistutta R. Pinna L.A. Inhibition of protein kinase CK2 by flavonoids and tyrphostins. A structural insight. Biochemistry 2012 51 31 6097 6107 10.1021/bi300531c 22794353
    [Google Scholar]
  57. Rathee P. Chaudhary H. Rathee S. Rathee D. Kumar V. Kohli K. Mechanism of action of flavonoids as anti-inflammatory agents: A review. Inflamm Allergy Drug Targets 2009 8 3 229 235 10.2174/187152809788681029 19601883
    [Google Scholar]
  58. Zhang N. Li Y. Receptor tyrosine kinases: Biological functions and anticancer targeted therapy. MedComm 2023 4 6 e446 10.1002/mco2.446 38077251
    [Google Scholar]
  59. Way T.D. Kao M.C. Lin J.K. Apigenin induces apoptosis through proteasomal degradation of HER2/neu in HER2/neu-overexpressing breast cancer cells via the phosphatidylinositol 3-kinase/Akt-dependent pathway. J Biol Chem 2004 279 6 4479 4489 10.1074/jbc.M305529200 14602723
    [Google Scholar]
  60. Chen Y. Wang J. Hong D.Y. Chen L. Zhang Y.Y. Xu Y.N. Pan D. Fu L.Y. Tao L. Luo H. Shen X.C. Baicalein has protective effects on the 17β-estradiol-induced transformation of breast epithelial cells. Oncotarget 2017 8 6 10470 10484 10.18632/oncotarget.14433 28060756
    [Google Scholar]
  61. Du Z.R. Feng X.Q. Li N. Qu J.X. Feng L. Chen L. Chen W.F. G protein-coupled estrogen receptor is involved in the anti-inflammatory effects of genistein in microglia. Phytomedicine 2018 43 11 20 10.1016/j.phymed.2018.03.039 29747742
    [Google Scholar]
  62. Hauser A.S. Chavali S. Masuho I. Jahn L.J. Martemyanov K.A. Gloriam D.E. Babu M.M. Pharmacogenomics of GPCR drug targets. Cell 2018 172 1-2 41 54.e19 10.1016/j.cell.2017.11.033 29249361
    [Google Scholar]
  63. Avilla M.N. Malecki K.M.C. Hahn M.E. Wilson R.H. Bradfield C.A. The Ah receptor: Adaptive metabolism, ligand diversity, and the xenokine model. Chem Res Toxicol 2020 33 4 860 879 10.1021/acs.chemrestox.9b00476 32259433
    [Google Scholar]
  64. Xue Z. Li D. Yu W. Zhang Q. Hou X. He Y. Kou X. Mechanisms and therapeutic prospects of polyphenols as modulators of the aryl hydrocarbon receptor. Food Funct 2017 8 4 1414 1437 10.1039/C6FO01810F 28287659
    [Google Scholar]
  65. Jucá M.M. Cysne Filho F.M.S. de Almeida J.C. Mesquita D.S. Barriga J.R.M. Dias K.C.F. Barbosa T.M. Vasconcelos L.C. Leal L.K.A.M. Ribeiro J.E. Vasconcelos S.M.M. Flavonoids: Biological activities and therapeutic potential. Nat Prod Res 2020 34 5 692 705 10.1080/14786419.2018.1493588 30445839
    [Google Scholar]
  66. Wagner C.E. Jurutka P.W. Marshall P.A. Groy T.L. van der Vaart A. Ziller J.W. Furmick J.K. Graeber M.E. Matro E. Miguel B.V. Tran I.T. Kwon J. Tedeschi J.N. Moosavi S. Danishyar A. Philp J.S. Khamees R.O. Jackson J.N. Grupe D.K. Badshah S.L. Hart J.W. Modeling, synthesis and biological evaluation of potential retinoid X receptor (RXR) selective agonists: Novel analogues of 4-[1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)ethynyl]benzoic acid (bexarotene). J Med Chem 2009 52 19 5950 5966 10.1021/jm900496b 19791803
    [Google Scholar]
  67. Wang T. Li Q. Bi K. Bioactive flavonoids in medicinal plants: Structure, activity and biological fate. Asian J Pharm Sci 2018 13 1 12 23 10.1016/j.ajps.2017.08.004 32104374
    [Google Scholar]
  68. Silalahi J. Anticancer and health protective properties of citrus fruit components. Asia Pac J Clin Nutr 2002 11 1 79 84 10.1046/j.1440‑6047.2002.00271.x 11890643
    [Google Scholar]
  69. Ersoz M. Erdemir A. Duranoglu D. Uzunoglu D. Arasoglu T. Derman S. Mansuroglu B. Comparative evaluation of hesperetin loaded nanoparticles for anticancer activity against C6 glioma cancer cells. Artif Cells Nanomed Biotechnol 2019 47 1 319 329 10.1080/21691401.2018.1556213 30688095
    [Google Scholar]
  70. Alsayari A. Muhsinah A.B. Hassan M.Z. Ahsan M.J. Alshehri J.A. Begum N. Aurone: A biologically attractive scaffold as anticancer agent. Eur J Med Chem 2019 166 417 431 10.1016/j.ejmech.2019.01.078 30739824
    [Google Scholar]
  71. Darband S.G. Kaviani M. Yousefi B. Sadighparvar S. Pakdel F.G. Attari J.A. Mohebbi I. Naderi S. Majidinia M. Quercetin: A functional dietary flavonoid with potential chemo‐preventive properties in colorectal cancer. J Cell Physiol 2018 233 9 6544 6560 10.1002/jcp.26595 29663361
    [Google Scholar]
  72. Yang P.W. Lu Z.Y. Pan Q. Chen T.T. Feng X.J. Wang S.M. Pan Y.C. Zhu M.H. Zhang S.H. MicroRNA-6809-5p mediates luteolin-induced anticancer effects against hepatoma by targeting flotillin 1. Phytomedicine 2019 57 18 29 10.1016/j.phymed.2018.10.027 30668319
    [Google Scholar]
  73. Chen A.Y. Chen Y.C. A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention. Food Chem 2013 138 4 2099 2107 10.1016/j.foodchem.2012.11.139 23497863
    [Google Scholar]
  74. Devi K.P. Rajavel T. Habtemariam S. Nabavi S.F. Nabavi S.M. Molecular mechanisms underlying anticancer effects of myricetin. Life Sci 2015 142 19 25 10.1016/j.lfs.2015.10.004 26455550
    [Google Scholar]
  75. Al-Dabbagh B. Elhaty I.A. Elhaw M. Murali C. Al Mansoori A. Awad B. Amin A. Antioxidant and anticancer activities of chamomile (Matricaria recutita L.). BMC Res Notes 2019 12 1 3 10.1186/s13104‑018‑3960‑y 30602390
    [Google Scholar]
  76. Shahat A.A. Hidayathulla S. Khan A.A. Alanazi A.M. Al Meanazel O.T. Alqahtani A.S. Alsaid M.S. Hussein A.A. Phytochemical profiling, antioxidant and anticancer activities of Gastrocotyle hispida growing in Saudi Arabia. Acta Trop 2019 191 243 247 10.1016/j.actatropica.2019.01.013 30659804
    [Google Scholar]
  77. Venturelli S. Burkard M. Biendl M. Lauer U.M. Frank J. Busch C. Prenylated chalcones and flavonoids for the prevention and treatment of cancer. Nutrition 2016 32 11-12 1171 1178 10.1016/j.nut.2016.03.020 27238957
    [Google Scholar]
  78. Sun Y. Han R. Zhao C. Chen H. Zhang Y. Feng W. Four new prenylated flavonoids from the fruits of Sinopodophyllum hexandrum. Chem Nat Compd 2020 56 5 827 831 10.1007/s10600‑020‑03162‑4
    [Google Scholar]
  79. Wang Q.H. Guo S. Yang X.Y. Zhang Y.F. Shang M.Y. Shang Y.H. Xiao J.J. Cai S.Q. Flavonoids isolated from Sinopodophylli Fructus and their bioactivities against human breast cancer cells. Chin J Nat Med 2017 15 3 225 233 10.1016/S1875‑5364(17)30039‑0 28411691
    [Google Scholar]
  80. Yadav S.S. Singh M.K. Singh P.K. Kumar V. Traditional knowledge to clinical trials: A review on therapeutic actions of Emblica officinalis. Biomed Pharmacother 2017 93 1292 1302 10.1016/j.biopha.2017.07.065 28747010
    [Google Scholar]
  81. Hyson D.A. A comprehensive review of apples and apple components and their relationship to human health. Adv Nutr 2011 2 5 408 420 10.3945/an.111.000513 22332082
    [Google Scholar]
  82. Tu S.H. Chen L.C. Ho Y.S. An apple a day to prevent cancer formation: Reducing cancer risk with flavonoids. J Food Drug Anal 2017 25 1 119 124 10.1016/j.jfda.2016.10.016 28911529
    [Google Scholar]
  83. Andújar I. Recio M.C. Giner R.M. Ríos J.L. Cocoa polyphenols and their potential benefits for human health. Oxid Med Cell Longev 2012 2012 1 1 23 10.1155/2012/906252 23150750
    [Google Scholar]
  84. Shafabakhsh R. Asemi Z. Quercetin: A natural compound for ovarian cancer treatment. J Ovarian Res 2019 12 1 55 10.1186/s13048‑019‑0530‑4 31202269
    [Google Scholar]
  85. Huntley A.L. The health benefits of berry flavonoids for menopausal women: Cardiovascular disease, cancer and cognition. Maturitas 2009 63 4 297 301 10.1016/j.maturitas.2009.05.005 19520526
    [Google Scholar]
  86. Walle T. Methoxylated flavones, a superior cancer chemopreventive flavonoid subclass? Semin Cancer Biol 2007 17 5 354 362 10.1016/j.semcancer.2007.05.002 17574860
    [Google Scholar]
  87. Zhao M. Yang B. Wang J. Liu Y. Yu L. Jiang Y. Immunomodulatory and anticancer activities of flavonoids extracted from litchi (Litchi chinensis Sonn.) pericarp. Int Immunopharmacol 2007 7 2 162 166 10.1016/j.intimp.2006.09.003 17178382
    [Google Scholar]
  88. Mahmoud A.M. Yang W. Bosland M.C. Soy isoflavones and prostate cancer: A review of molecular mechanisms. J Steroid Biochem Mol Biol 2014 140 116 132 10.1016/j.jsbmb.2013.12.010 24373791
    [Google Scholar]
  89. McKay D.L. Blumberg J.B. The role of tea in human health: An update. J Am Coll Nutr 2002 21 1 1 13 10.1080/07315724.2002.10719187 11838881
    [Google Scholar]
  90. Aleksandar P. Dragana M.Ć. Nebojša J. Biljana N. Nataša S. Branka V. Jelena K.V. Wild edible onions — Allium flavum and Allium carinatum — successfully prevent adverse effects of chemotherapeutic drug doxorubicin. Biomed Pharmacother 2019 109 2482 2491 10.1016/j.biopha.2018.11.106 30551509
    [Google Scholar]
  91. de Novais L.M.R. de Arueira C.C.O. Ferreira L.F. Ribeiro T.A.N. Sousa P.T. Jacinto M.J. de Carvalho M.G. Judice W.A.S. Jesus L.O.P. de Souza A.A. Torquato H.F.V. Paredes-Gamero E.J. Silva V.C. 4′-Hydroxy-6,7-methylenedioxy-3-methoxyflavone: A novel flavonoid from Dulacia egleri with potential inhibitory activity against cathepsins B and L. Fitoterapia 2019 132 26 29 10.1016/j.fitote.2018.08.005 30114470
    [Google Scholar]
  92. Yang R. Wang L. Liu Y. Antitumor activities of widely-used Chinese Herb—Licorice. Chin Herb Med 2014 6 4 274 281 10.1016/S1674‑6384(14)60042‑3
    [Google Scholar]
  93. Zhao W. Liu Z. Exploring baicalin’s chemopreventive properties and perspectives, and its aglycone baicalein in solid tumours. Eur J Med Chem 2017 126 844 852 10.1016/j.ejmech.2016.11.058 27960146
    [Google Scholar]
  94. Li S. Cheng X. Wang C. A review on traditional uses, phytochemistry, pharmacology, pharmacokinetics and toxicology of the genus Peganum. J Ethnopharmacol 2017 203 127 162 10.1016/j.jep.2017.03.049 28359849
    [Google Scholar]
  95. Fidelis Q.C. Ribeiro T.A.N. Araújo M.F. de Carvalho M.G. Ouratea genus: Chemical and pharmacological aspects. Rev Bras Farmacogn 2014 24 1 1 19 10.1590/0102‑695X20142413361
    [Google Scholar]
  96. Li-Weber M. New therapeutic aspects of flavones: The anticancer properties of Scutellaria and its main active constituents Wogonin, Baicalein and Baicalin. Cancer Treat Rev 2009 35 1 57 68 10.1016/j.ctrv.2008.09.005 19004559
    [Google Scholar]
  97. Bailly C. Molecular and cellular basis of the anticancer activity of the prenylated flavonoid icaritin in hepatocellular carcinoma. Chem Biol Interact 2020 325 109124 10.1016/j.cbi.2020.109124 32437694
    [Google Scholar]
  98. Zhao H. Xie P. Li X. Zhu W. Sun X. Sun X. Chen X. Xing L. Yu J. A prospective phase II trial of EGCG in treatment of acute radiation-induced esophagitis for stage III lung cancer. Radiother Oncol 2015 114 3 351 356 10.1016/j.radonc.2015.02.014 25769379
    [Google Scholar]
  99. Zwicker J.I. Schlechter B.L. Stopa J.D. Liebman H.A. Aggarwal A. Puligandla M. Caughey T. Bauer K.A. Kuemmerle N. Wong E. Wun T. McLaughlin M. Hidalgo M. Neuberg D. Furie B. Flaumenhaft R. Targeting protein disulfide isomerase with the flavonoid isoquercetin to improve hypercoagulability in advanced cancer. JCI Insight 2019 4 4 e125851 10.1172/jci.insight.125851 30652973
    [Google Scholar]
  100. Brunetti C. Di Ferdinando M. Fini A. Pollastri S. Tattini M. Flavonoids as antioxidants and developmental regulators: Relative significance in plants and humans. Int J Mol Sci 2013 14 2 3540 3555 10.3390/ijms14023540 23434657
    [Google Scholar]
  101. Kumar S. Pandey A.K. Chemistry and biological activities of flavonoids: An overview. ScientificWorldJournal 2013 2013 1 162750 10.1155/2013/162750 24470791
    [Google Scholar]
  102. Zheng Y.Z. Deng G. Chen D.F. Liang Q. Guo R. Fu Z.M. Theoretical studies on the antioxidant activity of pinobanksin and its ester derivatives: Effects of the chain length and solvent. Food Chem 2018 240 323 329 10.1016/j.foodchem.2017.07.133 28946279
    [Google Scholar]
  103. Zheng Y.Z. Deng G. Guo R. Fu Z.M. Chen D.F. The influence of the H5⋯O C4 intramolecular hydrogen-bond (IHB) on the antioxidative activity of flavonoid. Phytochemistry 2019 160 19 24 10.1016/j.phytochem.2019.01.011 30669059
    [Google Scholar]
  104. Nijveldt R.J. van Nood E. van Hoorn D.E.C. Boelens P.G. van Norren K. van Leeuwen P.A.M. Flavonoids: A review of probable mechanisms of action and potential applications. Am J Clin Nutr 2001 74 4 418 425 10.1093/ajcn/74.4.418 11566638
    [Google Scholar]
  105. Procházková D. Boušová I. Wilhelmová N. Antioxidant and prooxidant properties of flavonoids. Fitoterapia 2011 82 4 513 523 10.1016/j.fitote.2011.01.018 21277359
    [Google Scholar]
  106. Preethi Soundarya S. Sanjay V. Haritha Menon A. Dhivya S. Selvamurugan N. Effects of flavonoids incorporated biological macromolecules based scaffolds in bone tissue engineering. Int J Biol Macromol 2018 110 74 87 10.1016/j.ijbiomac.2017.09.014 28893682
    [Google Scholar]
  107. Terao J. Factors modulating bioavailability of quercetin-related flavonoids and the consequences of their vascular function. Biochem Pharmacol 2017 139 15 23 10.1016/j.bcp.2017.03.021 28377278
    [Google Scholar]
  108. Roohbakhsh A. Parhiz H. Soltani F. Rezaee R. Iranshahi M. Molecular mechanisms behind the biological effects of hesperidin and hesperetin for the prevention of cancer and cardiovascular diseases. Life Sci 2015 124 64 74 10.1016/j.lfs.2014.12.030 25625242
    [Google Scholar]
  109. Rufatto L.C. dos Santos D.A. Marinho F. Henriques J.A.P. Roesch Ely M. Moura S. Red propolis: Chemical composition and pharmacological activity. Asian Pac J Trop Biomed 2017 7 7 591 598 10.1016/j.apjtb.2017.06.009
    [Google Scholar]
  110. Awika J.M. Rooney L.W. Sorghum phytochemicals and their potential impact on human health. Phytochemistry 2004 65 9 1199 1221 10.1016/j.phytochem.2004.04.001 15184005
    [Google Scholar]
  111. Dykes L. Rooney L.W. Sorghum and millet phenols and antioxidants. J Cereal Sci 2006 44 3 236 251 10.1016/j.jcs.2006.06.007
    [Google Scholar]
  112. Svensson L. Sekwati-Monang B. Lutz D.L. Schieber A. Gänzle M.G. Phenolic acids and flavonoids in nonfermented and fermented red sorghum (Sorghum bicolor (L.) Moench). J Agric Food Chem 2010 58 16 9214 9220 10.1021/jf101504v 20677784
    [Google Scholar]
  113. Van den Eynde M.D.G. Geleijnse J.M. Scheijen J.L.J.M. Hanssen N.M.J. Dower J.I. Afman L.A. Stehouwer C.D.A. Hollman P.C.H. Schalkwijk C.G. Quercetin, but not epicatechin, decreases plasma concentrations of methylglyoxal in adults in a randomized, double-blind, placebo-controlled, crossover trial with pure flavonoids. J Nutr 2018 148 12 1911 1916 10.1093/jn/nxy236 30398646
    [Google Scholar]
  114. Woodside J.V. McGrath A.J. Lyner N. McKinley M.C. Carotenoids and health in older people. Maturitas 2015 80 1 63 68 10.1016/j.maturitas.2014.10.012 25466302
    [Google Scholar]
  115. Naeimi A.F. Alizadeh M. Antioxidant properties of the flavonoid fisetin: An updated review of in vivo and in vitro studies. Trends Food Sci Technol 2017 70 34 44 10.1016/j.tifs.2017.10.003
    [Google Scholar]
  116. Ielciu I. Mouithys-Mickalad A. Franck T. Angenot L. Ledoux A. Păltinean R. Cieckiewicz E. Etienne D. Tits M. Crişan G. Frédérich M. Flavonoid composition, cellular antioxidant activity and (myelo)peroxidase inhibition of a Bryonia alba L. (Cucurbitaceae) leaves extract. J Pharm Pharmacol 2019 71 2 230 239 10.1111/jphp.13025 30324727
    [Google Scholar]
  117. Saleh H.A.R. El-Nashar Y.I. Serag-El-Din M.F. Dewir Y.H. Plant growth, yield and bioactive compounds of two culinary herbs as affected by substrate type. Sci Hortic 2019 243 464 471 10.1016/j.scienta.2018.08.047
    [Google Scholar]
  118. Emadipoor E. Jamzad M. Ghaffari K. Ghadami B. Jamzad Z. Essential oil composition, total phenolic and favonoid contents, and biological activities of Salvia aristata aucher ex benth. extracts. J Essent Oil-Bear Plants 2016 19 6 1426 1434 10.1080/0972060X.2016.1216333
    [Google Scholar]
  119. Chu Z. Han S. Luo Y. Zhou Y. Zhu L. Luo F. Targeting gut-brain axis by dietary flavonoids ameliorates ageing-related cognition decline: Evidence and mechanisms. Crit Rev Food Sci Nutr 2023 ••• 1 22 10.31024/ajpp.2019.5.1.26
    [Google Scholar]
  120. Nile S.H. Keum Y.S. Nile A.S. Jalde S.S. Patel R.V. Antioxidant, anti‐inflammatory, and enzyme inhibitory activity of natural plant flavonoids and their synthesized derivatives. J Biochem Mol Toxicol 2018 32 1 e22002 10.1002/jbt.22002 28972678
    [Google Scholar]
  121. Li A.L. Li G.H. Li Y.R. Wu X.Y. Ren D.M. Lou H.X. Wang X.N. Shen T. Lignan and flavonoid support the prevention of cinnamon against oxidative stress related diseases. Phytomedicine 2019 53 143 153 10.1016/j.phymed.2018.09.022 30668393
    [Google Scholar]
  122. Campoy S. Adrio J.L. Antifungals. Biochem Pharmacol 2017 133 86 96 10.1016/j.bcp.2016.11.019 27884742
    [Google Scholar]
  123. Adam A.Z. Lee S.Y. Mohamed R. Pharmacological properties of agarwood tea derived from Aquilaria (Thymelaeaceae) leaves: An emerging contemporary herbal drink. J Herb Med 2017 10 37 44 10.1016/j.hermed.2017.06.002
    [Google Scholar]
  124. Wang Q.H. Wu J. Wu R. Han N. Dai N. Two new flavonoids from Artemisa sacrorum Ledeb and their antifungal activity. J Mol Struct 2015 1088 34 37 10.1016/j.molstruc.2015.01.045
    [Google Scholar]
  125. Peralta M.A. da Silva M.A. Ortega M.G. Cabrera J.L. Paraje M.G. Antifungal activity of a prenylated flavonoid from Dalea elegans against Candida albicans biofilms. Phytomedicine 2015 22 11 975 980 10.1016/j.phymed.2015.07.003 26407939
    [Google Scholar]
  126. Feliciano R.P. Pritzel S. Heiss C. Rodriguez-Mateos A. Flavonoid intake and cardiovascular disease risk. Curr Opin Food Sci 2015 2 92 99 10.1016/j.cofs.2015.02.006
    [Google Scholar]
  127. Slavin J.L. Lloyd B. Health benefits of fruits and vegetables. Adv Nutr 2012 3 4 506 516 10.3945/an.112.002154 22797986
    [Google Scholar]
  128. Williams R.J. Spencer J.P.E. Rice-Evans C. Flavonoids: Antioxidants or signalling molecules? Free Radic Biol Med 2004 36 7 838 849 10.1016/j.freeradbiomed.2004.01.001 15019969
    [Google Scholar]
  129. Hodgson J.M. Croft K.D. Tea flavonoids and cardiovascular health. Mol Aspects Med 2010 31 6 495 502 10.1016/j.mam.2010.09.004 20837049
    [Google Scholar]
  130. Kruger M.J. Davies N. Myburgh K.H. Lecour S. Proanthocyanidins, anthocyanins and cardiovascular diseases. Food Res Int 2014 59 41 52 10.1016/j.foodres.2014.01.046
    [Google Scholar]
  131. Cassidy A. Berry anthocyanin intake and cardiovascular health. Mol Aspects Med 2018 61 76 82 10.1016/j.mam.2017.05.002 28483533
    [Google Scholar]
  132. Corti R. Flammer A.J. Hollenberg N.K. Lüscher T.F. Cocoa and cardiovascular health. Circulation 2009 119 10 1433 1441 10.1161/CIRCULATIONAHA.108.827022 19289648
    [Google Scholar]
  133. van Dam R.M. Naidoo N. Landberg R. Dietary flavonoids and the development of type 2 diabetes and cardiovascular diseases. Curr Opin Lipidol 2013 24 1 25 33 10.1097/MOL.0b013e32835bcdff 23254472
    [Google Scholar]
  134. Lilamand M. Kelaiditi E. Guyonnet S. Antonelli Incalzi R. Raynaud-Simon A. Vellas B. Cesari M. Flavonoids and arterial stiffness: Promising perspectives. Nutr Metab Cardiovasc Dis 2014 24 7 698 704 10.1016/j.numecd.2014.01.015 24656854
    [Google Scholar]
  135. Olas B. Sea buckthorn as a source of important bioactive compounds in cardiovascular diseases. Food Chem Toxicol 2016 97 199 204 10.1016/j.fct.2016.09.008 27616182
    [Google Scholar]
  136. Venu Gopal J. Morin Hydrate: Botanical origin, pharmacological activity and its applications: A mini-review. Pharmacogn J 2013 5 3 123 126 10.1016/j.phcgj.2013.04.006
    [Google Scholar]
  137. Yang J. Brazil nuts and associated health benefits: A review. Lebensm Wiss Technol 2009 42 10 1573 1580 10.1016/j.lwt.2009.05.019
    [Google Scholar]
  138. Nabavi S.F. Braidy N. Habtemariam S. Orhan I.E. Daglia M. Manayi A. Gortzi O. Nabavi S.M. Neuroprotective effects of chrysin: From chemistry to medicine. Neurochem Int 2015 90 224 231 10.1016/j.neuint.2015.09.006 26386393
    [Google Scholar]
  139. Latypova G.M. Bychenkova M.A. Katayev V.A. Perfilova V.N. Tyurenkov I.N. Mokrousov I.S. Prokofiev I.I. Salikhov S.M. Iksanova G.R. Composition and cardioprotective effects of Primula veris L. solid herbal extract in experimental chronic heart failure. Phytomedicine 2019 54 17 26 10.1016/j.phymed.2018.09.015 30668367
    [Google Scholar]
  140. Nissler L. Gebhardt R. Berger S. Flavonoid binding to a multi-drug-resistance transporter protein: An STD-NMR study. Anal Bioanal Chem 2004 379 7-8 1045 1049 10.1007/s00216‑004‑2701‑3 15241579
    [Google Scholar]
  141. Scotti L. Fernandes M.B. Muramatsu E. Emereciano V.P. Tavares J.F. Silva M.S. Scotti M.T. 13C NMR spectral data and molecular descriptors to predict the antioxidant activity of flavonoids. Braz J Pharm Sci 2011 47 2 241 249 10.1590/S1984‑82502011000200005
    [Google Scholar]
  142. Blunder M. Orthaber A. Bauer R. Bucar F. Kunert O. Efficient identification of flavones, flavanones and their glycosides in routine analysis via off-line combination of sensitive NMR and HPLC experiments. Food Chem 2017 218 600 609 10.1016/j.foodchem.2016.09.077 27719955
    [Google Scholar]
  143. Verma V.K. Malik S. Narayanan S.P. Mutneja E. Sahu A.K. Bhatia J. Arya D.S. Role of MAPK/NF-κB pathway in cardioprotective effect of Morin in isoproterenol induced myocardial injury in rats. Mol Biol Rep 2019 46 1 1139 1148 10.1007/s11033‑018‑04575‑9 30666500
    [Google Scholar]
  144. Gvozdjakova A. Singh R. Singh R.B. Takahashi T. Fedacko J. Hristova K. Wilczynska A. Mojtová M. Mojto V. Cocoa consumption and prevention of cardiometabolic diseases and other chronic diseases. The Role of Functional Food Security in Global Health Academic Press 2018 317 345 10.1016/B978‑0‑12‑813148‑0.00019‑0
    [Google Scholar]
  145. Zięba K. Makarewicz-Wujec M. Kozłowska-Wojciechowska M. Cardioprotective mechanisms of cocoa. J Am Coll Nutr 2019 38 6 564 575 10.1080/07315724.2018.1557087 30620683
    [Google Scholar]
  146. Shu Z. Yang Y. Yang L. Jiang H. Yu X. Wang Y. Cardioprotective effects of dihydroquercetin against ischemia reperfusion injury by inhibiting oxidative stress and endoplasmic reticulum stress-induced apoptosis via the PI3K/Akt pathway. Food Funct 2019 10 1 203 215 10.1039/C8FO01256C 30525169
    [Google Scholar]
  147. Petruzzellis V. Troccoli T. Candiani C. Guarisco R. Lospalluti M. Belcaro G. Dugall M. Oxerutins (Venoruton): Efficacy in chronic venous insufficiency--a double-blind, randomized, controlled study. Angiology 2002 53 3 257 263 10.1177/000331970205300302 12025912
    [Google Scholar]
  148. Chiaretti M. Fegatelli D.A. Pappalardo G. Venti M.D.S. Chiaretti A.I. Comparison of centella with flavonoids for treatment of symptoms in hemorrhoidal disease and after surgical intervention: A randomized clinical trial. Sci Rep 2020 10 1 8009 10.1038/s41598‑020‑64772‑0 32409760
    [Google Scholar]
  149. Corsale I. Carrieri P. Martellucci J. Piccolomini A. Verre L. Rigutini M. Panicucci S. Flavonoid mixture (diosmin, troxerutin, rutin, hesperidin, quercetin) in the treatment of I–III degree hemorroidal disease: A double-blind multicenter prospective comparative study. Int J Colorectal Dis 2018 33 11 1595 1600 10.1007/s00384‑018‑3102‑y 29934701
    [Google Scholar]
  150. Schiano di Visconte M. Nicolì F. Del Giudice R. Cipolat Mis T. Effect of a mixture of diosmin, coumarin glycosides, and triterpenes on bleeding, thrombosis, and pain after stapled anopexy: A prospective, randomized, placebo-controlled clinical trial. Int J Colorectal Dis 2017 32 3 425 431 10.1007/s00384‑016‑2698‑z 27815700
    [Google Scholar]
  151. Orhan I.E. Daglia M. Nabavi S.F. Loizzo M.R. Sobarzo-Sánchez E. Nabavi S.M. Flavonoids and dementia: An update. Curr Med Chem 2015 22 8 1004 1015 10.2174/0929867322666141212122352 25515512
    [Google Scholar]
  152. Gao X. Cassidy A. Schwarzschild M.A. Rimm E.B. Ascherio A. Habitual intake of dietary flavonoids and risk of Parkinson disease. Neurology 2012 78 15 1138 1145 10.1212/WNL.0b013e31824f7fc4 22491871
    [Google Scholar]
  153. Bakhtiari M. Panahi Y. Ameli J. Darvishi B. Protective effects of flavonoids against Alzheimer’s disease-related neural dysfunctions. Biomed Pharmacother 2017 93 218 229 10.1016/j.biopha.2017.06.010 28641164
    [Google Scholar]
  154. Gao Z. Gao W. Zeng S.L. Li P. Liu E.H. Chemical structures, bioactivities and molecular mechanisms of citrus polymethoxyflavones. J Funct Foods 2018 40 498 509 10.1016/j.jff.2017.11.036
    [Google Scholar]
  155. Spencer J.P.E. Vafeiadou K. Williams R.J. Vauzour D. Neuroinflammation: Modulation by flavonoids and mechanisms of action. Mol Aspects Med 2012 33 1 83 97 10.1016/j.mam.2011.10.016 22107709
    [Google Scholar]
  156. Roohbakhsh A. Parhiz H. Soltani F. Rezaee R. Iranshahi M. Neuropharmacological properties and pharmacokinetics of the citrus flavonoids hesperidin and hesperetin — A mini-review. Life Sci 2014 113 1-2 1 6 10.1016/j.lfs.2014.07.029 25109791
    [Google Scholar]
  157. Nile S.H. Park S.W. Edible berries: Bioactive components and their effect on human health. Nutrition 2014 30 2 134 144 10.1016/j.nut.2013.04.007 24012283
    [Google Scholar]
  158. Lamuela-Raventós R.M. Romero-Pérez A.I. Andrés-Lacueva C. Tornero A. Health effects of cocoa flavonoids. Food Sci Technol Int 2005 11 3 159 176 10.1177/1082013205054498
    [Google Scholar]
  159. Nabavi S.F. Braidy N. Gortzi O. Sobarzo-Sanchez E. Daglia M. Skalicka-Woźniak K. Nabavi S.M. Luteolin as an anti-inflammatory and neuroprotective agent: A brief review. Brain Res Bull 2015 119 Pt A 1 11 10.1016/j.brainresbull.2015.09.002 26361743
    [Google Scholar]
  160. Wei Q. Zhang R. Wang Q. Yan X.J. Yu Q.W. Yan F.X. Li C. Pei Y.H. Iridoid, phenylethanoid and flavonoid glycosides from Forsythia suspensa . Nat Prod Res 2020 34 9 1320 1325 10.1080/14786419.2018.1560288 30676780
    [Google Scholar]
  161. Botalova A. Bombela T. Zubov P. Segal M. Korkotian E. The flavonoid acetylpectolinarin counteracts the effects of low ethanol on spontaneous network activity in hippocampal cultures. J Ethnopharmacol 2019 229 22 28 10.1016/j.jep.2018.09.040 30287194
    [Google Scholar]
  162. Shahid M. Subhan F. Ahmad N. Sewell R.D.E. The flavonoid 6-methoxyflavone allays cisplatin-induced neuropathic allodynia and hypoalgesia. Biomed Pharmacother 2017 95 1725 1733 10.1016/j.biopha.2017.09.108 28962077
    [Google Scholar]
  163. Lim E.Y. Kim Y.T. Food-derived natural compounds for pain relief in neuropathic pain. BioMed Res Int 2016 2016 1 1 12 10.1155/2016/7917528 27891521
    [Google Scholar]
  164. Blackburn K. Warren K. A case of peripheral neuropathy due to pyridoxine toxicity in association with NOS energy drink consumption (P4.043). Neurology 2017 88 16_supplement P4.043 Suppl. 10.1212/WNL.88.16_supplement.P4.043
    [Google Scholar]
  165. Hasannejad F. Ansar M.M. Rostampour M. Mahdavi Fikijivar E. Khakpour Taleghani B. Improvement of pyridoxine-induced peripheral neuropathy by Cichorium intybus hydroalcoholic extract through GABAergic system. J Physiol Sci 2019 69 3 465 476 10.1007/s12576‑019‑00659‑8 30712095
    [Google Scholar]
  166. Testa R. Bonfigli A. Genovese S. De Nigris V. Ceriello A. The possible role of flavonoids in the prevention of diabetic complications. Nutrients 2016 8 5 310 10.3390/nu8050310 27213445
    [Google Scholar]
  167. Galiero R. Caturano A. Vetrano E. Beccia D. Brin C. Alfano M. Di Salvo J. Epifani R. Piacevole A. Tagliaferri G. Rocco M. Iadicicco I. Docimo G. Rinaldi L. Sardu C. Salvatore T. Marfella R. Sasso F.C. Peripheral neuropathy in diabetes mellitus: Pathogenetic mechanisms and diagnostic options. Int J Mol Sci 2023 24 4 3554 10.3390/ijms24043554 36834971
    [Google Scholar]
  168. Li R. Zhang Y. Rasool S. Geetha T. Babu J.R. Effects and underlying mechanisms of bioactive compounds on type 2 diabetes mellitus and Alzheimer’s disease. Oxid Med Cell Longev 2019 2019 1 1 25 10.1155/2019/8165707 30800211
    [Google Scholar]
  169. Visnagri A. Kandhare A.D. Chakravarty S. Ghosh P. Bodhankar S.L. Hesperidin, a flavanoglycone attenuates experimental diabetic neuropathy via modulation of cellular and biochemical marker to improve nerve functions. Pharm Biol 2014 52 7 814 828 10.3109/13880209.2013.870584 24559476
    [Google Scholar]
  170. Nakajima A. Yamakuni T. Matsuzaki K. Nakata N. Onozuka H. Yokosuka A. Sashida Y. Mimaki Y. Ohizumi Y. Nobiletin, a citrus flavonoid, reverses learning impairment associated with N-methyl-D-aspartate receptor antagonism by activation of extracellular signal-regulated kinase signaling. J Pharmacol Exp Ther 2007 321 2 784 790 10.1124/jpet.106.117010 17289833
    [Google Scholar]
  171. Bayram E.H. Sezer A.D. Elçioglu H.K. Diabetic neuropathy and treatment strategy – New challenges and applications. Smart Drug Delivery System IntechOpen 2016 373 10.5772/62221
    [Google Scholar]
  172. Parkar N. Addepalli V. Effect of nobiletin on diabetic neuropathy in experimental rats. Jpn Pharmacol Ther 2014 2 1028
    [Google Scholar]
  173. Sahane Rajkumari P.N. Flavonoid rich fraction of Helicteres isora fruits ameliorate streptozotocin and high fat diet-induced diabetic neuropathy in Sprague Dawley rats. J Nat Prod Plant Resour 2018 8 8 16
    [Google Scholar]
  174. Azevedo M.I. Pereira A.F. Nogueira R.B. Rolim F.E. Brito G.A.C. Wong D.V.T. Lima-Júnior R.C.P. de Albuquerque Ribeiro R. Vale M.L. The antioxidant effects of the flavonoids rutin and quercetin inhibit oxaliplatin-induced chronic painful peripheral neuropathy. Mol Pain 2013 9 1744-8069-9-53 10.1186/1744‑8069‑9‑53 24152430
    [Google Scholar]
  175. Ishii N. Matsuoka Y. Omiya H. Taniguchi A. Kaku R. Morita K. The flavonoid quercetin suppresses the development of neuropathic pain behaviour in rats: 14AP4-3. Eur J Anaesthesiol 2013 30 214 214 10.1097/00003643‑201306001‑00667
    [Google Scholar]
  176. Wang J. Huang L. Cheng C. Li G. Xie J. Shen M. Chen Q. Li W. He W. Qiu P. Wu J. Design, synthesis and biological evaluation of chalcone analogues with novel dual antioxidant mechanisms as potential anti-ischemic stroke agents. Acta Pharm Sin B 2019 9 2 335 350 10.1016/j.apsb.2019.01.003 30972281
    [Google Scholar]
  177. Acosta S.A. Lee J.Y. Nguyen H. Kaneko Y. Borlongan C.V. Endothelial progenitor cells modulate inflammation-associated stroke vasculome. Stem Cell Rev 2019 15 2 256 275 10.1007/s12015‑019‑9873‑x 30739275
    [Google Scholar]
  178. Gelderblom M. Leypoldt F. Lewerenz J. Birkenmayer G. Orozco D. Ludewig P. Thundyil J. Arumugam T.V. Gerloff C. Tolosa E. Maher P. Magnus T. The flavonoid fisetin attenuates postischemic immune cell infiltration, activation and infarct size after transient cerebral middle artery occlusion in mice. J Cereb Blood Flow Metab 2012 32 5 835 843 10.1038/jcbfm.2011.189 22234339
    [Google Scholar]
  179. Rodrigues A.M.G. Marcilio F.S. Frazão Muzitano M. Giraldi-Guimarães A. Therapeutic potential of treatment with the flavonoid rutin after cortical focal ischemia in rats. Brain Res 2013 1503 53 61 10.1016/j.brainres.2013.01.039 23370003
    [Google Scholar]
  180. Muthaura C.N. Keriko J.M. Derese S. Yenesew A. Rukunga G.M. Investigation of some medicinal plants traditionally used for treatment of malaria in Kenya as potential sources of antimalarial drugs. Exp Parasitol 2011 127 3 609 626 10.1016/j.exppara.2010.11.004 21095187
    [Google Scholar]
  181. Badshah S. Ullah A. Ahmad N. Almarhoon Z. Mabkhot Y. Increasing the strength and production of artemisinin and its derivatives. Molecules 2018 23 1 100 10.3390/molecules23010100 29301383
    [Google Scholar]
  182. Khan H. Amin H. Ullah A. Saba S. Rafique J. Khan K. Ahmad N. Badshah S.L. Antioxidant and antiplasmodial activities of bergenin and 11‐O‐Galloylbergenin isolated from Mallotus philippensis. Oxid Med Cell Longev 2016 2016 1 1051925 10.1155/2016/1051925 26998192
    [Google Scholar]
  183. Memvanga P.B. Tona G.L. Mesia G.K. Lusakibanza M.M. Cimanga R.K. Antimalarial activity of medicinal plants from the Democratic Republic of Congo: A review. J Ethnopharmacol 2015 169 76 98 10.1016/j.jep.2015.03.075 25862959
    [Google Scholar]
  184. Henciya S. Seturaman P. James A.R. Tsai Y.H. Nikam R. Wu Y.C. Dahms H.U. Chang F.R. Biopharmaceutical potentials of Prosopis spp. (Mimosaceae, Leguminosa). J Food Drug Anal 2017 25 1 187 196 10.1016/j.jfda.2016.11.001 28911536
    [Google Scholar]
  185. Zongo F. Ribuot C. Boumendjel A. Guissou I. Botany, traditional uses, phytochemistry and pharmacology of Waltheria indica L. (syn. Waltheria americana): A review. J Ethnopharmacol 2013 148 1 14 26 10.1016/j.jep.2013.03.080 23608240
    [Google Scholar]
  186. Yang X. Jiang Y. Yang J. He J. Sun J. Chen F. Zhang M. Yang B. Prenylated flavonoids, promising nutraceuticals with impressive biological activities. Trends Food Sci Technol 2015 44 1 93 104 10.1016/j.tifs.2015.03.007
    [Google Scholar]
  187. Mina P.R. Kumar Y. Verma A.K. Khan F. Tandon S. Pal A. Darokar M.P. Silymarin, a polyphenolic flavonoid impede Plasmodium falciparum growth through interaction with heme. Nat Prod Res 2020 34 18 2647 2651 10.1080/14786419.2018.1548449 30663356
    [Google Scholar]
  188. Dkhil M.A. Al-Shaebi E.M. Al-Quraishy S. Effect of Indigofera oblongifolia on the hepatic oxidative status and expression of inflammatory and apoptotic genes during blood-stage murine malaria. Oxid Med Cell Longev 2019 2019 1 1 7 10.1155/2019/8264861 30838089
    [Google Scholar]
  189. Badshah S.L. Ullah A. Badshah S.H. Ahmad I. Spread of novel coronavirus by returning pilgrims from Iran to Pakistan. J Travel Med 2020 27 3 taaa044 10.1093/jtm/taaa044 32268358
    [Google Scholar]
  190. Villa T.G. Feijoo-Siota L. Rama J.L.R. Ageitos J.M. Antivirals against animal viruses. Biochem Pharmacol 2017 133 97 116 10.1016/j.bcp.2016.09.029 27697545
    [Google Scholar]
  191. Chiow K.H. Phoon M.C. Putti T. Tan B.K.H. Chow V.T. Evaluation of antiviral activities of Houttuynia cordata Thunb. extract, quercetin, quercetrin and cinanserin on murine coronavirus and dengue virus infection. Asian Pac J Trop Med 2016 9 1 1 7 10.1016/j.apjtm.2015.12.002 26851778
    [Google Scholar]
  192. Brodowska K.M. Natural flavonoids: Classification, potential role, and application of flavonoid analogues. Eur J Biol Res 2017 7 108 123
    [Google Scholar]
  193. Song J.M. Lee K.H. Seong B.L. Antiviral effect of catechins in green tea on influenza virus. Antiviral Res 2005 68 2 66 74 10.1016/j.antiviral.2005.06.010 16137775
    [Google Scholar]
  194. Gramza-Michałowska A. Sidor A. Kulczyński B. Berries as a potential anti-influenza factor – A review. J Funct Foods 2017 37 116 137 10.1016/j.jff.2017.07.050
    [Google Scholar]
  195. Lani R. Hassandarvish P. Shu M.H. Phoon W.H. Chu J.J.H. Higgs S. Vanlandingham D. Abu Bakar S. Zandi K. Antiviral activity of selected flavonoids against Chikungunya virus. Antiviral Res 2016 133 50 61 10.1016/j.antiviral.2016.07.009 27460167
    [Google Scholar]
  196. Seo D.J. Jeon S.B. Oh H. Lee B.H. Lee S.Y. Oh S.H. Jung J.Y. Choi C. Comparison of the antiviral activity of flavonoids against murine norovirus and feline calicivirus. Food Control 2016 60 25 30 10.1016/j.foodcont.2015.07.023
    [Google Scholar]
  197. Wu Q. Yu C. Yan Y. Chen J. Zhang C. Wen X. Antiviral flavonoids from Mosla scabra. Fitoterapia 2010 81 5 429 433 10.1016/j.fitote.2009.12.005 20006976
    [Google Scholar]
  198. Kim N. Park S. Nhiem N.X. Song J.H. Ko H.J. Kim S.H. Cycloartane-type triterpenoid derivatives and a flavonoid glycoside from the burs of Castanea crenata. Phytochemistry 2019 158 135 141 10.1016/j.phytochem.2018.11.001 30529974
    [Google Scholar]
  199. Sadati S. Gheibi N. Ranjbar S. Hashemzadeh M. Docking study of flavonoid derivatives as potent inhibitors of influenza H1N1 virus neuraminidase. Biomed Rep 2018 10 1 33 38 10.3892/br.2018.1173 30588301
    [Google Scholar]
  200. Khalil H. Abd El Maksoud A.I. Roshdey T. El-Masry S. Guava flavonoid glycosides prevent influenza A virus infection via rescue of P53 activity. J Med Virol 2019 91 1 45 55 10.1002/jmv.25295 30153335
    [Google Scholar]
  201. Blumberg J.B. Camesano T.A. Cassidy A. Kris-Etherton P. Howell A. Manach C. Ostertag L.M. Sies H. Skulas-Ray A. Vita J.A. Cranberries and their bioactive constituents in human health. Adv Nutr 2013 4 6 618 632 10.3945/an.113.004473 24228191
    [Google Scholar]
  202. He J. Giusti M.M. Anthocyanins: Natural colorants with health-promoting properties. Annu Rev Food Sci Technol 2010 1 1 163 187 10.1146/annurev.food.080708.100754 22129334
    [Google Scholar]
  203. Kasala E.R. Bodduluru L.N. Madana R.M. v A.K. Gogoi R. Barua C.C. Chemopreventive and therapeutic potential of chrysin in cancer: Mechanistic perspectives. Toxicol Lett 2015 233 2 214 225 10.1016/j.toxlet.2015.01.008 25596314
    [Google Scholar]
  204. Babu P.V.A. Liu D. Gilbert E.R. Recent advances in understanding the anti-diabetic actions of dietary flavonoids. J Nutr Biochem 2013 24 11 1777 1789 10.1016/j.jnutbio.2013.06.003 24029069
    [Google Scholar]
  205. Milea Ș.A. Aprodu I. Vasile A.M. Barbu V. Râpeanu G. Bahrim G.E. Stănciuc N. Widen the functionality of flavonoids from yellow onion skins through extraction and microencapsulation in whey proteins hydrolysates and different polymers. J Food Eng 2019 251 29 35 10.1016/j.jfoodeng.2019.02.003
    [Google Scholar]
  206. Yang S.J. Paudel P. Shrestha S. Seong S.H. Jung H.A. Choi J.S. In vitro protein tyrosine phosphatase 1B inhibition and antioxidant property of different onion peel cultivars: A comparative study. Food Sci Nutr 2019 7 1 205 215 10.1002/fsn3.863 30680174
    [Google Scholar]
  207. Oteiza P.I. Fraga C.G. Mills D.A. Taft D.H. Flavonoids and the gastrointestinal tract: Local and systemic effects. Mol Aspects Med 2018 61 41 49 10.1016/j.mam.2018.01.001 29317252
    [Google Scholar]
  208. Mojica L. Berhow M. Gonzalez de Mejia E. Black bean anthocyanin-rich extracts as food colorants: Physicochemical stability and antidiabetes potential. Food Chem 2017 229 628 639 10.1016/j.foodchem.2017.02.124 28372224
    [Google Scholar]
  209. George S. Ajikumaran Nair S. Johnson A.J. Venkataraman R. Baby S. O-prenylated flavonoid, an antidiabetes constituent in Melicope lunu-ankenda. J Ethnopharmacol 2015 168 158 163 10.1016/j.jep.2015.03.060 25858510
    [Google Scholar]
  210. Akhtar S. Rauf A. Imran M. Qamar M. Riaz M. Mubarak M.S. Black carrot ( Daucus carota L.), dietary and health promoting perspectives of its polyphenols: A review. Trends Food Sci Technol 2017 66 36 47 10.1016/j.tifs.2017.05.004
    [Google Scholar]
  211. Nyane N.A. Tlaila T.B. Malefane T.G. Ndwandwe D.E. Owira P.M.O. Metformin-like antidiabetic, cardio-protective and non-glycemic effects of naringenin: Molecular and pharmacological insights. Eur J Pharmacol 2017 803 103 111 10.1016/j.ejphar.2017.03.042 28322845
    [Google Scholar]
  212. El-Sherei M.M. Ragheb A.Y. Kassem M.E.S. Marzouk M.M. Mosharrafa S.A. Saleh N.A.M. Phytochemistry, biological activities and economical uses of the genus Sterculia and the related genera: A reveiw. Asian Pac J Trop Dis 2016 6 6 492 501 10.1016/S2222‑1808(16)61075‑7
    [Google Scholar]
  213. Imran M. Rauf A. Shah Z.A. Saeed F. Imran A. Arshad M.U. Ahmad B. Bawazeer S. Atif M. Peters D.G. Mubarak M.S. Chemo‐preventive and therapeutic effect of the dietary flavonoid kaempferol: A comprehensive review. Phytother Res 2019 33 2 263 275 10.1002/ptr.6227 30402931
    [Google Scholar]
  214. Ajebli M. Eddouks M. Flavonoid-enriched extract from the desert plant Warionia Sahara improves glucose and cholesterol levels in diabetic rats. Cardiovasc Hematol Agents Med Chem 2019 17 1 28 39 10.2174/1871525717666190121143934 30666919
    [Google Scholar]
  215. Xu X. Shi F. Wei Z. Zhao Y. Nanostructured lipid carriers loaded with baicalin: An efficient carrier for enhanced antidiabetic effects. Pharmacogn Mag 2016 12 47 198 202 10.4103/0973‑1296.186347 27601850
    [Google Scholar]
  216. Shams-Rad S. Mohammadi M. Ramezani-Jolfaie N. Zarei S. Mohsenpour M. Salehi-Abargouei A. Hesperidin supplementation has no effect on blood glucose control: A systematic review and meta‐analysis of randomized controlled clinical trials. Br J Clin Pharmacol 2020 86 1 13 22 10.1111/bcp.14120 31489695
    [Google Scholar]
  217. Bajwa N.M. Lee J.B. Halavi S. Hartman R.E. Obenaus A. Repeated isoflurane in adult male mice leads to acute and persistent motor decrements with long‐term modifications in corpus callosum microstructural integrity. J Neurosci Res 2019 97 3 332 345 10.1002/jnr.24343 30394562
    [Google Scholar]
  218. Kim H. Yi J.W. Sung Y.H. Kim C.J. Kim C.S. Kang J.M. Delayed preconditioning effect of isoflurane on spinal cord ischemia in rats. Neurosci Lett 2008 440 3 211 216 10.1016/j.neulet.2008.05.097 18583046
    [Google Scholar]
  219. Song-Tao M. Dong-lian L. Jing-jing D. Yan-juan P. Protective effect of mulberry flavonoids on sciatic nerve in alloxan-induced diabetic rats. Braz J Pharm Sci 2014 50 4 765 771 10.1590/S1984‑82502014000400012
    [Google Scholar]
  220. Raafat K.M. Anti-inflammatory and anti-neuropathic effects of a novel quinic acid derivative from Acanthus syriacus. Avicenna J Phytomed 2019 9 3 221 236 31143690
    [Google Scholar]
  221. Mojzis J. Varinska L. Mojzisova G. Kostova I. Mirossay L. Antiangiogenic effects of flavonoids and chalcones. Pharmacol Res 2008 57 4 259 265 10.1016/j.phrs.2008.02.005 18387817
    [Google Scholar]
  222. Akhtar Muhammad Khan Behramand Iqbal Zafar Khan Amir Zada Khan Inamullah Khan Kashif Alamzeb Muhammad Ahmad Nasir Khan Khalid Badshah Syed Lal Ullah Asad Muhammad Sayyar Jan Muhammad Tariq Nadeem Said Kabir Nurul Viscosine as a potent and safe antipyretic agent evaluated by yeast-induced pyrexia model and molecular docking studies. ACS Omega 2019 4 10 14188 14192 10.1021/acsomega.9b01041
    [Google Scholar]
  223. Dinda B. Dinda S. DasSharma S. Banik R. Chakraborty A. Dinda M. Therapeutic potentials of baicalin and its aglycone, baicalein against inflammatory disorders. Eur J Med Chem 2017 131 68 80 10.1016/j.ejmech.2017.03.004 28288320
    [Google Scholar]
  224. Zhao Q. Chen X.Y. Martin C. Scutellaria baicalensis, the golden herb from the garden of Chinese medicinal plants. Sci Bull 2016 61 18 1391 1398 10.1007/s11434‑016‑1136‑5 27730005
    [Google Scholar]
  225. Zeinali M. Rezaee S.A. Hosseinzadeh H. An overview on immunoregulatory and anti-inflammatory properties of chrysin and flavonoids substances. Biomed Pharmacother 2017 92 998 1009 10.1016/j.biopha.2017.06.003 28609844
    [Google Scholar]
  226. Fang J. Classification of fruits based on anthocyanin types and relevance to their health effects. Nutrition 2015 31 11-12 1301 1306 10.1016/j.nut.2015.04.015 26250485
    [Google Scholar]
  227. Van Q.T.T. Vien L.T. Hanh T.T.H. Huong P.T.T. Cuong N.T. Thao N.P. Thuan N.H. Dang N.H. Thanh N.V. Cuong N.X. Nam N.H. Kiem P.V. Minh C.V. Acylated flavonoid glycosides from Barringtonia racemosa . Nat Prod Res 2020 34 9 1276 1281 10.1080/14786419.2018.1560290 30676065
    [Google Scholar]
  228. Abu-Qatouseh L. Mallah E. Mansour K. Evaluation of anti-propionibacterium acnes and anti-inflammatory effects of polyphenolic extracts of medicinal herbs in Jordan. Biomed Pharmacol J 2019 12 1 211 217 10.13005/bpj/1629
    [Google Scholar]
  229. Cuello A.C. Intracellular and extracellular Abeta, a tale of two neuropathologies. Brain Pathol 2005 15 1 66 71 10.1111/j.1750‑3639.2005.tb00101.x 15779238
    [Google Scholar]
  230. Cásedas G. Les F. González-Burgos E. Gómez-Serranillos M.P. Smith C. López V. Cyanidin-3-O-glucoside inhibits different enzymes involved in central nervous system pathologies and type-2 diabetes. S Afr J Bot 2019 120 241 246 10.1016/j.sajb.2018.07.001
    [Google Scholar]
  231. Pohanka M. Inhibitors of acetylcholinesterase and butyrylcholinesterase meet immunity. Int J Mol Sci 2014 15 6 9809 9825 10.3390/ijms15069809 24893223
    [Google Scholar]
  232. Eruygur N. Ucar E. Akpulat H.A. Shahsavari K. Safavi S.M. Kahrizi D. In vitros antioxidant assessment, screening of enzyme inhibitory activities of methanol and water extracts and gene expression in Hypericum lydium. Mol Biol Rep 2019 46 2 2121 2129 10.1007/s11033‑019‑04664‑3 30762165
    [Google Scholar]
  233. Zhao S. Zhang L. Yang C. Li Z. Rong S. Procyanidins and Alzheimer’s disease. Mol Neurobiol 2019 56 8 5556 5567 10.1007/s12035‑019‑1469‑6 30649713
    [Google Scholar]
  234. Bahadori M.B. Kirkan B. Sarikurkcu C. Phenolic ingredients and therapeutic potential of Stachys cretica subsp. smyrnaea for the management of oxidative stress, Alzheimer’s disease, hyperglycemia, and melasma. Ind Crops Prod 2019 127 82 87 10.1016/j.indcrop.2018.10.066
    [Google Scholar]
  235. Das S.K. Sen K. Sanyal T. Saha A. Madhu N.R. Pathak S. Banerjee A. Flavonoids: A promising neuroprotectant and its salutary effects on age-related neurodegenerative disorders. Neuroprotective Effects of Phytochemicals in Brain Ageing Singapore Springer 2024 10.1007/978‑981‑99‑7269‑2_11
    [Google Scholar]
  236. Goleij P. Khandan M. Khazeei Tabari M.A. Sanaye P.M. Alijanzadeh D. Soltani A. Hosseini Z. Larsen D.S. Khan H. Kumar A.P. Daglia M. Unlocking the Potential: How flavonoids affect angiogenesis, oxidative stress, inflammation, proliferation, invasion, and alter receptor interactions in endometriosis. Food Sci Nutr 2025 13 1 e4607 10.1002/fsn3.4607 39803270
    [Google Scholar]
  237. Wojdyło A. Nowicka P. Anticholinergic effects of Actinidia arguta fruits and their polyphenol content determined by liquid chromatography-photodiode array detector-quadrupole/time of flight-mass spectrometry (LC-MS-PDA-Q/TOF). Food Chem 2019 271 216 223 10.1016/j.foodchem.2018.07.084 30236670
    [Google Scholar]
  238. Park Sunwoo Lim Whasun Bazer Fuller W. Whang Kwang-Youn Song Gwonhwa Quercetin inhibits proliferation of endometriosis regulating cyclin D1 and its target microRNAs in vitro and in vivo. J Nutr Biochem 2019 63 87 100 10.1016/j.jnutbio.2018.09.024 30359864
    [Google Scholar]
  239. Maciejczyk A. Surowiak P. Quercetin inhibits proliferation and increases sensitivity of ovarian cancer cells to cisplatin and paclitaxel. Ginekol Pol 2013 84 7 590 595 10.17772/gp/1609 24032269
    [Google Scholar]
  240. Yu L. Rios E. Castro L. Liu J. Yan Y. Dixon D. Genistein: Dual role in women’s health. Nutrients 2021 13 9 3048 10.3390/nu13093048 34578926
    [Google Scholar]
  241. Coward L. Smith M. Kirk M. Barnes S. Chemical modification of isoflavones in soyfoods during cooking and processing. Am J Clin Nutr 1998 68 6 1486S 1491S Suppl. 10.1093/ajcn/68.6.1486S 9848521
    [Google Scholar]
  242. Sutrisno S. Miryani I. Made Dwijayasa P. Rini Suprobo N. Arsana Wiyasa I.W. Genistein administration increases the level of superoxide dismutase and glutathione peroxidase in the endometriosis mice model: An experimental study. Int J Reprod Biomed 2022 20 10 873 882 10.18502/ijrm.v20i10.12271 36381358
    [Google Scholar]
  243. Bhagwat S. Haytowitz D.B. Holden J.M. USDA database for the flavonoid content of selected foods. <comment xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Available from: <comment>Available from: <ext-link ext-link-type="uri" xlink:href="http://www.ars.usda.gov/nutrientdata">http://www.ars.usda.gov/nutrientdata</ext-link></comment></comment> 2011
  244. Si H. Wyeth R.P. Liu D. The flavonoid luteolin induces nitric oxide production and arterial relaxation. Eur J Nutr 2014 53 1 269 275 10.1007/s00394‑013‑0525‑7 23604495
    [Google Scholar]
  245. Li M. Li Q. Zhao Q. Zhang J. Lin J. Luteolin improves the impaired nerve functions in diabetic neuropathy: Behavioral and biochemical evidences. Int J Clin Exp Pathol 2015 8 9 10112 10120 26617718
    [Google Scholar]
  246. Woo J.H. Jang D.S. Choi J.H. Luteolin promotes apoptosis of endometriotic cells and inhibits the alternative activation of endometriosis-associated macrophages. Biomol Ther 2021 29 6 678 684 10.4062/biomolther.2021.045 34011694
    [Google Scholar]
  247. Feng X. Yu W. Li X. Zhou F. Zhang W. Shen Q. Li J. Zhang C. Shen P. Apigenin, a modulator of PPARγ, attenuates HFD-induced NAFLD by regulating hepatocyte lipid metabolism and oxidative stress via Nrf2 activation. Biochem Pharmacol 2017 136 136 149 10.1016/j.bcp.2017.04.014 28414138
    [Google Scholar]
  248. Nehru S. Guru A. Pachaiappan R. Hatamleh A.A. Al-Dosary M.A. Arokiyaraj S. Sundaramurthy A. Arockiaraj J. Co-encapsulation and release of apigenin and ascorbic acid in polyelectrolyte multilayer capsules for targeted polycystic ovary syndrome. Int J Pharm 2024 651 123749 10.1016/j.ijpharm.2023.123749 38159587
    [Google Scholar]
  249. Rajesh S. Mehmeti A. Smith-Walker T. Kendall B. Diagnosis and management of endometriosis: Summary of updated NICE guidance. BMJ 2025 388 q2782 10.1136/bmj.q2782 39890103
    [Google Scholar]
  250. Vercellini P. Viganò P. Somigliana E. Fedele L. Endometriosis: Pathogenesis and treatment. Nat Rev Endocrinol 2014 10 5 261 275 10.1038/nrendo.2013.255 24366116
    [Google Scholar]
  251. Park S. Lim W. Bazer F.W. Song G. Apigenin induces ROS-dependent apoptosis and er stress in human endometriosis cells. J Cell Physiol 2017 26054 10.1002/jcp 28617956
    [Google Scholar]
  252. Periferakis A. Periferakis K. Badarau I.A. Petran E.M. Popa D.C. Caruntu A. Costache R.S. Scheau C. Caruntu C. Costache D.O. Kaempferol: Antimicrobial properties, sources, clinical, and traditional applications. Int J Mol Sci 2022 23 23 15054 10.3390/ijms232315054 36499380
    [Google Scholar]
  253. Mc Cormack B. Maenhoudt N. Fincke V. Stejskalova A. Greve B. Kiesel L. Meresman G.F. Vankelecom H. Götte M. Barañao R.I. The ellagic acid metabolites urolithin A and B differentially affect growth, adhesion, motility, and invasion of endometriotic cells in vitro . Hum Reprod 2021 36 6 1501 1519 10.1093/humrep/deab053 33748857
    [Google Scholar]
  254. Mu C. Sheng Y. Wang Q. Amin A. Li X. Xie Y. Potential compound from herbal food of Rhizoma Polygonati for treatment of COVID-19 analyzed by network pharmacology: Viral and cancer signaling mechanisms. J Funct Foods 2021 77 104149 10.1016/j.jff.2020.104149 32837538
    [Google Scholar]
  255. Hung T.W. Chen P.N. Wu H.C. Wu S.W. Tsai P.Y. Hsieh Y.S. Chang H.R. Kaempferol inhibits the invasion and migration of renal cancer cells through the downregulation of AKT and FAK Pathways. Int J Med Sci 2017 14 10 984 993 10.7150/ijms.20336 28924370
    [Google Scholar]
  256. Zhao J. Wang J. Liu J. Li S. Liu P. Zhang X. Effect and mechanisms of kaempferol against endometriosis based on network pharmacology and in vitro experiments. BMC Complement Med Ther 2022 22 1 254 10.1186/s12906‑022‑03729‑4 36184634
    [Google Scholar]
  257. Mani R. Natesan V. Chrysin: Sources, beneficial pharmacological activities, and molecular mechanism of action. Phytochemistry 2018 145 187 196 10.1016/j.phytochem.2017.09.016 29161583
    [Google Scholar]
  258. Ryu S Bazer FW Lim W Song G Chrysin leads to cell death in endometriosis by regulation of endoplasmic reticulum stress and cytosolic calcium level. J Cell Physiol 2019 234 3 2480 2490 10.1002/jcp.26770 30302765
    [Google Scholar]
  259. Ryu S. Bazer F.W. Lim W. Song G. Chrysin leads to cell death in endometriosis by regulating endoplasmic reticulum stress and cytosolic calcium levels. J Cell Physiol 2018 26770 10.1002/jcp
    [Google Scholar]
  260. Capasso L. De Masi L. Sirignano C. Maresca V. Basile A. Nebbioso A. Rigano D. Bontempo P. Epigallocatechin Gallate (EGCG): Pharmacological properties, biological activities and therapeutic potential. Molecules 2025 30 3 654 10.3390/molecules30030654 39942757
    [Google Scholar]
  261. Xu Hui Christian M. Green tea epigallocatechin-3-gallate inhibits angiogenesis and suppresses vascular endothelial growth factor C/vascular endothelial growth factor receptor 2 expression and signaling in experimental endometriosis in vivo. Fertil Steril 2011 96 4 1021 1028 10.1016/j.fertnstert.2011.07.008 21821246
    [Google Scholar]
  262. Naeem A. Badshah S. Muska M. Ahmad N. Khan K. The current case of quinolones: Synthetic approaches and antibacterial activity. Molecules 2016 21 4 268 10.3390/molecules21040268 27043501
    [Google Scholar]
  263. Peluso I. Miglio C. Morabito G. Ioannone F. Serafini M. Flavonoids and immune function in human: A systematic review. Crit Rev Food Sci Nutr 2015 55 3 383 395 10.1080/10408398.2012.656770 24915384
    [Google Scholar]
  264. Ahmad A. Kaleem M. Ahmed Z. Shafiq H. Therapeutic potential of flavonoids and their mechanism of action against microbial and viral infections—A review. Food Res Int 2015 77 221 235 10.1016/j.foodres.2015.06.021
    [Google Scholar]
  265. Ngueyem T.A. Brusotti G. Caccialanza G. Finzi P.V. The genus Bridelia: A phytochemical and ethnopharmacological review. J Ethnopharmacol 2009 124 3 339 349 10.1016/j.jep.2009.05.019 19477259
    [Google Scholar]
  266. Chinsembu K.C. Tuberculosis and nature’s pharmacy of putative anti-tuberculosis agents. Acta Trop 2016 153 46 56 10.1016/j.actatropica.2015.10.004 26464047
    [Google Scholar]
  267. Iranshahi M. Rezaee R. Parhiz H. Roohbakhsh A. Soltani F. Protective effects of flavonoids against microbes and toxins: The cases of hesperidin and hesperetin. Life Sci 2015 137 125 132 10.1016/j.lfs.2015.07.014 26188593
    [Google Scholar]
  268. Ahmad A. Tandon S. Xuan T.D. Nooreen Z. A Review on Phytoconstituents and Biological activities of Cuscuta species. Biomed Pharmacother 2017 92 772 795 10.1016/j.biopha.2017.05.124 28591690
    [Google Scholar]
  269. Ngankeu Pagning A.L. Tamokou J-D. Lateef M. Tapondjou L.A. Kuiate J-R. Ngnokam D. Ali M.S. New triterpene and new flavone glucoside from Rhynchospora corymbosa (Cyperaceae) with their antimicrobial, tyrosinase and butyrylcholinesterase inhibitory activities. Phytochem Lett 2016 16 121 128 10.1016/j.phytol.2016.03.011
    [Google Scholar]
  270. Loredana L. Giuseppina A. Filomena N. Florinda F. Marisa D.M. Donatella A. Biochemical, antioxidant properties and antimicrobial activity of different onion varieties in the Mediterranean area. J Food Meas Charact 2019 13 2 1232 1241 10.1007/s11694‑019‑00038‑2
    [Google Scholar]
  271. Fathi H. Gholipour A. Ebrahimzadeh M.A. Yasari E. Ahanjan M. Parsi B. In-vitro evaluation of the antioxidant potential, total phenolic and flavonoid contents and antibacterial activity of Lamium album extracts. Int J Pharm Sci Res 2018 9 4210 4219
    [Google Scholar]
  272. Al-Huqail A.A. Behiry S.I. Salem M.Z.M. Ali H.M. Siddiqui M.H. Salem A.Z.M. Antifungal, antibacterial, and antioxidant activities of Acacia Saligna (Labill.) H. L. Wendl. flower extract: HPLC analysis of phenolic and flavonoid compounds. Molecules 2019 24 4 700 10.3390/molecules24040700 30781352
    [Google Scholar]
  273. Sujatha R. Siva D. Nawas P. Screening of phytochemical profile and antibacterial activity of various solvent extracts of marine algae Sargassum swartzii. World Sci News 2019 115 27 40
    [Google Scholar]
  274. El-Nashar H.A.S. El-Din M.I.G. Hritcu L. Eldahshan O.A. Insights on the inhibitory power of flavonoids on tyrosinase activity: A survey from 2016 to 2021. Molecules 2021 26 24 7546 10.3390/molecules26247546 34946631
    [Google Scholar]
  275. Jakimiuk K. Sari S. Milewski R. Supuran C.T. Şöhretoğlu D. Tomczyk M. Flavonoids as tyrosinase inhibitors in in silico and in vitro models: Basic framework of SAR using a statistical modelling approach. J Enzyme Inhib Med Chem 2022 37 1 427 436 10.1080/14756366.2021.2014832 34923888
    [Google Scholar]
  276. Şöhretoğlu D. Sari S. Barut B. Özel A. Tyrosinase inhibition by some flavonoids: Inhibitory activity, mechanism by in vitro and in silico studies. Bioorg Chem 2018 81 168 174 10.1016/j.bioorg.2018.08.020 30130649
    [Google Scholar]
  277. Fan M. Ding H. Zhang G. Hu X. Gong D. Relationships of dietary flavonoid structure with its tyrosinase inhibitory activity and affinity. Lebensm Wiss Technol 2019 107 25 34 10.1016/j.lwt.2019.02.076
    [Google Scholar]
  278. Fan M. Zhang G. Hu X. Xu X. Gong D. Quercetin as a tyrosinase inhibitor: Inhibitory activity, conformational change and mechanism. Food Res Int 2017 100 Pt 1 226 233 10.1016/j.foodres.2017.07.010 28873682
    [Google Scholar]
  279. Carradori S. Melfi F. Rešetar J. Şimşek R. Tyrosinase enzyme and its inhibitors: An update of the literature. Metalloenzymes Academic Press 2024 533 546 10.1016/bs.enz.2024.05.005
    [Google Scholar]
  280. Veiko A.G. Lapshina E.A. Zavodnik I.B. Comparative analysis of molecular properties and reactions with oxidants for quercetin, catechin, and naringenin. Mol Cell Biochem 2021 476 12 4287 4299 10.1007/s11010‑021‑04243‑w 34406575
    [Google Scholar]
  281. Xiao J. Capanoglu E. Jassbi A.R. Miron A. Advance on the flavonoid C -glycosides and health benefits. Crit Rev Food Sci Nutr 2016 56 sup1 S29 S45 Suppl. 1 10.1080/10408398.2015.1067595 26462718
    [Google Scholar]
  282. Xie L. Deng Z. Zhang J. Dong H. Wang W. Xing B. Liu X. Comparison of flavonoid O-glycoside, C-glycoside and their aglycones on antioxidant capacity and metabolism during in vitro digestion and in vivo. Foods 2022 11 6 882 10.3390/foods11060882 35327304
    [Google Scholar]
  283. Dhanya R. Quercetin for managing type 2 diabetes and its complications, an insight into multitarget therapy. Biomed Pharmacother 2022 146 112560 10.1016/j.biopha.2021.112560 34953390
    [Google Scholar]
  284. Wu B. Kulkarni K. Basu S. Zhang S. Hu M. First-pass metabolism via UDP-glucuronosyltransferase: A barrier to oral bioavailability of phenolics. J Pharm Sci 2011 100 9 3655 3681 10.1002/jps.22568 21484808
    [Google Scholar]
  285. Olubu A. UGT84F9 is the major flavonoid UDP-glucuronosyltransferase in Medicago truncatula. Plant Physiol 2021 185 4 1617 1637 10.1093/plphys/kiab016 33694362
    [Google Scholar]
  286. Day A.J. DuPont M.S. Ridley S. Rhodes M. Rhodes M.J.C. Morgan M.R.A. Williamson G. Deglycosylation of flavonoid and isoflavonoid glycosides by human small intestine and liver β‐glucosidase activity. FEBS Lett 1998 436 1 71 75 10.1016/S0014‑5793(98)01101‑6 9771896
    [Google Scholar]
  287. Bitter J. Pfeiffer M. Borg A.J.E. Kuhlmann K. Pavkov-Keller T. Sánchez-Murcia P.A. Nidetzky B. Enzymatic β-elimination in natural product O- and C-glycoside deglycosylation. Nat Commun 2023 14 1 7123 10.1038/s41467‑023‑42750‑0 37932298
    [Google Scholar]
  288. Kotik M. Kulik N. Valentová K. Flavonoids as aglycones in retaining glycosidase-catalysed reactions: Prospects for green chemistry. J Agric Food Chem 2023 71 41 14890 14910 10.1021/acs.jafc.3c04389 37800688
    [Google Scholar]
  289. Terao J. Potential role of quercetin glycosides as anti-atherosclerotic food-derived factors for human health. Antioxidants 2023 12 2 258 10.3390/antiox12020258 36829817
    [Google Scholar]
  290. Zhu X. Ding G. Ren S. Xi J. Liu K. The bioavailability, absorption, metabolism, and regulation of glucolipid metabolism disorders by quercetin and its important glycosides: A review. Food Chem 2024 458 140262 10.1016/j.foodchem.2024.140262 38944925
    [Google Scholar]
  291. Morand C. Crespy V. Manach C. Besson C. Demigné C. Rémésy C. Plasma metabolites of quercetin and their antioxidant properties. Am J Physiol Regul Integr Comp Physiol 1998 275 1 R212 R219 10.1152/ajpregu.1998.275.1.R212 9688981
    [Google Scholar]
  292. Perez-Vizcaino F. Duarte J. Santos-Buelga C. The flavonoid paradox: Conjugation and deconjugation are key steps for flavonoids’ biological activity. J Sci Food Agric 2012 92 9 1822 1825 10.1002/jsfa.5697 22555950
    [Google Scholar]
  293. Sun C.Q. Johnson K.D. Wong H. Foo L.Y. Biotransformation of flavonoid conjugates with fatty acids and evaluations of their functionalities. Front Pharmacol 2017 8 759 10.3389/fphar.2017.00759 29163154
    [Google Scholar]
  294. Liu R. Bao X. Sun X. Cai Y. Zhang T. Ye X. Li X.N. Cytisine-flavonoid conjugates: Synthesis and antitumor structure-activity relationship research. Tetrahedron Lett 2020 61 17 151803 10.1016/j.tetlet.2020.151803
    [Google Scholar]
  295. Zhou Z. Luo B. Liu X. Chen M. Lan W. Iovanna J.L. Peng L. Xia Y. Flavonoid–alkylphospholipid conjugates elicit dual inhibition of cancer cell growth and lipid accumulation. Chem Commun 2019 55 61 8919 8922 10.1039/C9CC04084F 31270526
    [Google Scholar]
  296. Liu J. Yong H. Yao X. Hu H. Yun D. Xiao L. Recent advances in phenolic–protein conjugates: Synthesis, characterization, biological activities and potential applications. RSC Advances 2019 9 61 35825 35840 10.1039/C9RA07808H 35528080
    [Google Scholar]
  297. Arifian H. Maharani R. Megantara S. Gazzali A.M. Muchtaridi M. Amino-acid-conjugated natural compounds: Aims, designs and results. Molecules 2022 27 21 7631 10.3390/molecules27217631 36364457
    [Google Scholar]
  298. Kim S. Cavaco-Paulo A. Laccase-catalysed protein–flavonoid conjugates for flax fibre modification. Appl Microbiol Biotechnol 2012 93 2 585 600 10.1007/s00253‑011‑3524‑8 21850433
    [Google Scholar]
/content/journals/coc/10.2174/0113852728381361250820054106
Loading
/content/journals/coc/10.2174/0113852728381361250820054106
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test