Skip to content
2000
image of Semisynthesis of Lupane Derivatives, their In Vitro Evaluation Against Plasmodium falciparum FCR-3 Strain and an In Silico Study on PfATP6 Protein

Abstract

The escalating issue of malaria, including the parasite's resistance to the most effective antimalarial drugs, underscores the significance of discovering a novel antimalarial agent. Extensive research has been conducted on the phytochemicals, including triterpenoids, due to their efficacy in combating malaria. Therefore, in this study, we describe the semisynthesis and characterization of triterpenoids of lupane derivatives by simple modification at the C-3 position, including the evaluation of their efficacy, both against the FCR-3 strain and molecular docking simulations targeting the PfATP6 protein. As a result, the structural modification at the C-3 position with 2-furoyl moiety () shows a moderate activity with IC = 20.8 ± 0.7 μM, compared to its precursor lupeol (), which shows a weak activity with IC = 122.1 ± 0.3 μM (positive control chloroquine; IC = 15.0 ± 0.1 μM). Molecular docking demonstrated a good interaction between and the active site of PfATP6 protein, with a binding energy of - 8.0 ± 0.0 kcal mol-1. The 2-furoyl ring in shows the binding interaction with the Asn1039 residue hydrogen bonds. Therefore, compound is identified as a promising candidate as a lead compound for further antiplasmodial studies.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728380874250728074841
2025-08-21
2025-11-06
Loading full text...

Full text loading...

References

  1. Amelo W. Makonnen E. Efforts made to eliminate drug-resistant malaria and its challenges. BioMed Res. Int. 2021 2021 1 1 12 10.1155/2021/5539544 34497848
    [Google Scholar]
  2. Abbas N. Saba T. Rehman A. Mehmood Z. Javaid N. Tahir M. Khan N.U. Ahmed K.T. Shah R. Plasmodiumspecies aware based quantification of malaria parasitemia in light microscopy thin blood smear. Microsc. Res. Tech. 2019 82 7 1198 1214 10.1002/jemt.23269 30937990
    [Google Scholar]
  3. Malaria 2024 Available from: https://www.who.int/news-room/fact-sheets/detail/malaria
  4. World malaria report 2023. 2023 Available from: https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2023
  5. Larson B. Origin of two most virulent agents of human malaria: Plasmodium falciparum and Plasmodium vivax. Malaria Intech Open: London 2019 1 1 16 10.5772/intechopen.84481
    [Google Scholar]
  6. Mwesigwa A. Ocan M. Musinguzi B. Nante R.W. Nankabirwa J.I. Kiwuwa S.M. Kinengyere A.A. Castelnuovo B. Karamagi C. Obuku E.A. Nsobya S.L. Mbulaiteye S.M. Byakika-Kibwika P. Plasmodium falciparumgenetic diversity and multiplicity of infection based on msp-1, msp-2, glurp and microsatellite genetic markers in sub-Saharan Africa: A systematic review and meta-analysis. Malar. J. 2024 23 1 97 10.1186/s12936‑024‑04925‑y 38589874
    [Google Scholar]
  7. Basu S. Sahi P.K. Malaria: An update. Indian J. Pediatr. 2017 84 7 521 528 10.1007/s12098‑017‑2332‑2 28357581
    [Google Scholar]
  8. Savi M.K. An overview of malaria transmission mechanisms, control, and modeling. Med. Sci. 2022 11 1 3 10.3390/medsci11010003 36649040
    [Google Scholar]
  9. Ahmadpour E. Foroutan-Rad M. Majidiani H. Moghaddam S.M. Hatam-Nahavandi K. Hosseini S.A. Rahimi M.T. Barac A. Rubino S. Zarean M. Mathioudakis A.G. Cevik M. Transfusion-transmitted malaria: A systematic review and meta-analysis. Open Forum Infect. Dis. 2019 6 7 ofz283 10.1093/ofid/ofz283 31334300
    [Google Scholar]
  10. Verra F. Angheben A. Martello E. Giorli G. Perandin F. Bisoffi Z. A systematic review of transfusion-transmitted malaria in non-endemic areas. Malar. J. 2018 17 1 36 10.1186/s12936‑018‑2181‑0 29338786
    [Google Scholar]
  11. Ouédraogo A. Tiono A.B. Diarra A. Bougouma E.C.C. Nébié I. Konaté A.T. Sirima S.B. Transplacental transmission of Plasmodium falciparum in a highly malaria endemic area of Burkina Faso. J. Trop. Med. 2012 2012 1 109705 10.1155/2012/109705 22174725
    [Google Scholar]
  12. Goodarzi E. Beiranvand R. Darvishi I. Naghibzadeh-Tahami A. Bechashk S.M. Naemi H. Khazaei Z. Geographical distribution of falciparum malaria in the world and its relationship with the human development index (HDI): Countries based on the WHO report in 2017. J. Public. Health. 2022 30 3 655 664 10.1007/s10389‑020‑01336‑6
    [Google Scholar]
  13. Liu Q. Zhang S. Wu Y. Shang W. Liu M. Liu J. Global, regional and national burden and time trends of malaria in children and young adolescents under 15 years from 1990 to 2021: A worldwide observational study. BMC Infect. Dis. 2025 25 1 548 10.1186/s12879‑025‑10949‑9 40247186
    [Google Scholar]
  14. Clinical guidance: Malaria diagnosis & treatment in the U.S. 2024 Available from: https://www.cdc.gov/malaria/hcp/clinical-guidance/index.html#toc
  15. WHO guidelines for malaria. 2023 Available from: https://iris.who.int/bitstream/handle/10665/373339/WHO-UCN-GMP-2023.01-Rev.1-eng.pdf?sequence=1
  16. Okombo J. Chibale K. Recent updates in the discovery and development of novel antimalarial drug candidates. MedChemComm 2018 9 3 437 453 10.1039/C7MD00637C 30108934
    [Google Scholar]
  17. Jensen K. Plichta D. Panagiotou G. Kouskoumvekaki I. Mapping the genome of Plasmodium falciparum on the drug-like chemical space reveals novel anti-malarial targets and potential drug leads. Mol. Biosyst. 2012 8 6 1678 1685 10.1039/c2mb00008c 22446744
    [Google Scholar]
  18. Beghyn T.B. Charton J. Leroux F. Laconde G. Bourin A. Cos P. Maes L. Deprez B. Drug to genome to drug: Discovery of new antiplasmodial compounds. J. Med. Chem. 2011 54 9 3222 3240 10.1021/jm1014617 21504142
    [Google Scholar]
  19. Penava A. Marinović M. de Carvalho L.P. Held J. Piantanida I. Saftić D.P. Rajić Z. Perković I. Towards novel antiplasmodial agents—design, synthesis and antimalarial activity of second-generation β-carboline/chloroquine hybrids. Molecules 2024 29 24 5991 10.3390/molecules29245991 39770079
    [Google Scholar]
  20. Chinnappanna N.K.R. Yennam G. Chaitanya C.B.H.N.V. Pottathil S. Borah P. Venugopala K.N. Deb P.K. Mailavaram R.P. Recent approaches in the drug research and development of novel antimalarial drugs with new targets. Acta Pharm. 2023 73 1 1 27 10.2478/acph‑2023‑0001 36692468
    [Google Scholar]
  21. Siqueira-Neto J.L. Wicht K.J. Chibale K. Burrows J.N. Fidock D.A. Winzeler E.A. Antimalarial drug discovery: Progress and approaches. Nat. Rev. Drug Discov. 2023 22 10 807 826 10.1038/s41573‑023‑00772‑9 37652975
    [Google Scholar]
  22. Pandey S.K. Anand U. Siddiqui W.A. Tripathi R. Drug development strategies for malaria: With the hope for new antimalarial drug discovery-an update. Adv. Med. 2023 2023 1 1 10 10.1155/2023/5060665 36960081
    [Google Scholar]
  23. Bekono B.D. Ntie-Kang F. Onguéné P.A. Lifongo L.L. Sippl W. Fester K. Owono L.C.O. The potential of anti-malarial compounds derived from African medicinal plants: A review of pharmacological evaluations from 2013 to 2019. Malar. J. 2020 19 1 183 10.1186/s12936‑020‑03231‑7 32423415
    [Google Scholar]
  24. Newman D.J. Cragg G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2020 83 3 770 803 10.1021/acs.jnatprod.9b01285 32162523
    [Google Scholar]
  25. Eyal S. The fever tree: From malaria to neurological diseases. Toxins 2018 10 12 491 10.3390/toxins10120491 30477182
    [Google Scholar]
  26. Christensen S.B. Natural products that changed society. Biomedicines 2021 9 5 472 10.3390/biomedicines9050472 33925870
    [Google Scholar]
  27. Tajuddeen N. Van Heerden F.R. Antiplasmodial natural products: An update. Malar. J. 2019 18 1 404 10.1186/s12936‑019‑3026‑1 31805944
    [Google Scholar]
  28. Na-Bangchang K. Karbwang J. Pharmacology of antimalarial drugs, current anti-malarials. Encyclopedia of Malaria. 1st ed New York, USA Springer 2019 1 82 10.1007/978‑1‑4614‑8757‑9_149‑1
    [Google Scholar]
  29. Peters W. Mechanisms of action of antimalarial drugs. Perspectives in Antiinfective Therapy. Berlin, Heidelberg Springer 1989 124 143 10.1007/978‑3‑642‑46666‑3_12
    [Google Scholar]
  30. Le Bihan A. de Kanter R. Angulo-Barturen I. Binkert C. Boss C. Brun R. Brunner R. Buchmann S. Burrows J. Dechering K.J. Delves M. Ewerling S. Ferrer S. Fischli C. Gamo-Benito F.J. Gnädig N.F. Heidmann B. Jiménez-Díaz M.B. Leroy D. Martínez M.S. Meyer S. Moehrle J.J. Ng C.L. Noviyanti R. Ruecker A. Sanz L.M. Sauerwein R.W. Scheurer C. Schleiferboeck S. Sinden R. Snyder C. Straimer J. Wirjanata G. Marfurt J. Price R.N. Weller T. Fischli W. Fidock D.A. Clozel M. Wittlin S. Characterization of novel antimalarial compound ACT-451840: Preclinical assessment of activity and dose-efficacy modeling. PLoS Med. 2016 13 10 e1002138 10.1371/journal.pmed.1002138 27701420
    [Google Scholar]
  31. Kirk K. Ion regulation in the malaria parasite. Annu. Rev. Microbiol. 2015 69 1 341 359 10.1146/annurev‑micro‑091014‑104506 26488277
    [Google Scholar]
  32. Jung M. Kim H. Nam K.Y. No K.T. Three-dimensional structure of Plasmodium falciparum Ca2+-ATPase(PfATP6) and docking of artemisinin derivatives to PfATP6. Bioorg. Med. Chem. Lett. 2005 15 12 2994 2997 10.1016/j.bmcl.2005.04.041 15908211
    [Google Scholar]
  33. Shibeshi M.A. Kifle Z.D. Atnafie S.A. Antimalarial drug resistance and novel targets for antimalarial drug discovery. Infect. Drug Resist. 2020 13 4047 4060 10.2147/IDR.S279433 33204122
    [Google Scholar]
  34. Thimmappa R. Geisler K. Louveau T. O’Maille P. Osbourn A. Triterpene biosynthesis in plants. Annu. Rev. Plant Biol. 2014 65 1 225 257 10.1146/annurev‑arplant‑050312‑120229 24498976
    [Google Scholar]
  35. Yang W. Chen X. Li Y. Guo S. Wang Z. Yu X. Advances in pharmacological activities of terpenoids. Nat. Prod Commun 2020 15 3 1934578X20903555 10.1177/1934578X20903555
    [Google Scholar]
  36. Masyita A. Mustika Sari R. Dwi Astuti A. Yasir B. Rahma Rumata N. Emran T.B. Nainu F. Simal-Gandara J. Terpenes and terpenoids as main bioactive compounds of essential oils, their roles in human health and potential application as natural food preservatives. Food Chem. X 2022 13 100217 10.1016/j.fochx.2022.100217 35498985
    [Google Scholar]
  37. Ozyigit I.I. Dogan I. Hocaoglu-Ozyigit A. Yalcin B. Erdogan A. Yalcin I.E. Cabi E. Kaya Y. Production of secondary metabolites using tissue culture-based biotechnological applications. Front Plant. Sci. 2023 14 1132555 10.3389/fpls.2023.1132555 37457343
    [Google Scholar]
  38. Rocha e Silva L.F. Ramalhete C. Nogueira K.L. Mulhovo S. Ferreira M.J.U. Pohlit A.M. In vivo evaluation of isolated triterpenes and semi-synthetic derivatives as antimalarial agents. Eur. J. Med. Chem. 2015 102 398 402 10.1016/j.ejmech.2015.08.022 26301556
    [Google Scholar]
  39. Isah M.B. Tajuddeen N. Umar M.I. Alhafiz Z.A. Mohammed A. Ibrahim M.A. Terpenoids as emerging therapeutic agents: Cellular targets and mechanisms of action against protozoan parasites. Stud Nat. Prod Chem. 2018 59 227 250 10.1016/B978‑0‑444‑64179‑3.00007‑4
    [Google Scholar]
  40. David O.M. Olanlokun J.O. Owoniyi B.E. Ayeni M. Ebenezer O. Koorbanally N.A. Studies on the mitochondrial, immunological and inflammatory effects of solvent fractions of Diospyros mespiliformis Hochst in Plasmodium berghei-infected mice. Sci. Rep. 2021 11 1 6941 10.1038/s41598‑021‑85790‑6 33767260
    [Google Scholar]
  41. Khasanah U. Ariani N. Aprilia Y.N. Winarsih S. Phytochemical screening and haem polymerization inhibitory activity of root extract and fractions from Strychnos lucida R. Br. Pharmacogn Commn 2022 12 2 40 43 10.5530/pc.2022.2.10
    [Google Scholar]
  42. Steele J.C.P. Warhurst D.C. Kirby G.C. Simmonds M.S.J. In vitro and In vivo evaluation of betulinic acid as an antimalarial. Phytother. Res. 1999 13 2 115 119 10.1002/(SICI)1099‑1573(199903)13:2<115:AID‑PTR404>3.0.CO;2‑1 10190183
    [Google Scholar]
  43. da Silva G.N.S. Maria N.R.G. Schuck D.C. Cruz L.N. de Moraes M.S. Nakabashi M. Graebin C. Gosmann G. Garcia C.R.S. Gnoatto S.C.B. Two series of new semisynthetic triterpene derivatives: Differences in anti-malarial activity, cytotoxicity and mechanism of action. Malar. J. 2013 12 1 89 10.1186/1475‑2875‑12‑89 23497003
    [Google Scholar]
  44. Borgati T. Pereira G. Brandão G. Santos J. Fernandes D.A. de Paula R. do Nascimento M.F. Soares L. Lopes J.C. de Souza Filho J. de Oliveira A. Synthesis by click reactions and antiplasmodial activity of lupeol 1, 2, 3-triazole derivatives. J. Braz. Chem. Soc. 2017 28 10 1850 1856 10.21577/0103‑5053.20170013
    [Google Scholar]
  45. Diedrich D. Wildner A.C. Silveira T.F. Silva G.N.S. Santos F. da Silva E.F. do Canto V.P. Visioli F. Gosmann G. Bergold A.M. Zimmer A.R. Netz P.A. Gnoatto S.C.B. SERCA plays a crucial role in the toxicity of a betulinic acid derivative with potential antimalarial activity. Chem. Biol. Interact. 2018 287 70 77 10.1016/j.cbi.2018.03.014 29604267
    [Google Scholar]
  46. Happi G.M. Ahmed S.A. Kemayou G.P.M. Salau S. Dzouemo L.C. Sikam K.G. Yimtchui M.T. Wansi J.D. Bioassay-guided isolation of antiplasmodial compounds from Hypericum lanceolatum Lam. (Hypericaceae) and their cytotoxicity and molecular docking. BioMed Res. Int. 2023 2023 1 4693765 10.1155/2023/4693765 37284030
    [Google Scholar]
  47. Abd Ghani M.S. Zakaria N. Mohd Arshad N. Kamarulzaman E.E. Awang K. Litaudon M. Mohamad Taib M.N.A. Pentacyclic triterpenoids isolated from Diospyros foxworthyi Bakh. (Ebenaceae) with its cytotoxic activity against HT-29 human colon cancer cell. Malays J. Chem. 2022 24 4 19 25
    [Google Scholar]
  48. Abd Ghani M.S. Abu Bakar N.A.L. Ramadani A.P. Nugraha A.T. Awang K.B. Che Omar M.T. Supratman U. Kamarulzaman E.E. Mohamad Taib M.N.A. Hemisynthesis of pentacyclic triterpenoids from Diospyros foxworthyi with in vitro and in silico anti-malarial evaluation. Curr. Org. Chem. 2024 28 10 799 814 10.2174/0113852728294047240315063815
    [Google Scholar]
  49. Batista R. De Jesus Silva Júnior A. De Oliveira A.B. Plant-derived antimalarial agents: New leads and efficient phytomedicines. Part II. Non-alkaloidal natural products. Molecules 2009 14 8 3037 3072 10.3390/molecules14083037 19701144
    [Google Scholar]
  50. Naik P.K. Srivastava M. Bajaj P. Jain S. Dubey A. Ranjan P. Kumar R. Singh H. The binding modes and binding affinities of artemisinin derivatives with Plasmodium falciparum Ca2+-ATPase (PfATP6). J. Mol. Model. 2011 17 2 333 357 10.1007/s00894‑010‑0726‑4 20461426
    [Google Scholar]
  51. Alkandahri M.Y. Yuniarsih N. Berbudi A. Subarnas A. Antimalaria activities of several active compounds from medicinal plants. Pharmacogn. J. 2022 14 1 245 252 10.5530/pj.2022.14.30
    [Google Scholar]
  52. Shandilya A. Chacko S. Jayaram B. Ghosh I. A plausible mechanism for the antimalarial activity of artemisinin: A computational approach. Sci. Rep. 2013 3 1 2513 10.1038/srep02513 23985481
    [Google Scholar]
  53. Nagasundaram N. George Priya D.C. Chakraborty C. Karthick V. Thirumal Kumar D. Balaji V. Siva R. Lu A. Ge Z. Zhu H. Mechanism of artemisinin resistance for malaria PfATP6 L263 mutations and discovering potential antimalarials: An integrated computational approach. Sci. Rep. 2016 6 1 1 12 10.1038/srep30106 27471101
    [Google Scholar]
  54. Takahashi O. Masuda Y. Muroya A. Furuya T. Theory of docking scores and its application to a customizable scoring function. SAR QSAR Environ. Res. 2010 21 5-6 547 558 10.1080/1062936X.2010.502299 20818587
    [Google Scholar]
  55. Tsamesidis I. Mousavizadeh F. Egwu C. Amanatidou D. Pantaleo A. Benoit-Vical F. Reybier K. Giannis A. In vitro and in silico antimalarial evaluation of FM-AZ, a new artemisinin derivative. Medicines 2022 9 2 8 10.3390/medicines9020008 35200752
    [Google Scholar]
  56. El-Tombary A.A. Abdel-Ghany Y.S. Belal A.S.F. Shams El-Dine S.A. Soliman F.S.G. Synthesis of some substituted furan-2(5H)-ones and derived quinoxalinones as potential anti-microbial and anti-cancer agents. Med. Chem. Res. 2011 20 7 865 876 10.1007/s00044‑010‑9394‑2
    [Google Scholar]
  57. Manjunathan R. Periyaswami V. Mitra K. Rosita A.S. Pandya M. Selvaraj J. Ravi L. Devarajan N. Doble M. Molecular docking analysis reveals the functional inhibitory effect of Genistein and Quercetin on TMPRSS2: SARS-COV-2 cell entry facilitator spike protein. BMC Bioinformatics 2022 23 1 180 10.1186/s12859‑022‑04724‑9 35578172
    [Google Scholar]
  58. Owoloye A.J. Ligali F.C. Enejoh O.A. Musa A.Z. Aina O. Idowu E.T. Oyebola K.M. Molecular docking, simulation and binding free energy analysis of small molecules as PfHT1 inhibitors. PLoS One 2022 17 8 e0268269 10.1371/journal.pone.0268269 36026508
    [Google Scholar]
  59. Peitzika S.C. Pontiki E. A review on recent approaches on molecular docking studies of novel compounds targeting acetylcholinesterase in Alzheimer disease. Molecules 2023 28 3 1084 10.3390/molecules28031084 36770750
    [Google Scholar]
  60. Xiong X. Zhang R. Min Z. Liu J. Zheng P. Li X. Min Z. Synthesis, biological evaluation and molecular dynamics simulations of new sulfonylurea derivatives bearing biphenyl moieties as potential NLRP3 inhibitors. Res. Chem. Intermed. 2024 50 12 5863 5883 10.1007/s11164‑024‑05431‑1
    [Google Scholar]
  61. Anuar N. Mohamad Taib M.N.A. Mohd Hanafiah K. Al Shammary A.A.K. Shalan N.S.N. Che Humaidi S.N.I. Awang K. Synthesis of 1ʹ-acetoxychavicol acetate (ACA) analogues and their inhibitory activities against methicillin-resistant Staphylococcus aureus. J. Physiol. Sci. 2020 31 3 101 111 10.21315/jps2020.31.3.8
    [Google Scholar]
  62. Nurul Azmi M. Aik Sian T. Suhaimi M. Kamarudin M.N.A. Md Din M.F. Nafiah M.A. Thomas N.F. Abdul Kadir H. Awang K. Synthesis of indolostilbenes via FeCl3- promoted oxidative cyclisation and their biological effects on NG108-15 cell viability and H2O2-induced cytotoxicity. J. Physiol. Sci. 2021 32 1 69 89 10.21315/jps2021.32.1.6
    [Google Scholar]
  63. Trager W. Jensen J.B. Human malaria parasites in continuous culture. Science 1976 193 4254 673 675 10.1126/science.781840 781840
    [Google Scholar]
  64. Tenda P.E. Hilaria M. Ramadani A.P. Antiplasmodial activity of faloak bark (Sterculia quadrifida, R.Br.) extract from East Nusa Tenggara, Indonesia. Indones J. Pharmacol. Ther. 2021 2 2 67 73 10.22146/ijpther.1975
    [Google Scholar]
  65. Desjardins R.E. Canfield C.J. Haynes J.D. Chulay J.D. Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution technique. Antimicrob. Agents Chemother. 1979 16 6 710 718 10.1128/AAC.16.6.710 394674
    [Google Scholar]
  66. Homology model of PfATP6. 2006 Available from: https://www.modelarchive.org/doi/10.5452/ma-cies5
  67. Salas-Burgos A. Iserovich P. Zuniga F. Vera J.C. Fischbarg J. Predicting the three-dimensional structure of the human facilitative glucose transporter glut1 by a novel evolutionary homology strategy: Insights on the molecular mechanism of substrate migration, and binding sites for glucose and inhibitory molecules. Biophys. J. 2004 87 5 2990 2999 10.1529/biophysj.104.047886 15326030
    [Google Scholar]
  68. Trott O. Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010 31 2 455 461 10.1002/jcc.21334 19499576
    [Google Scholar]
  69. Eberhardt J. Santos-Martins D. Tillack A.F. Forli S. AutoDock Vina 1.2.0: New docking methods, expanded force field, and python bindings. J. Chem. Inf. Model. 2021 61 8 3891 3898 10.1021/acs.jcim.1c00203 34278794
    [Google Scholar]
  70. Marchetti G. Dessì A. Dallocchio R. Tsamesidis I. Pau M.C. Turrini F.M. Pantaleo A. Syk inhibitors: New computational insights into their intraerythrocytic action in Plasmodium falciparum malaria. Int. J. Mol. Sci. 2020 21 19 7009 10.3390/ijms21197009 32977621
    [Google Scholar]
/content/journals/coc/10.2174/0113852728380874250728074841
Loading
/content/journals/coc/10.2174/0113852728380874250728074841
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test