Skip to content
2000
image of A Facile and General Method for the Synthesis of N-Aryl/Heteroarylphthalimides, Bisphthalimides, and 1,8-Naphthalimides Utilizing Mandelic Acid as an Efficient Catalyst

Abstract

A simple and practical method has been developed for the synthesis of -aryl/heteroarylphthalimides, bisphthalimides, 1,8-naphthalimides, and related derivatives. This method involves the reaction of various primary amines with different anhydrides, such as phthalic anhydride and 1,8-naphthalic anhydride, in the presence of a catalytic amount of mandelic acid in aqueous ethanol under reflux conditions. The use of less toxic solvents, excellent yields, shorter reaction times, elimination of column chromatographic purifications, and low-cost and naturally occurring catalysts are some of the major advantages of this developed protocol.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728379343250526113411
2025-06-16
2025-10-26
Loading full text...

Full text loading...

References

  1. Ali I. Wani W.A. Saleem K. Haque A. Thalidomide: A banned drug resurged into future anticancer drug. Curr. Drug Ther. 2012 7 13 23
    [Google Scholar]
  2. Price D.K. Ando Y. Kruger E.A. Weiss M. Figg W.D. 5′-OH-thalidomide, a metabolite of thalidomide, inhibits angiogenesis. Ther. Drug Monit. 2002 24 1 104 110 11805730
    [Google Scholar]
  3. Scott L.J. Pomalidomide: A review of its use in patients with recurrent multiple myeloma. Drugs 2014 74 5 549 562 10.1007/s40265‑014‑0196‑6 24590685
    [Google Scholar]
  4. Kumar S. Raje N. Hideshima T. Ishitsuka K. Roccaro A. Shiraishi N. Hamasaki M. Yasui H. Munshi N.C. Richardson P. Figg W.D. Anderson K.C. Antimyeloma activity of two novel N-substituted and tetraflourinated thalidomide analogs. Leukemia 2005 19 7 1253 1261 10.1038/sj.leu.2403776 15858615
    [Google Scholar]
  5. Marriott J.B. Westby M. Cookson S. Guckian M. Goodbourn S. Muller G. Shire M.G. Stirling D. Dalgleish A.G. CC-3052: A water-soluble analog of thalidomide and potent inhibitor of activation-induced TNF-α production. J. Immunol. 1998 161 8 4236 4243 10.4049/jimmunol.161.8.4236 9780198
    [Google Scholar]
  6. Jelali H. Mansour L. Deniau E. Sauthier M. Hamdi N. An efficient synthesis of phthalimides and their biological activities. Polycycl. Aromat. Compd. 2022 42 4 1806 1813 10.1080/10406638.2020.1809468
    [Google Scholar]
  7. Assis S.P.O. Araújo T.G. Sena V.L.M. Catanho M.T.J.A. Ramos M.N. Srivastava R.M. Lima V.L.M. Synthesis, hypolipidemic, and anti-inflammatory activities of arylphthalimides. Med. Chem. Res. 2014 23 2 708 716 10.1007/s00044‑013‑0673‑6
    [Google Scholar]
  8. Perveen S. Orfali R. L -proline-catalyzed synthesis of phthalimide derivatives and evaluation of their antioxidant, anti-inflammatory, and lipoxygenase inhibition activities. J. Chem. 2018 2018 1 6 10.1155/2018/5198325
    [Google Scholar]
  9. Barbarossa A. Catalano A. Ceramella J. Carocci A. Iacopetta D. Rosano C. Franchini C. Sinicropi M.S. Simple thalidomide analogs in melanoma: Synthesis and biological activity. Appl. Sci. (Basel) 2021 11 13 5823 10.3390/app11135823
    [Google Scholar]
  10. Abdel-Aziz A.A.M. El-Azab A.S. Attia S.M. Al-Obaid A.M. Al-Omar M.A. El-Subbagh H.I. Synthesis and biological evaluation of some novel cyclic-imides as hypoglycaemic, anti-hyperlipidemic agents. Eur. J. Med. Chem. 2011 46 9 4324 4329 10.1016/j.ejmech.2011.07.002 21783284
    [Google Scholar]
  11. Homsi A. Kasideh A. Synthesis of some N-phthalimide amino acids derivatives and evaluation their biological activity. Int. J. Chemtech Res. 2015 8 4 1817 1825
    [Google Scholar]
  12. Kok S.H.L. Gambari R. Chui C.H. Yuen M.C.W. Lin E. Wong R.S.M. Lau F.Y. Cheng G.Y.M. Lam W.S. Chan S.H. Lam K.H. Cheng C.H. Lai P.B.S. Yu M.W.Y. Cheung F. Tang J.C.O. Chan A.S.C. Synthesis and anti-cancer activity of benzothiazole containing phthalimide on human carcinoma cell lines. Bioorg. Med. Chem. 2008 16 7 3626 3631 10.1016/j.bmc.2008.02.005 18295491
    [Google Scholar]
  13. Phatak P.S. Bakale R.D. Dhumal S.T. Dahiwade L.K. Choudhari P.B. Siva Krishna V. Sriram D. Haval K.P. Synthesis, antitubercular evaluation and molecular docking studies of phthalimide bearing 1,2,3-triazoles. Synth. Commun. 2019 49 16 2017 2028 10.1080/00397911.2019.1614630
    [Google Scholar]
  14. Holanda V.N. Lima E.M.A. Silva W.V. Maia R.T. Medeiros R.L. Ghosh A. Lima V.L.M. Figueiredo R.C.B.Q. Identification of 1,2,3-triazole-phthalimide derivatives as potential drugs against COVID-19: A virtual screening, docking and molecular dynamic study. J. Biomol. Struct. Dyn. 2022 40 12 5462 5480 10.1080/07391102.2020.1871073 33459182
    [Google Scholar]
  15. Othman I.M.M. Gad-Elkareem M.A.M. El-Naggar M. Nossier E.S. Amr A.E.G.E. Novel phthalimide based analogues: Design, synthesis, biological evaluation, and molecular docking studies. J. Enzyme Inhib. Med. Chem. 2019 34 1 1259 1270 10.1080/14756366.2019.1637861 31287341
    [Google Scholar]
  16. Stewart S.G. Spagnolo D. Polomska M.E. Sin M. Karimi M. Abraham L.J. Synthesis and TNF expression inhibitory properties of new thalidomide analogues derived via Heck cross coupling. Bioorg. Med. Chem. Lett. 2007 17 21 5819 5824 10.1016/j.bmcl.2007.08.042 17851074
    [Google Scholar]
  17. Chen D.C. Ye H.Q. Wu H. A more efficient synthetic process of N-arylphthalimides in ionic liquid.[bmim][BF4] Catal. Commun. 2007 8 10 1527 1530 10.1016/j.catcom.2006.12.024].
    [Google Scholar]
  18. Dabiri M. Salehi P. Baghbanzadeh M. Shakouri M. Otokesh S. Ekrami T. Doosti R. Efficient and eco-friendly synthesis of dihydropyrimidinones, bis(indolyl)methanes, and N-alkyl and N-arylimides in ionic liquids. J. Indian Chem. Soc. 2007 4 4 393 401 10.1007/BF03247224
    [Google Scholar]
  19. Zhou M.Y. Li Y.Q. Xu X.M. A new simple and efficient synthesis of N-aryl phthalimides in ionic liquid.[bmim] [PF6]. Synth. Commun. 2003 33 21 3777 3780 10.1081/SCC‑120025187
    [Google Scholar]
  20. Liang J. Lv J. Fan J. Shang Z. Polyethylene glycol as a nonionic liquid solvent for the synthesis of N-alkyl and N-arylimides. Synth. Commun. 2009 39 16 2822 2828 10.1080/00397910802474966
    [Google Scholar]
  21. Lobo H.R. Singh B.S. Shankarling G.S. Deep eutectic solvents and glycerol: A simple, environmentally benign and efficient catalyst/reaction media for synthesis of N- aryl phthalimide derivatives. Green Chem. Lett. Rev. 2012 5 4 487 533 10.1080/17518253.2012.669500
    [Google Scholar]
  22. Sena V.L.M. Srivastava R.M. Silva R.O. Lima V.L.M. Synthesis and hypolipidemic activity of N-substituted phthalimides. Part V. Farmaco 2003 58 12 1283 1288 10.1016/S0014‑827X(03)00185‑X 14630240
    [Google Scholar]
  23. Shinde S.B. Tekale S.U. Kauthale S.S. Deshmukh S.U. Marathe R.P. Nawale R.B. Sonekar V.S. Thorat V.V. Pawar R.P. A facile and efficient synthesis of N-aryl imides using trifluoroacetic acid. Int. J. Ind. Chem. 2011 2 2 112 116
    [Google Scholar]
  24. Le Z.G. Chen Z.C. Hu Y. Zheng Q.G. Organic reactions in ionic liquids: Ionic liquid-promoted efficient synthesis of N -alkyl and N -arylphthalimides. J. Heterocycl. Chem. 2005 42 4 735 737 10.1002/jhet.5570420442
    [Google Scholar]
  25. Xie Y.T. Hou R.S. Wang H.M. Kang I.J. Chen L.C. An efficient protocol for the synthesis of N-alkyl-and N-arylimides using the lewis acidic ionic liquid choline chloride· 2ZnCl2. J. Chin. Chem. Soc. (Taipei) 2009 56 4 839 842 10.1002/jccs.200900124
    [Google Scholar]
  26. Mogilaiah K. Reddy G. Randheer A. A convenient procedure for the synthesis of phthalimides under microwave irradiation. IJCB 1958 43B 4 882 884 10.1002/chin.200433131
    [Google Scholar]
  27. Li H.Z. Zhang J.S. Zhou Y.M. Li T.S. A rapid synthesis of N-aryl phthalimides under microwave irradiation in the absence of solvent. Synth. Commun. 2002 32 6 927 930 10.1081/SCC‑120002706
    [Google Scholar]
  28. Heravi M.M. Shoar R.H. Pedram L. Synthesis of N-arylphthalimides catalyzed by 1,4-diazabicyclo[2,2,2]octane [DABCO] in solventless system. J. Mol. Catal. Chem. 2005 231 1-2 89 91 10.1016/j.molcata.2005.01.005
    [Google Scholar]
  29. Thale P.B. Borase P.N. Shankarling G.S. Magnetic nanocatalyst for the synthesis of maleimide and phthalimide derivatives. RSC Advances 2014 4 103 59454 59461 10.1039/C4RA09008J
    [Google Scholar]
  30. Langade M.M. Efficient one pot synthesis of N-alkyl and N-aryl imides. PharmaChem. 2011 3 2 283 286
    [Google Scholar]
  31. Habibi D. Pordanjani H.M. Phthalimide-N-sulfonic acid, an efficient catalyst for the synthesis of various isoindoline-1,3-dione derivatives. Chem. Pap. 2017 71 11 2293 2299 10.1007/s11696‑017‑0223‑7
    [Google Scholar]
  32. Banerjee B. Kaur M. Sharma A. Singh A. Priya A. Gupta V.K. Jaitak V. Glycine catalyzed one-pot three-component synthesis of structurally diverse 2-amino substituted pyran annulated heterocycles in aqueous ethanol under refluxed conditions. Curr. Green Chem. 2022 9 3 162 173 10.2174/2213346110666221212152202
    [Google Scholar]
  33. Banerjee B. Priya A. Kaur M. Sharma A. Singh A. Gupta V.K. Jaitak V. Sodium dodecyl sulphate catalyzed one-pot three-component synthesis of structurally diverse 2-amino-3-cyano substituted tetrahydrobenzo[b]pyrans and spiropyrans in water at room temperature. Catal. Lett. 2023 153 12 3547 3560 10.1007/s10562‑022‑04256‑0
    [Google Scholar]
  34. Banerjee B. Priya A. Kaur J. Kaur M. Singh A. Sharma A. Cyanuric chloride promoted various organic transformations. Synth. Commun. 2023 53 12 855 882 10.1080/00397911.2023.2201889
    [Google Scholar]
  35. Banerjee B. Singh A. Sharma A. Priya A. Kaur M. Gupta V.K. A simple and efficient method for the synthesis of benzo[3,4-a]phenazin-5-ols and benzo[f]pyrido[b]quinoxalin-5-ol derivatives using trisodium citrate dihydrate as an efficient organo-catalyst at room temperature. Polycycl. Aromat. Compd. 2024 44 6 3747 3760 10.1080/10406638.2023.2238869
    [Google Scholar]
  36. Banerjee B. Priya A. Singh A. Sharma A. Kaur M. Biswas K. Camphorsulfonic acid-catalyzed synthesis of a series of 2-aryl/heteroaryl/alkyl-1 H -anthra[ 1,2- d]imidazole-6,11-dione derivatives. Curr. Org. Chem. 2024 28 12 967 975 10.2174/0113852728301570240405033544
    [Google Scholar]
  37. Banerjee B. Sharma A. Chawla P.A. Jha K.T. Biswas K. Deb M. Kaur M. Priya A. Singh A. Trisodium citrate dihydrate catalyzed one-pot four component synthesis of spiropyrano-indenoquinoxaline derivatives and their molecular docking analysis on the anti-cancer efficacies. ARKIVOC 2024 2024 8 202412203 10.24820/ark.5550190.p012.203
    [Google Scholar]
  38. Banerjee B. Priya A. Sharma A. Singh A. Kaur M. Sodium dodecyl sulfate catalyzed one-pot three-component synthesis of structurally diverse 2-amino-3-cyano-4-substitued-4H-chromenes in aqueous medium at room temperature. ARKIVOC 2023 2023 7 202312116 10.24820/ark.5550190.p012.116
    [Google Scholar]
  39. Banerjee B. Kaur M. Sharma V. Gupta V.K. Kaur J. Sharma A. Priya A. Singh A. Camphor sulfonic acid catalyzed one-pot pseudo three-component synthesis of a series of 1,8-dioxo-octahydroxanthenes and comparative crystal structures investigations and Hirshfeld surface analysis of five such derivatives. Res. Chem. Intermed. 2023 49 11 4639 4670 10.1007/s11164‑023‑05064‑w
    [Google Scholar]
  40. Banik B.K. Banerjee B. Organocatalysis: A green tool for sustainable developments. Berlin, Boston De Gruyter 2022 10.1515/9783110732542
    [Google Scholar]
  41. Kaur G. Thakur S. Kaundal P. Chandel K. Banerjee B. p‐Dodecylbenzenesulfonic acid: An efficient brønsted acid‐surfactant‐combined catalyst to carry out diverse organic transformations in aqueous medium. ChemistrySelect 2018 3 45 12918 12936 10.1002/slct.201802824
    [Google Scholar]
  42. Kaur G. Singh A. Kaur N. Banerjee B. A general method for the synthesis of structurally diverse quinoxalines and pyrido-pyrazine derivatives using camphor sulfonic acid as an efficient organo-catalyst at room temperature. Synth. Commun. 2021 51 7 1121 1131 10.1080/00397911.2021.1873383
    [Google Scholar]
  43. Kaur G. Singh A. Bala K. Devi M. Kumari A. Devi S. Devi R. Gupta V.K. Banerjee B. Naturally occurring organic acid-catalyzed facile diastereoselective synthesis of biologically active (E)-3-(arylimino)indolin-2-one derivatives in water at room temperature. Curr. Org. Chem. 2019 23 16 1778 1788 10.2174/1385272822666190924182538
    [Google Scholar]
  44. Sharma A. Kaur G. Gupta V.K. Banerjee B. A general method for the synthesis of 11H-indeno[1,2-b]quinoxalin-11-ones and 6H-indeno[1,2-b]pyrido[3,2-e]pyrazin-6-one derivatives using mandelic acid as an efficient organo-catalyst at room temperature. Curr. Organocatal. 2022 9 53 61 10.2174/2213337208666210825112301
    [Google Scholar]
  45. Banerjee B. Singh A. Sharma A. Priya A. Kaur M. Kaur G. Gupta V.K. Jaitak V. Mandelic acid catalyzed one-pot pseudo three-component synthesis of various trisubstituted methane derivatives at room temperature. ARKIVOC 2022 2022 9 100 118 10.24820/ark.5550190.p011.895
    [Google Scholar]
  46. Kaur G. Shamim M. Bhardwaj V. Gupta V.K. Banerjee B. Mandelic acid catalyzed one-pot three-component synthesis of α-aminonitriles and α-aminophosphonates under solvent-free conditions at room temperature. Synth. Commun. 2020 50 1545 1560 10.1080/00397911.2020.1745844
    [Google Scholar]
  47. Singh A. Kaur G. Kaur A. Gupta V.K. Banerjee B. A general method for the synthesis of 3,3-bis(indol-3-yl)indolin-2-ones, bis(indol-3-yl)(aryl)methanes and tris(indol-3-yl)methanes using naturally occurring mandelic acid as an efficient organo-catalyst in aqueous ethanol at room temperature. Curr. Green Chem. 2020 7 1 128 140 10.2174/2213346107666200228125715
    [Google Scholar]
  48. Kaur G. Kumar R. Saroch S. Gupta V.K. Banerjee B. Mandelic acid: An efficient organo-catalyst for the synthesis of 3-substituted-3-hydroxy-indolin-2-ones and related derivatives in aqueous ethanol at room temperature. Curr. Organocatal. 2021 8 147 159
    [Google Scholar]
  49. Liang Z-P. Li J. 2,2′-(Ethane-1,2-diyl)bis(isoindoline-1,3-dione). Acta Crystallogr. 2006 E62 o5282 o5283 10.1107/S1600536806043923
    [Google Scholar]
  50. Schwarzer A. Weber E. Influence of fluorine substitution on the crystal packing of n-phenylmaleimides and corresponding phthalimides. Cryst. Growth Des. 2008 8 2862 2874
    [Google Scholar]
  51. Pluempanupat W. Adisakwattana S. Yibchok-Anun S. Chavasiri W. Synthesis of N-phenylphthalimide derivatives as α-glucosidase inhibitors. Arch. Pharm. Res. 2007 30 12 1501 1506 10.1007/BF02977317 18254235
    [Google Scholar]
  52. Wang X. Xiong W. Huang Y. Zhu J. Hu Q. Wu W. Jiang H. Palladium-catalyzed synthesis of 1H-indenes and phthalimides via isocyanide insertion. Org. Lett. 2017 19 21 5818 5821 29064722
    [Google Scholar]
  53. Berthold S. Derivatives of 4-amino-antipyrine US Patent US2506654A May 9 1950
  54. Almeida M. Alves C.C.D. Amarante G.W. Souza, M.V.N.de.; Teixeira, F.M. Thalidomide analogs from diamines: Synthesis and evaluation as inhibitors of TNF-a production. Chem. Pharm. Bull. (Tokyo) 2007 55 223 226 17268092
    [Google Scholar]
  55. Liu Z. Zhou Y. Du L. Li M. Novel intramolecular photoinduced electron transfer-based probe for the Human Ether-a-go-go-Related Gene (hERG) potassium channel. Analyst (Lond.) 2015 140 24 8101 8108 10.1039/C5AN01974E 26526230
    [Google Scholar]
  56. Kumar M.M. Venkataramana P. Swamy Y.P. Chityala Y. N-Amino-1,8-naphthalimide is a regenerated protecting group for selective synthesis of mono-n-substituted hydrazines and hydrazides. Chemistry 2021 27 70 17713 17721 10.1002/chem.202102593 34664751
    [Google Scholar]
/content/journals/coc/10.2174/0113852728379343250526113411
Loading
/content/journals/coc/10.2174/0113852728379343250526113411
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test