Skip to content
2000
image of Triazines as Versatile Scaffolds in Drug Discovery: A Comprehensive Review on Recent Advances and Emerging Therapeutic Applications

Abstract

Triazine is a heterocyclic aromatic ring that is divided into three isomers by nitrogen atom positions. 2-Aza-2-desamino-5,8-dideazafolic acid and 2-azaadenosine are 1,2,3-triazine derivatives, whereas azaribine, tirapazamine, lamotrigine, and 6-azacytosine are 1,2,4-triazine derivatives. Natural antibiotics like fervenulin, reumycin, and toxoflavin have a triazine ring structure. Ammeline, aceto-guanide, acetoguanamine, cyanuric acid, and melamine all include 1,3,5-triazine isomer or s-triazine as a lead structure. Hexamethylmelamine (altretamine), atrazine, cycloguanil, and almitrine are examples of s-triazine-containing medications. Triazines are important in pharmaceutical chemistry because they exhibit a wide range of pharmacological actions, making them valuable for drug design and development. Some triazine analogs have recently been tested in clinical trials, which might lead to more powerful medications and have fewer adverse effects than currently available pharmaceuticals. This article discusses the biological significance and synthesis of several triazine derivatives derived from heterocyclic and Triazine-containing medicines.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728379266250708074432
2025-07-30
2025-09-23
Loading full text...

Full text loading...

References

  1. Kumar R. Kumar N. Roy R.K. Singh A. Triazines – A comprehensive review of their synthesis and diverse biological importance. Curr. Med. Drug Res. 2017 1 1 3 9
    [Google Scholar]
  2. Khalil E.G. Berghot M. Gouda M. Design, synthesis and antibacterial activity of new phthalazinedione derivatives. J. Serb. Chem. Soc. 2011 76 3 329 339 10.2298/JSC091122028K
    [Google Scholar]
  3. Majeed Ganai A. Khan Pathan T. Hampannavar G.A. Pawar C. Obakachi V.A. Kushwaha B. Deshwar Kushwaha N. Karpoormath R. Recent advances on the s‐triazine scaffold with emphasis on synthesis, structure‐activity and pharmacological aspects: A concise review. ChemistrySelect 2021 6 7 1616 1660 10.1002/slct.202004591
    [Google Scholar]
  4. Butler R.N. Fahy A.M. Fox A. Stephens J.C. McArdle P. Cunningham D. Ryder A.G. New reactive fluorophores in the 1,2,3-triazine series. Tetrahedron Lett. 2006 47 11 1721 1724 10.1016/j.tetlet.2006.01.052
    [Google Scholar]
  5. Montgomery J.A. Thomas H.J. Nucleosides of 2-azapurines and certain ring analogs. J. Med. Chem. 1972 15 2 182 187 10.1021/jm00272a014 4536650
    [Google Scholar]
  6. Roeowsky A Forsch RA Morant RG 3-(acetylamino)-2,4-pentanedione, 5440-23-3; 4-acetyl-2,5-dimethoxazole, 23000-12-6; 3-(4-nitro-phenoxy) propionic acid, 10572-16-4; a-aminopropiophenone hy-drochloride, 16735-19-6; a. aminopropiophenone hydrochloride 1992 35
    [Google Scholar]
  7. Kumar R. Singh A.D. Singh J. Singh H. Roy R.K. Chaudhary A. 1,2,3-Triazine scaffold as a potent biologically active moiety: A mini review. Mini Rev. Med. Chem. 2014 14 1 72 83 10.2174/1389557513666140103111017
    [Google Scholar]
  8. Cascioferro S. Parrino B. Spanò V. Carbone A. Montalbano A. Barraja P. Diana P. Cirrincione G. An overview on the recent developments of 1,2,4-triazine derivatives as anticancer compounds. Eur. J. Med. Chem. 2017 142 328 375 10.1016/j.ejmech.2017.08.009 28851503
    [Google Scholar]
  9. Mahindra A. Jenkins L. Marsango S. Huggett M. Huggett M. Robinson L. Gillespie J. Rajamanickam M. Morrison A. McElroy S. Tikhonova I.G. Milligan G. Jamieson A.G. Investigating the structure–activity relationship of 1,2,4-triazine g-protein-coupled receptor 84 (GPR84) antagonists. J. Med. Chem. 2022 65 16 11270 11290 10.1021/acs.jmedchem.2c00804 35948061
    [Google Scholar]
  10. Kumar R. Sirohi T.S. Singh H. Yadav R. Roy R.K. Chaudhary A. Pandeya S.N. 1,2,4-triazine analogs as novel class of therapeutic agents. Mini Rev. Med. Chem. 2014 14 2 168 207 10.2174/1389557514666140131111837 24479860
    [Google Scholar]
  11. Sułkowska A. Równicka J. Bojko B. Sułkowski W. Interaction of anticancer drugs with human and bovine serum albumin. J. Mol. Struct. 2003 651-653 133 140 10.1016/S0022‑2860(02)00642‑7
    [Google Scholar]
  12. Steffen E. Wiedemann S. Georgieff M. Combined intravenous administration of diclofenac and apazone for postoperative analgesia A randomized study of 112 patients with access to i. v. on-demand analgesia after minor orthopaedic operations. Schmerz 1994 8 4 235 242 10.1007/BF02527892 18415463
    [Google Scholar]
  13. Gazieva G.A. Poluboyarov P.A. Nelyubina Y.V. Struchkova M.I. Kravchenko, AN Synthesis of imidazo[4,5-e][1,3]thiazolo-[3,2-b][1,2,4]triazines. Chem. Heterocycl. Compd. 2012 48 1382 1389 10.1007/s10593‑012‑1147‑3
    [Google Scholar]
  14. Goa K.L. Ross S.R. Chrisp P. Lamotrigine. Drugs 1993 46 1 152 176 10.2165/00003495‑199346010‑00009 7691504
    [Google Scholar]
  15. Sarkar U. Glaser R. Parsons Z.D. Barnes C.L. Gates K.S. Synthesis, crystal structure, and rotational energy profile of 3-cyclopropyl-1,2,4-benzotriazine 1,4-di-n-oxide. J. Chem. Crystallogr. 2010 40 7 624 629 10.1007/s10870‑010‑9707‑9 22294856
    [Google Scholar]
  16. Krečmerová M. Otmar M. 5-azacytosine compounds in medicinal chemistry: Current stage and future perspectives. Future Med. Chem. 2012 4 8 991 1005 10.4155/fmc.12.36 22650240
    [Google Scholar]
  17. He B. Zhou H. Theoretical study on drum-shaped polymers (1,3,5-Triazine) 2 ncomposed of nonplanar π-extended polymerization units. ACS Omega 2020 5 20 11618 11628 10.1021/acsomega.0c00850 32478252
    [Google Scholar]
  18. Safin D.A. Structural and in silico studies of 2-pyridyl-decorated 2-amino-1,3,5-triazine with a potency against SARS-CoV-2 proteins. C. R. Chim. 2024 27 G1 153 166 10.5802/crchim.290
    [Google Scholar]
  19. Viswanatha G.L. Priyadarshini B.J. Krishnadas N. Janardhanan S. Rangappa S. Hanumanthappa S. Synthesis and antihistaminic activity of 3H-benzo [4,5] thieno [2,3-d][1,2,3] triazin-4-ones. Saudi Pharm. J. 2012 20 1 45 52 10.1016/j.jsps.2011.05.005 24109203
    [Google Scholar]
  20. Yeo A.E.T. Edstein M.D. Shanks G.D. Rieckmann K.H. A statistical analysis of the antimalarial activity of proguanil and cycloguanil in human volunteers. Ann. Trop. Med. Parasitol. 1994 88 6 587 594 10.1080/00034983.1994.11812909 7893172
    [Google Scholar]
  21. Dhainaut A. Regnier G. Tizot A. Pierre A. Leonce S. Guilbaud N. New purines and purine analogs as modulators of multidrug resistance. J. Med. Chem. 1996 39 20 4099 4108 10.1021/jm960361i 8831775
    [Google Scholar]
  22. Tomassetti M. Martini E. Campanella L. Favero G. Sanzó G. Mazzei F. A new surface plasmon resonance immunosensor for triazine pesticide determination in bovine milk: A comparison with conventional amperometric and screen-printed immunodevices. Sensors 2015 15 5 10255 10270 10.3390/s150510255 25942643
    [Google Scholar]
  23. Hansen L.A. Hughes T.E. Altretamine. DICP 1991 25 2 146 152 10.1177/106002809102500209 1905441
    [Google Scholar]
  24. Sidwell R.W. Dixon G.J. Sellers S.M. Schabel F.M. In vivo antiviral properties of biologically active compounds II Studies with influenza and vaccinia virusesAppl Microbiol. 1968 16 2 370 392 10.1128/am.16.2.370‑392.1968 5694419
    [Google Scholar]
  25. Gabrielsen B. Kirsi J.J. Kwong C.D. Carter D.A. Krauth C.A. Hanna L.K. In vitro and in vivo antiviral (RNA) evaluation of orotidine 5′-monophosphate decarboxylase inhibitors and analogues including 6-azauridine-5′-(ethyl methoxyalaninyl)phosphate (a 5′-monophosphate prodrug). Antivir. Chem. Chemother. 1994 5 4 209 220 10.1177/095632029400500402
    [Google Scholar]
  26. Steffenhagen K.A. Easterday B.C. Galasso G.J. Friedman-Kien A. Klein R.J. Kern E.R. Evaluation of 6-azauridine and s-iododeoxyuridine in the treatment of experimental viral infections. J. Infect. Dis. 1976 133 6 603 612 10.1093/infdis/133.6.603 180189
    [Google Scholar]
  27. Karnofsky D.A. Triethylene melamine in the treatment of lymphomas and leukemias. Med. Clin. North Am. 1954 38 2 541 554 10.1016/S0025‑7125(16)34896‑9 13153527
    [Google Scholar]
  28. Miles S. xPharm: The comprehensive pharmacology reference Elsevier 2007 1 5
    [Google Scholar]
  29. Vogler W.R. Olansky S. A double-blind study of azaribine in the treatment of psoriasis. Ann. Intern. Med. 1970 73 6 951 956 10.7326/0003‑4819‑73‑6‑951 4947943
    [Google Scholar]
  30. Richards D.M. Heel R.C. Brogden R.N. Speight T.M. Avery G.S. Lacey R.W. Ceftriaxone. A review of its antibacterial activity, pharmacological properties and therapeutic use. Drugs 1984 27 6 469 527 10.2165/00003495‑198427060‑00001 6329638
    [Google Scholar]
  31. Messenheimer J.A. Lamotrigine. Epilepsia 1995 36 s2 S87 S94 10.1111/j.1528‑1157.1995.tb06002.x 8784217
    [Google Scholar]
  32. Ausborn J. Wolf H. Mader W. Kayser H. The insecticide pymetrozine selectively affects chordotonal mechanoreceptors. J. Exp. Biol. 2005 208 23 4451 4466 10.1242/jeb.01917 16339866
    [Google Scholar]
  33. Porst H. Rosen R. Padma-Nathan H. Goldstein I. Giuliano F. Ulbrich E. Bandel T. The efficacy and tolerability of vardenafil, a new, oral, selective phosphodiesterase type 5 inhibitor, in patients with erectile dysfunction: The first at-home clinical trial. Int. J. Impot. Res. 2001 13 4 192 199 10.1038/sj.ijir.3900713 11494074
    [Google Scholar]
  34. Saas-Torres J. Domingo C. Morón A. Rué M. Marín A. Long-term effects of almitrine bismesylate in COPD patients with chronic hypoxaemia. Respir. Med. 2003 97 6 599 605 10.1053/rmed.2003.1486 12814142
    [Google Scholar]
  35. Keldsen N. Havsteen H. Vergote I. Bertelsen K. Jakobsen A. Altretamine (hexamethylmelamine) in the treatment of platinum-resistant ovarian cancer: A phase II study. Gynecol. Oncol. 2003 88 2 118 122 10.1016/S0090‑8258(02)00103‑8 12586589
    [Google Scholar]
  36. D’Ruiz C.D. Plautz J.R. Schuetz R. Sanabria C. Hammonds J. Erato C. Klock J. Vollhardt J. Mesaros S. Preliminary clinical pharmacokinetic evaluation of bemotrizinol - A new sunscreen active ingredient being considered for inclusion under FDA’s over-the-counter (OTC) sunscreen monograph. Regul. Toxicol. Pharmacol. 2023 139 105344 10.1016/j.yrtph.2023.105344 36738872
    [Google Scholar]
  37. Woody R.C. Kearns G.L. Brewster M.A. Turley C.P. Sharp G.B. Lake R.S.W.E. The neurotoxicity of cyclotrimethylenetrinitramine (RDX) in a child: A clinical and pharmacokinetic evaluation. J. Toxicol. Clin. Toxicol. 1986 24 4 305 319 10.3109/15563658608992595 3746987
    [Google Scholar]
  38. Watkins W.M. Sixsmith D.G. Chulay J.D. The activity of proguanil and its metabolites, cycloguanil and p-chlorophenylbiguanide, against Plasmodiumfalciparum in vitro. Ann. Trop. Med. Parasitol. 1984 78 3 273 278 10.1080/00034983.1984.11811816 6385887
    [Google Scholar]
  39. Huthmacher K. Most D. Cyanuric Acid and Cyanuric Chloride. Ullmann’s Encyclopedia of Industrial Chemistry. Wiley 2000 10.1002/14356007.a08_191
    [Google Scholar]
  40. Van De Wouw A.P. Batterham P. Daborn P.J. The insect growth regulator insecticide cyromazine causes earlier emergence in Drosophila melanogaster. Arch. Insect Biochem. Physiol. 2006 63 3 101 109 10.1002/arch.20146 17048245
    [Google Scholar]
  41. Bespalov V.G. Kireeva G.S. Belyaeva O.A. Kalinin O.E. Senchik K.Y. Stukov A.N. Gafton G.I. Guseynov K.D. Belyaev A.M. Both heat and new chemotherapeutic drug dioxadet in hyperthermic intraperitoneal chemoperfusion improved survival in rat ovarian cancer model. J. Surg. Oncol. 2016 113 4 438 442 10.1002/jso.24140 26710749
    [Google Scholar]
  42. Herzog B. Wehrle M. Quass K. Photostability of UV absorber systems in sunscreens. Photochem. Photobiol. 2009 85 4 869 878 10.1111/j.1751‑1097.2009.00544.x 19320846
    [Google Scholar]
  43. Coley H.M. Brooks N. Phillips D.H. Hewer A. Jenkins T.C. Jarman M. The role of the N-(hydroxymethyl)melamines as antitumour agents: Mechanism of action studies. Biochem. Pharmacol. 1995 49 9 1203 1212 10.1016/0006‑2952(95)00040‑7 7763301
    [Google Scholar]
  44. Sączewski F. Bułakowska A. Bednarski P. Grunert R. Synthesis, structure and anticancer activity of novel 2,4-diamino-1,3,5-triazine derivatives. Eur. J. Med. Chem. 2006 41 2 219 225 10.1016/j.ejmech.2005.10.013 16377034
    [Google Scholar]
  45. Steverding D. The development of drugs for treatment of sleeping sickness: A historical review. Parasit. Vectors 2010 3 15 10.1186/1756‑3305‑3‑15 20219092
    [Google Scholar]
  46. Savadelis M.D. Day K.M. Bradner J.L. Wolstenholme A.J. Dzimianski M.T. Moorhead A.R. Efficacy and side effects of doxycycline versus minocycline in the three-dose melarsomine canine adulticidal heartworm treatment protocol. Parasit. Vectors 2018 11 1 671 10.1186/s13071‑018‑3264‑z 30587225
    [Google Scholar]
  47. Zhang J.J. Wang Y.K. Zhou J.H. Xie F. Guo Q.N. Lu F.F. Jin S.F. Zhu H.M. Yang H. Reduced phytotoxicity of propazine on wheat, maize and rapeseed by salicylic acid. Ecotoxicol. Environ. Saf. 2018 162 42 50 10.1016/j.ecoenv.2018.06.068 29960913
    [Google Scholar]
  48. Capel P.D. Spexet A.H. Larson S.J. Occurrence and behavior of the herbicide Prometon in the hydrologic system. Environ. Sci. Technol. 1999 33 5 674 680 10.1021/es9807340
    [Google Scholar]
  49. Crowley P.J. Use as agrochemicals Comprehensive heterocyclic chemistry. Amsterdam, Netherlands Elsevier 1984 185 199 10.1016/B978‑008096519‑2.00007‑2
    [Google Scholar]
  50. Đikić D. Prometryn. Encyclopedia of Toxicology. Elsevier 2014 1077 1081 10.1016/B978‑0‑12‑386454‑3.00533‑9
    [Google Scholar]
  51. Broser M. Glöckner C. Gabdulkhakov A. Guskov A. Buchta J. Kern J. Müh F. Dau H. Saenger W. Zouni A. Structural basis of cyanobacterial photosystem II Inhibition by the herbicide terbutryn. J. Biol. Chem. 2011 286 18 15964 15972 10.1074/jbc.M110.215970 21367867
    [Google Scholar]
  52. Management of triazine-resistant pigweed and lambsquarters. 2017 Available from: https://extension.psu.edu/management-of-triazine-resistant-pigweed-and-lambsquarters
  53. Nyströ B. Blanck H. Effects of the sulfonylurea herbicide metsulfuron methyl on growth and macromolecular synthesis in the green alga Selenastrum capricornutum. Aquat. Toxicol. 1998 43 1 25 39 10.1016/S0166‑445X(97)00093‑3
    [Google Scholar]
  54. Estrada M.H. Insuasty H. Cuca L.E. Marder M. Fierro A. Guerrero M.F. Anticonvulsant profile of 2-ethylthio-7-methyl-4-(4-methylphenyl)pyrazolo[1,5-a][1,3,5]triazine. Braz. J. Pharm. Sci. 2014 50 1 73 81 10.1590/S1984‑82502011000100007
    [Google Scholar]
  55. Huang H. Guo W. Wu W. Li C.J. Jiang H. Copper-catalyzed oxidative C(sp 3)–H functionalization for facile synthesis of 1,2,4-triazoles and 1,3,5-triazines from amidines. Org. Lett. 2015 17 12 2894 2897 10.1021/acs.orglett.5b00995 26023708
    [Google Scholar]
  56. You Q. Wang F. Wu C. Shi T. Min D. Chen H. Zhang W. Synthesis of 1,3,5-triazines via Cu(OAc) 2 -catalyzed aerobic oxidative coupling of alcohols and amidine hydrochlorides. Org. Biomol. Chem. 2015 13 24 6723 6727 10.1039/C5OB00724K 25991063
    [Google Scholar]
  57. Irannejad H. Nadri H. Naderi N. Rezaeian S.N. Zafari N. Foroumadi A. Amini M. Khoobi M. Anticonvulsant activity of 1,2,4-triazine derivatives with pyridyl side chain: Synthesis, biological, and computational study. Med. Chem. Res. 2015 24 6 2505 2513 10.1007/s00044‑014‑1315‑3
    [Google Scholar]
  58. Moustafa M.S. Mekheimer R.A. Al-Mousawi S.M. Abd-Elmonem M. El-Zorba H. Hameed A.M.A. Mohamed T.M. Sadek K.U. Microwave-assisted efficient one-pot synthesis of N2 -(tetrazol-5-yl)-6-aryl/heteroaryl-5,6-dihydro-1,3,5-triazine-2,4-diamines. Beilstein J. Org. Chem. 2020 16 1706 1712 10.3762/bjoc.16.142 32733614
    [Google Scholar]
  59. Junaid A. Lim F.P.L. Tiekink E.R.T. Dolzhenko A.V. Design, synthesis, and biological evaluation of new 6, N2 -diaryl-1,3,5-triazine-2,4-diamines as anticancer agents selectively targeting triple negative breast cancer cells. RSC Advances 2020 10 43 25517 25528 10.1039/D0RA04970K 35518627
    [Google Scholar]
  60. Elie J. Fruit C. Besson T. Microwave-assisted sequential one-pot synthesis of 8-substituted pyrazolo[1,5-a][1,3,5]triazines. Molecules 2021 26 12 3540 10.3390/molecules26123540 34200623
    [Google Scholar]
  61. Kang G.F. Zhang G. One-pot synthesis of 1,3,5-triazine-2,4-dithione derivatives via three-component reactions. Beilstein J. Org. Chem. 2020 16 1447 1455 10.3762/bjoc.16.120 32647546
    [Google Scholar]
  62. Ghorbani-Vaghei R. Shahriari A. Salimi Z. Hajinazari S. Solvent-free synthesis of triazines using N-halosulfonamides. RSC Advances 2015 5 5 3665 3669 10.1039/C4RA10892B
    [Google Scholar]
  63. Herrera A. Riaño A. Moreno R. Caso B. Pardo Z.D. Fernández I. Sáez E. Molero D. Sánchez-Vázquez A. Martínez-Alvarez R. One-pot synthesis of 1,3,5-triazine derivatives via controlled cross-cyclotrimerization of nitriles: A mechanism approach. J. Org. Chem. 2014 79 15 7012 7024 10.1021/jo501144v 25010006
    [Google Scholar]
  64. Junaid A. Tan Y.S. Tiekink E.R.T. Dolzhenko A.V. Dolzhenko A.V. Junaid A. A one-pot synthesis of N2, 6-diaryl-5,6-dihydro-1,3,5-triazine-2,4-diamines and systematic evaluation of their ability to host ethanol in crystals. RSC Advances 2019 9 64 37660 37667 10.1039/C9RA08795H 35542265
    [Google Scholar]
  65. Yavari I. Mosaferi S. A one-pot synthesis of 2H-pyrido[1,2-a][1,3,5]triazine-2-selenones from acyl isoselenocyanates and pyridin-2-amine. Monatsh. Chem. 2017 148 5 963 966 10.1007/s00706‑016‑1834‑3
    [Google Scholar]
  66. Sun L. Bera H. Chui W.K. Synthesis of pyrazolo[1,5-a][1,3,5]triazine derivatives as inhibitors of thymidine phosphorylase. Eur. J. Med. Chem. 2013 65 1 11 10.1016/j.ejmech.2013.03.063 23688695
    [Google Scholar]
  67. Ahuja P. Siddiqui N. Anticonvulsant evaluation of clubbed indole-1,2,4-triazine derivatives: A synthetic approach. Eur. J. Med. Chem. 2014 80 509 522 10.1016/j.ejmech.2014.04.043 24813879
    [Google Scholar]
  68. Khan A.A. Siddiqui N. Akhtar M.J. Ali Z. Yar M.S. Design, synthesis, and biological evaluation of 6‐(2‐Amino‐substituted phenyl)‐4‐(substituted phenyl)‐1,2,4‐triazine‐3,5(2 H, 4 H)‐dione derivatives as anticonvulsant agents. Arch. Pharm. 2016 349 4 277 292 10.1002/ardp.201500448 26996080
    [Google Scholar]
  69. Praski A. Jaworska M. Lodowski P. Structure and electronic spectra of neutral and protonated forms of anticonvulsant drug lamotrigine. J. Mol. Model. 2020 26 3 53 10.1007/s00894‑019‑4266‑2 32036441
    [Google Scholar]
  70. Mallikarjuna B.P. Suresh Kumar G.V. Sastry B.S. Nagaraj; Manohara, K.P. Synthesis and anticonvulsant activity of some potent 5,6-bis aryl 1,2,4-triazines. J. Zhejiang Univ. Sci. B 2007 8 7 526 532 10.1631/jzus.2007.B0526 17674488
    [Google Scholar]
  71. Gomha S.M. Khalil K.D. El-Zanaty A.M. Riyadh S.M. A facile green synthesis and anti-cancer activity of bis- arylhydrazononitriles, triazolo[5,1-c][1,2,4]triazine, and 1,3,4-thiadiazolines. Heterocycles 2013 87 1109 1120 10.3987/COM‑13‑12696
    [Google Scholar]
  72. Amir M. Ali I. Hassan M.Z. Mulakayala N. Design, synthesis, and biological evaluation of hydrazone incorporated 1,2,4-triazines as anticonvulsant agents. Arch. Pharm. 2014 347 12 958 968 10.1002/ardp.201400045 25251582
    [Google Scholar]
  73. Insuasty H. Castro É. Escobar J.C. Murillo V. Rodríguez J. Cuca L.E. Assessment of the anticonvulsant activity of pyrazolo[1,5-a][1,3,5]triazines obtained by synthesis. Rev. Colomb Cienc Quim-Farm 2014 43 1 22 38 10.15446/rcciquifa.v43n1.45462
    [Google Scholar]
  74. Paronikyan E.G. Dashyan S.S. Mamyan S.S. Paronikyan R.G. Nazaryan I.M. Balyan K.V. Gasparyan H.V. Buloyan S.A. Hunanyan L.S. Hobosyan N.G. Synthesis and psychotropic properties of novel condensed triazines for drug discovery. Pharmaceuticals 2024 17 7 829 10.3390/ph17070829 39065680
    [Google Scholar]
  75. Asadi P. Alvani M. Hajhashemi V. Rostami M. Khodarahmi G. Design, synthesis, biological evaluation, and molecular docking study on triazine based derivatives as anti-inflammatory agents. J. Mol. Struct. 2021 1243 130760 10.1016/j.molstruc.2021.130760
    [Google Scholar]
  76. Ashour H.M. Shaaban O.G. Rizk O.H. El-Ashmawy I.M. Synthesis and biological evaluation of thieno [2′,3′:4,5]pyrimido[1,2-b][1,2,4]triazines and thieno[2,3-d][1,2,4]triazolo[1,5-a]pyrimidines as anti-inflammatory and analgesic agents. Eur. J. Med. Chem. 2013 62 341 351 10.1016/j.ejmech.2012.12.003 23376247
    [Google Scholar]
  77. Banerjee A.G. Das N. Shengule S.A. Srivastava R.S. Shrivastava S.K. Synthesis, characterization, evaluation and molecular dynamics studies of 5, 6–diphenyl–1,2,4–triazin–3(2 H)–one derivatives bearing 5–substituted 1,3,4–oxadiazole as potential anti–inflammatory and analgesic agents. Eur. J. Med. Chem. 2015 101 81 95 10.1016/j.ejmech.2015.06.020 26117820
    [Google Scholar]
  78. Makhlouf A.A. Maklad Y.A. Synthesis and analgesic-anti-inflammatory activities of some 1,2,4-triazine derivatives. Drug Research 2004 54 1 42 49 10.1055/s‑0031‑1296935 14979608
    [Google Scholar]
  79. Olejarz-Maciej A. Mogilski S. Karcz T. Werner T. Kamińska K. Kupczyk J. Honkisz-Orzechowska E. Latacz G. Stark H. Kieć-Kononowicz K. Łażewska D. Trisubstituted 1,3,5-triazines as histamine H 4 receptor antagonists with promising activity in vivo. Molecules 2023 28 10 4199 10.3390/molecules28104199 37241939
    [Google Scholar]
  80. Xue L. Shi D.H. Harjani J.R. Huang F. Beveridge J.G. Dingjan T. Ban K. Diab S. Duffy S. Lucantoni L. Fletcher S. Chiu F.C.K. Blundell S. Ellis K. Ralph S.A. Wirjanata G. Teguh S. Noviyanti R. Chavchich M. Creek D. Price R.N. Marfurt J. Charman S.A. Cuellar M.E. Strasser J.M. Dahlin J.L. Walters M.A. Edstein M.D. Avery V.M. Baell J.B. 3,3′-disubstituted 5,5′-Bi(1,2,4-triazine) derivatives with potent in vitro and in vivo antimalarial activity. J. Med. Chem. 2019 62 5 2485 2498 10.1021/acs.jmedchem.8b01799 30715882
    [Google Scholar]
  81. Pathak M. Ojha H. Tiwari A.K. Sharma D. Saini M. Kakkar R. Design, synthesis and biological evaluation of antimalarial activity of new derivatives of 2,4,6-s-triazine. Chem. Cent. J. 2017 11 1 132 10.1186/s13065‑017‑0362‑5 29256159
    [Google Scholar]
  82. Gogoi P. Shakya A. Ghosh S.K. Gogoi N. Gahtori P. Singh N. Bhattacharyya D.R. Singh U.P. Bhat H.R. In silico study, synthesis, and evaluation of the antimalarial activity of hybrid dimethoxy pyrazole 1,3,5‐triazine derivatives. J. Biochem. Mol. Toxicol. 2021 35 3 e22682 10.1002/jbt.22682 33332673
    [Google Scholar]
  83. Manohar S. Khan S.I. Rawat D.S. Synthesis, antimalarial activity and cytotoxicity of 4-aminoquinoline–triazine conjugates. Bioorg. Med. Chem. Lett. 2010 20 1 322 325 10.1016/j.bmcl.2009.10.106 19910192
    [Google Scholar]
  84. Adhikari N. Kashyap A. Shakya A. Ghosh S.K. Bhattacharyya D.R. Bhat H.R. Singh U.P. Microwave assisted synthesis, docking and antimalarial evaluation of hybrid PABA‐substituted 1,3,5‐triazine derivatives. J. Heterocycl. Chem. 2020 57 6 2389 2399 10.1002/jhet.3955
    [Google Scholar]
  85. Kim E.Y. Kumar S.D. Bang J.K. Shin S.Y. Mechanisms of antimicrobial and antiendotoxin activities of a triazine‐based amphipathic polymer. Biotechnol. Bioeng. 2020 117 11 3508 3521 10.1002/bit.27499 32662872
    [Google Scholar]
  86. Patel D.H. Chikhalia K.H. Shah N.K. Patel D.P. Kaswala P.B. Buha V.M. Synthesis and antimicrobial studies of s -triazine based heterocycles. J. Enzyme Inhib. Med. Chem. 2010 25 1 121 125 10.3109/14756360903027956 19814592
    [Google Scholar]
  87. Haiba N.S. Khalil H.H. Moniem M.A. El-Wakil M.H. Bekhit A.A. Khattab S.N. Design, synthesis and molecular modeling studies of new series of s-triazine derivatives as antimicrobial agents against multi-drug resistant clinical isolates. Bioorg. Chem. 2019 89 103013 10.1016/j.bioorg.2019.103013 31174040
    [Google Scholar]
  88. Saleh M. Abbott S. Perron V. Lauzon C. Penney C. Zacharie B. Synthesis and antimicrobial activity of 2-fluorophenyl-4,6-disubstituted [1,3,5]triazines. Bioorg. Med. Chem. Lett. 2010 20 3 945 949 10.1016/j.bmcl.2009.12.063 20053565
    [Google Scholar]
  89. Kumar A. Menon S.K. Fullerene derivatized s-triazine analogues as antimicrobial agents. Eur. J. Med. Chem. 2009 44 5 2178 2183 10.1016/j.ejmech.2008.10.036 19062138
    [Google Scholar]
  90. Patel A.B. Chikhalia K.H. Kumari P. An efficient synthesis of new thiazolidin-4-one fused s-triazines as potential antimicrobial and anticancer agents. J. Saudi Chem. Soc. 2014 18 5 646 656 10.1016/j.jscs.2014.02.002
    [Google Scholar]
  91. Sharma A. Ghabbour H. Khan S.T. de la Torre B.G. Albericio F. El-Faham A. Novel pyrazolyl-s-triazine derivatives, molecular structure and antimicrobial activity. J. Mol. Struct. 2017 1145 244 253 10.1016/j.molstruc.2017.05.040
    [Google Scholar]
  92. Dinari M. Gharahi F. Asadi P. Synthesis, spectroscopic characterization, antimicrobial evaluation and molecular docking study of novel triazine-quinazolinone based hybrids. J. Mol. Struct. 2018 1156 43 50 10.1016/j.molstruc.2017.11.087
    [Google Scholar]
  93. Shanmugam M. Narayanan K. Chidambaranathan V. Kabilan S. Synthesis, spectral characterization and antimicrobial studies of novel s-triazine derivatives. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2013 105 383 390 10.1016/j.saa.2012.12.046 23333692
    [Google Scholar]
  94. Patel A.B. Patel R.V. Kumari P. Rajani D.P. Chikhalia K.H. Synthesis of potential antitubercular and antimicrobial s-triazine-based scaffolds via Suzuki cross-coupling reaction. Med. Chem. Res. 2013 22 1 367 381 10.1007/s00044‑012‑0041‑y
    [Google Scholar]
  95. Moreno L.M. Quiroga J. Abonia R. Crespo M.P. Aranaga C. Martínez-Martínez L. Sortino M. Barreto M. Burbano M.E. Insuasty B. Synthesis of novel triazine-based chalcones and 8,9-dihydro-7 H-pyrimido[4,5-b][1,4]diazepines as potential leads in the search of anticancer, antibacterial and antifungal agents. Int. J. Mol. Sci. 2024 25 7 3623 10.3390/ijms25073623 38612435
    [Google Scholar]
  96. Maliszewski D. Demirel R. Wróbel A. Baradyn M. Ratkiewicz A. Drozdowska D. s-Triazine derivatives functionalized with alkylating 2-chloroethylamine fragments as promising antimicrobial agents: Inhibition of bacterial DNA gyrases, molecular docking studies, and antibacterial and antifungal activity. Pharmaceuticals 2023 16 9 1248 10.3390/ph16091248 37765056
    [Google Scholar]
  97. El Malah T. Nour H.F. Nayl A.A. Elkhashab R.A. Abdel-Megeid F.M.E. Ali M.M. Anticancer evaluation of tris(triazolyl)triazine Derivatives generated via click chemistry. Aust. J. Chem. 2016 69 8 905 910 10.1071/CH16006
    [Google Scholar]
  98. El-Wakil M.H. Khattab S.N. El-Yazbi A.F. El-Nikhely N. Soffar A. Khalil H.H. New chalcone-tethered 1,3,5-triazines potentiate the anticancer effect of cisplatin against human lung adenocarcinoma A549 cells by enhancing DNA damage and cell apoptosis. Bioorg. Chem. 2020 105 104393 10.1016/j.bioorg.2020.104393 33120322
    [Google Scholar]
  99. Kothayer H. Spencer S.M. Tripathi K. Westwell A.D. Palle K. Synthesis and in vitro anticancer evaluation of some 4,6-diamino-1,3,5-triazine-2-carbohydrazides as Rad6 ubiquitin conjugating enzyme inhibitors. Bioorg. Med. Chem. Lett. 2016 26 8 2030 2034 10.1016/j.bmcl.2016.02.085 26965855
    [Google Scholar]
  100. Sączewski F. Bułakowska A. Synthesis, structure and anticancer activity of novel alkenyl-1,3,5-triazine derivatives. Eur. J. Med. Chem. 2006 41 5 611 615 10.1016/j.ejmech.2005.12.012 16540207
    [Google Scholar]
  101. El-Faham A. Farooq M. Almarhoon Z. Alhameed R.A. Wadaan M.A.M. de la Torre B.G. Albericio F. Di- and tri-substituted s-triazine derivatives: Synthesis, characterization, anticancer activity in human breast-cancer cell lines, and developmental toxicity in zebrafish embryos. Bioorg. Chem. 2020 94 103397 10.1016/j.bioorg.2019.103397 31706684
    [Google Scholar]
  102. Farooq M. Sharma A. Almarhoon Z. Al-Dhfyan A. El-Faham A. Taha N.A. Wadaan M.A.M. Torre B.G. Albericio F. Design and synthesis of mono-and di-pyrazolyl-s-triazine derivatives, their anticancer profile in human cancer cell lines, and in vivo toxicity in zebrafish embryos. Bioorg. Chem. 2019 87 457 464 10.1016/j.bioorg.2019.03.063 30927586
    [Google Scholar]
  103. Singla P. Luxami V. Paul K. Synthesis and in vitro evaluation of novel triazine analogues as anticancer agents and their interaction studies with bovine serum albumin. Eur. J. Med. Chem. 2016 117 59 69 10.1016/j.ejmech.2016.03.088 27089212
    [Google Scholar]
  104. Jagadeesh Kumar G. Sriramkumar Bomma H.V.S. Srihari E. Shrivastava S. Naidu V.G.M. Srinivas K. Jayathirtha Rao V. Synthesis and anticancer activity of some new s-triazine derivatives. Med. Chem. Res. 2013 22 12 5973 5981 10.1007/s00044‑013‑0584‑6
    [Google Scholar]
  105. Singla P. Luxami V. Paul K. Triazine–benzimidazole hybrids: Anticancer activity, DNA interaction and dihydrofolate reductase inhibitors. Bioorg. Med. Chem. 2015 23 8 1691 1700 10.1016/j.bmc.2015.03.012 25792141
    [Google Scholar]
  106. Elmorsy M.R. Abdel-Latif E. Gaffer H.E. Mahmoud S.E. Fadda A.A. Anticancer evaluation and molecular docking of new pyridopyrazolo-triazine and pyridopyrazolo-triazole derivatives. Sci. Rep. 2023 13 1 2782 10.1038/s41598‑023‑29908‑y 36797448
    [Google Scholar]
  107. Chupakhin O.N. Charushin V.N. Rusinov V.L. Scientific foundations for the creation of antiviral and antibacterial preparations. Herald Russ. Acad. Sci. 2016 86 3 206 212 10.1134/S1019331616030163
    [Google Scholar]
  108. Sumoto K. Mibu N. Yokomizo K. Yuzuriha A. Otsubo M. Kawaguchi Y. Sano M. Sakai I. Nakayama K. Zhou J-R. Antiviral activities of some new 2,4,6-trisubstituted 1,3,5-triazines having alkoxy and/or alkylamino groups. Heterocycles 2017 94 9 1653 1677 10.3987/COM‑17‑13735
    [Google Scholar]
  109. Mibu N. Yokomizo K. Koga A. Honda M. Mizokami K. Fujii H. Synthesis and antiviral activities of some 2,4,6-trisubstituted 1,3,5-triazines. Chem. Pharm. Bull. 2014 62 10 1032 1040 10.1248/cpb.c14‑00421 25273062
    [Google Scholar]
  110. Mibu N. Yokomizo K. Aki H. Ota N. Fujii H. Yuzuriha, A Synthesis and antiviral evaluation of some C(3)-symmetrical trialkoxy-substituted 1,3,5-triazines and their molecular geometry. Chem. Pharm. Bull. 2015 63 11 935 944 10.1248/cpb.c16‑e6403 26521858
    [Google Scholar]
  111. Khodair A.I. El-Barbary A.A. Imam D.R. Kheder N.A. Elmalki F. Ben Hadda T. Synthesis, antiviral, DFT and molecular docking studies of some novel 1,2,4-triazine nucleosides as potential bioactive compounds. Carbohydr. Res. 2021 500 108246 10.1016/j.carres.2021.108246 33516074
    [Google Scholar]
  112. Shabunina O.V. Shtaitz Y.K. Kopchuk D.S. Krinochkin A.P. Santra S. Zyryanov G.V. Wang Z. Rusinov V.L. Chupakhin O.N. Synthesis of novel 3-(Pyridin-4-yl)-1,2,4-Triazines, their analogs and study of the activity against vaccinia virus. Chem. Heterocycl. Compd. 2021 57 4 462 466 10.1007/s10593‑021‑02924‑4
    [Google Scholar]
  113. Shamim S. Khan K.M. Ullah N. Chigurupati S. Wadood A. Ur Rehman A. Ali M. Salar U. Alhowail A. Taha M. Perveen S. Synthesis and screening of (E)-3-(2-benzylidenehydrazinyl)-5,6-diphenyl-1,2,4-triazine analogs as novel dual inhibitors of α-amylase and α-glucosidase. Bioorg. Chem. 2020 101 103979 10.1016/j.bioorg.2020.103979 32544738
    [Google Scholar]
  114. Wang Y. Tang X. Yi L. Design and discovery of novel 1,3,5-triazines as dipeptidyl peptidase-4 inhibitor against diabetes. Pharmacology 2019 103 5-6 273 281 10.1159/000494060 30799431
    [Google Scholar]
  115. Gao H-D. Liu P. Yang Y. Gao F. Sulfonamide-1,3,5-triazine–thiazoles: Discovery of a novel class of antidiabetic agents via inhibition of DPP-4. RSC Advances 2016 6 86 83438 83447 10.1039/C6RA15948F
    [Google Scholar]
  116. Rusinov V.L. Sapozhnikova I.M. Bliznik A.M. Chupakhin O.N. Charushin V.N. Spasov A.A. Vassiliev P.M. Kuznetsova V.A. Rashchenko A.I. Babkov D.A. Synthesis and evaluation of novel [1,2,4]Triazolo[5,1‐ c][1,2,4]‐triazines and pyrazolo[5,1‐ c][1,2,4]triazines as potential antidiabetic agents. Arch. Pharm. 2017 350 5 1600361 10.1002/ardp.201600361 28393419
    [Google Scholar]
  117. Guertin K.R. Setti L. Qi L. Dunsdon R.M. Dymock B.W. Jones P.S. Overton H. Taylor M. Williams G. Sergi J.A. Wang K. Peng Y. Renzetti M. Boyce R. Falcioni F. Garippa R. Olivier A.R. Identification of a novel class of orally active pyrimido[5,4-3][1,2,4]triazine-5,7-diamine-based hypoglycemic agents with protein tyrosine phosphatase inhibitory activity. Bioorg. Med. Chem. Lett. 2003 13 17 2895 2898 10.1016/S0960‑894X(03)00623‑1 14611852
    [Google Scholar]
  118. Valipour M. Zakeri Khatir Z. Kiadaliry K. Mojtabavi S. Faramarzi M.A. Sayyad M.S. Seyedabadi M. Ghasemian M. Hashemi S.M. Irannejad H. Design, synthesis, α-glucosidase inhibition and hypoglycemic activity of 3-aceto(benzo)hydrazide-1,2,4-triazines as potential anti-diabetic agents. Eur J. Med. Chem. Rep 2024 12 100207 10.1016/j.ejmcr.2024.100207
    [Google Scholar]
  119. Iraji A. Firuzi O. Khoshneviszadeh M. Nadri H. Edraki N. Miri R. Synthesis and structure-activity relationship study of multi-target triazine derivatives as innovative candidates for treatment of Alzheimer’s disease. Bioorg. Chem. 2018 77 223 235 10.1016/j.bioorg.2018.01.017 29367079
    [Google Scholar]
  120. Maqbool M. Manral A. Jameel E. Kumar J. Saini V. Shandilya A. Tiwari M. Hoda N. Jayaram B. Development of cyanopyridine–triazine hybrids as lead multitarget anti-Alzheimer agents. Bioorg. Med. Chem. 2016 24 12 2777 2788 10.1016/j.bmc.2016.04.041 27157006
    [Google Scholar]
  121. Yazdani M. Edraki N. Badri R. Khoshneviszadeh M. Iraji A. Firuzi O. Multi-target inhibitors against Alzheimer disease derived from 3-hydrazinyl 1,2,4-triazine scaffold containing pendant phenoxy methyl-1,2,3-triazole: Design, synthesis and biological evaluation. Bioorg. Chem. 2019 84 363 371 10.1016/j.bioorg.2018.11.038 30530107
    [Google Scholar]
  122. Yazdani M. Edraki N. Badri R. Khoshneviszadeh M. Iraji A. Firuzi O. 5,6-Diphenyl triazine-thio methyl triazole hybrid as a new Alzheimer’s disease modifying agents. Mol. Divers. 2020 24 3 641 654 10.1007/s11030‑019‑09970‑3 31327094
    [Google Scholar]
  123. Jameel E. Meena P. Maqbool M. Kumar J. Ahmed W. Mumtazuddin S. Tiwari M. Hoda N. Jayaram B. Rational design, synthesis and biological screening of triazine-triazolopyrimidine hybrids as multitarget anti-Alzheimer agents. Eur. J. Med. Chem. 2017 136 36 51 10.1016/j.ejmech.2017.04.064 28478343
    [Google Scholar]
  124. Sudoł-Tałaj S. Kucwaj-Brysz K. Podlewska S. Kurczab R. Satała G. Mordyl B. Głuch-Lutwin M. Wilczyńska-Zawal N. Jastrzębska-Więsek M. Czarnota-Łydka K. Kurowska K. Kubacka M. Żesławska E. Nitek W. Olejarz-Maciej A. Doroz-Płonka A. Partyka A. Latacz G. Wesołowska A. Handzlik J. Hydrophobicity modulation via the substituents at positions 2 and 4 of 1,3,5-triazine to enhance therapeutic ability against Alzheimer’s disease for potent serotonin 5-HT6R agents. Eur. J. Med. Chem. 2023 260 115756 10.1016/j.ejmech.2023.115756 37657272
    [Google Scholar]
  125. Al-Trawneh S.A. Al-Dawdieh S.A. Abutaleb N.S. Tarawneh A.H. Salama E.A. El-Abadelah M.M. Synthesis of new pyrazolo[5,1-c][1,2,4]triazines with antifungal and antibiofilm activities. Chem. Pap. 2019 74 2 1241 1252 10.1007/s11696‑019‑00974‑9
    [Google Scholar]
  126. Abdel-Galil E. Arab A.M. Afsah E.M. Synthesis and biological activity evaluation of some new mixed azines appended tetrahydro-1,2,4-triazines. Synth. Commun. 2021 51 9 1373 1383 10.1080/00397911.2021.1882497
    [Google Scholar]
  127. Ding Z. Ni T. Xie F. Hao Y. Yu S. Chai X. Jin Y. Wang T. Jiang Y. Zhang D. Design, synthesis, and structure-activity relationship studies of novel triazole agents with strong antifungal activity against Aspergillus fumigatus. Bioorg. Med. Chem. Lett. 2020 30 4 126951 10.1016/j.bmcl.2020.126951 31926784
    [Google Scholar]
  128. Masih A. Shrivastava J.K. Bhat H.R. Singh U.P. Potent antibacterial activity of dihydydropyrimidine‐1,3,5‐triazines via inhibition of DNA gyrase and antifungal activity with favourable metabolic profile. Chem. Biol. Drug Des. 2020 96 2 861 869 10.1111/cbdd.13695 32333828
    [Google Scholar]
/content/journals/coc/10.2174/0113852728379266250708074432
Loading
/content/journals/coc/10.2174/0113852728379266250708074432
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: anticancer ; microwave synthesis ; antimicrobial ; antidiabetic ; anticonvulsant ; Triazine
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test