Skip to content
2000
Volume 30, Issue 3
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

Triazine compounds have become crucial entities in the pharmaceutical field due to their remarkable structural diversity and wide range of biological activities. This review explores their prominent role in drug discovery and development, focusing on their efficacy as potent anticancer, antiviral, antimicrobial, and antioxidant agents. Recent advances in synthetic methodologies using various starting materials, such as nitrile, biguanide, bromoester, arylamine, and cyanide chloride, are reviewed, along with their implications for improved pharmacological properties, including anticancer, antibacterial, antioxidant, anti-inflammatory, and antimicrobial effects. In addition, the structure-activity relationship of triazine derivatives is explored, offering insight into the key structural features that contribute to their therapeutic potential. This relationship plays an essential role in optimizing their efficacy as therapeutic agents, helping to guide the development of more effective drugs with improved pharmacological profiles.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728378748250529173728
2025-06-24
2025-12-29
Loading full text...

Full text loading...

References

  1. KumarM.B. HariprasadV. JoshiS.D. NaikP. JayaprakashG.K. PaniA.S. BabuD.D. Exploring the antimicrobial potential of pyrimidine linked hydrazinyl azole derivatives: Insights from biological assays and molecular docking studies.ChemistrySelect2023844e20230199810.1002/slct.202301998
    [Google Scholar]
  2. HabibiW. TalbiS. HamriS. HafidA. KhouiliM. Coumarin derivatives: Microwave synthesis and biological properties: A review.J. Heterocycl. Chem.202461122070209610.1002/jhet.4918
    [Google Scholar]
  3. HibotA. OumessaoudA. HafidA. KhouiliM. PujolM.D. Different synthetic methods for the preparation of triazolopyrimidines and their biological profile.ChemistrySelect2023823e20230165410.1002/slct.202301654
    [Google Scholar]
  4. BouhaouiA. EddahmiM. DibM. KhouiliM. AiresA. CattoM. BouissaneL. Synthesis and biological properties of coumarin derivatives. A review.ChemistrySelect20216245848587010.1002/slct.202101346
    [Google Scholar]
  5. TalbiS. DibM. BouissaneL. AbderrafiaH. RabiS. KhouiliM. Recent progress in the synthesis of heterocycles based on 1,3-diketones.Curr. Org. Synth.202219222024510.2174/1570179418666211011141428 34635043
    [Google Scholar]
  6. HarishK.K. NesaragiA.R. KalagaturN.K. NaikP. MadegowdaM. PandithA. DahlousK.A. MohammadS. ShivarudrappaH.P. SharanakumarT.M. GuddappaH. Imidazole-centred cupric ions sensor: Experimental validation, theoretical understanding, and zebrafish bioimaging.J. Photochem. Photobiol. Chem.202445211556510.1016/j.jphotochem.2024.115565
    [Google Scholar]
  7. ShahbazM. UranoS. LeBretonP.R. RossmanM.A. HosmaneR.S. LeonardN.J. Tri-s-triazine: Synthesis, chemical behavior, and spectroscopic and theoretical probes of valence orbital structure.J. Am. Chem. Soc.1984106102805281110.1021/ja00322a014
    [Google Scholar]
  8. LiuM. GuoL. JinS. TanB. Covalent triazine frameworks: Synthesis and applications.J. Mater. Chem. A Mater. Energy Sustain.20197105153517210.1039/C8TA12442F
    [Google Scholar]
  9. KrishnarajC. JenaH.S. LeusK. Van Der VoortP. Covalent triazine frameworks: A sustainable perspective.Green Chem.20202241038107110.1039/C9GC03482J
    [Google Scholar]
  10. ArtzJ. Covalent triazine‐based frameworks—tailor‐made catalysts and catalyst supports for molecular and nanoparticulate species.ChemCatChem20181081753177110.1002/cctc.201701820
    [Google Scholar]
  11. ParveenS. PremkumarT. NguyenH.H. GovindarajanS. Facile template synthesis of water-soluble triazine-based Schiff base ligand bridged-coordination polymers of Co(ii), Ni(ii), and Cu(ii): structure, biomolecular interactions, and cytotoxic activity.New J. Chem.20194334133711338010.1039/C9NJ02377A
    [Google Scholar]
  12. BarakatA. El-FahamA. HaukkaM. Al-MajidA.M. SolimanS.M. s ‐Triazine pincer ligands: Synthesis of their metal complexes, coordination behavior, and applications.Appl. Organomet. Chem.20213510e631710.1002/aoc.6317
    [Google Scholar]
  13. AnajiN. JayaprakashG.K. NaikP. TigriG. ReddyS. Recent advances in developing modified electrode interface for sensing tartrazine in real samples: A brief review.J. Electrochem. Sci. Eng.202414671973510.5599/jese.2391
    [Google Scholar]
  14. KamberD.N. NguyenS.S. LiuF. BriggsJ.S. ShihH.W. RowR.D. LongZ.G. HoukK.N. LiangY. PrescherJ.A. Isomeric triazines exhibit unique profiles of bioorthogonal reactivity.Chem. Sci. (Camb.)201910399109911410.1039/C9SC01427F 31908754
    [Google Scholar]
  15. ChourasiyaS.S. KathuriaD. WaniA.A. BharatamP.V. Azines: synthesis, structure, electronic structure and their applications.Org. Biomol. Chem.201917378486852110.1039/C9OB01272A 31503270
    [Google Scholar]
  16. BodziochA. PomikłoD. CeledaM. PietrzakA. KaszyńskiP. 3-Substituted benzo[e][1,2,4]triazines: Synthesis and electronic effects of the C(3) substituent.J. Org. Chem.201984106377639410.1021/acs.joc.9b00716 30999754
    [Google Scholar]
  17. GiacomelliG. PorchedduA. LucaL. [1,3,5]-triazine: A versatile heterocycle in current applications of organic chemistry.Curr. Org. Chem.20048151497151910.2174/1385272043369845
    [Google Scholar]
  18. LiJ. LiL. LiuY. ZhangJ. ShiC. ZhouS. QiuH. Design, synthesis, and anticancer activity of novel 4,6-dimorpholinyl-1,3,5-triazine compounds.Heterocycl. Commun.20232912022015210.1515/hc‑2022‑0152
    [Google Scholar]
  19. BukowskiK. MarciniakB. KciukM. MujwarS. MojzychM. KontekR. Pyrazolo[4,3-e]tetrazolo[1,5-b][1,2,4]triazine sulfonamides as novel potential anticancer agents: Apoptosis, oxidative stress, and cell cycle analysis.Int. J. Mol. Sci.20232410850410.3390/ijms24108504 37239848
    [Google Scholar]
  20. SapozhnikovaI.M. UlomskyE.N. RusinovV.L. ChupakhinO.N. StepanovA.V. Savateeva-LyubimovaT.N. SivakK.V. 3-Cyanoazolo[5,1-c][1,2,4]triazines: Synthesis and antiviral activity.Chem. Heterocycl. Compd.202157446747210.1007/s10593‑021‑02925‑3
    [Google Scholar]
  21. KhodairA.I. El-BarbaryA.A. ImamD.R. KhederN.A. ElmalkiF. Ben HaddaT. Synthesis, antiviral, DFT and molecular docking studies of some novel 1,2,4-triazine nucleosides as potential bioactive compounds.Carbohydr. Res.202150010824610.1016/j.carres.2021.108246 33516074
    [Google Scholar]
  22. IbrahimM.A. Abdel-RahmanR.M. Abdel-HalimA.M. IbrahimS.S. AllimonyH.A. Synthesis, chemical reactivity and fungicidal activity of pyrido[1,2-b][1,2,4]triazine derivatives.J. Braz. Chem. Soc.20092071275128610.1590/S0103‑50532009000700012
    [Google Scholar]
  23. El-BarbaryA.A. El-ShehawyA.A. AbdoN.I. Synthesis and antimicrobial activities of some 6-methyl-3-thioxo-2,3-dihydro-1,2,4-triazine derivatives.Phosphorus Sulfur Silicon Relat. Elem.2014189340040910.1080/10426507.2012.755972
    [Google Scholar]
  24. MaX. TanS.T. KhooC.L. SimH.M. ChanL.W. ChuiW.K. Synthesis and antimicrobial activity of N1-benzyl or N1-benzyloxy-1,6-dihydro-1,3,5-triazine-2,4-diamines.Bioorg. Med. Chem. Lett.201121185428543110.1016/j.bmcl.2011.06.125 21788136
    [Google Scholar]
  25. HynesJ. DyckmanA.J. LinS. WrobleskiS.T. WuH. GilloolyK.M. KannerS.B. LonialH. LooD. McIntyreK.W. PittS. ShenD.R. ShusterD.J. YangX. ZhangR. BehniaK. ZhangH. MaratheP.H. DoweykoA.M. TokarskiJ.S. SackJ.S. PokrossM. KieferS.E. NewittJ.A. BarrishJ.C. DoddJ. SchievenG.L. LeftherisK. Design, synthesis, and anti-inflammatory properties of orally active 4-(phenylamino)-pyrrolo[2,1-f][1,2,4]triazine p38α mitogen-activated protein kinase inhibitors.J. Med. Chem.200851141610.1021/jm7009414 18072718
    [Google Scholar]
  26. MakhloufA. MakladY. Synthesis and analgesic-anti-inflammatory activities of some 1,2,4-triazine derivatives.Arzneimittelforschung2011541424910.1055/s‑0031‑1296935 14979608
    [Google Scholar]
  27. ParkK. LeeK. KimH. GanesanV. ChoK. JeongS.K. YoonS. Preparation of covalent triazine frameworks with imidazolium cations embedded in basic sites and their application for CO2 capture.J. Mater. Chem. A Mater. Energy. Sustain.20175188576858210.1039/C6TA11226A
    [Google Scholar]
  28. PuthiarajP. LeeY.R. ZhangS. AhnW.S. Triazine-based covalent organic polymers: design, synthesis and applications in heterogeneous catalysis.J. Mater. Chem. A Mater. Energy. Sustain.2016442162881631110.1039/C6TA06089G
    [Google Scholar]
  29. ZhangY. JinS. Recent advancements in the synthesis of covalent triazine frameworks for energy and environmental applications.Polymers20181113110.3390/polym11010031 30960015
    [Google Scholar]
  30. YangZ. LiuR. WangN. HeJ. WangK. LiX. ShenX. WangX. LvQ. ZhangM. LuoJ. JiuT. HouZ. HuangC. Triazine-graphdiyne: A new nitrogen-carbonous material and its application as an advanced rechargeable battery anode.Carbon201813744245010.1016/j.carbon.2018.05.049
    [Google Scholar]
  31. LiL. LuF. XueR. MaB. LiQ. WuN. LiuH. YaoW. GuoH. YangW. Ultrastable triazine-based covalent organic framework with an interlayer hydrogen bonding for supercapacitor applications.ACS Appl. Mater. Interfaces20191129263552636310.1021/acsami.9b06867 31260241
    [Google Scholar]
  32. PalanisamyS. NachimuthuP. AwasthiM.K. RavindranB. ChangS.W. PalanichamyM. NguyenD.D. Application of electrochemical treatment for the removal of triazine dye using aluminium electrodes.J. Water. Supply202069434535410.2166/aqua.2020.109
    [Google Scholar]
  33. QianZ. WangZ.J. ZhangK.A.I. Covalent triazine frameworks as emerging heterogeneous photocatalysts.Chem. Mater.20213361909192610.1021/acs.chemmater.0c04348
    [Google Scholar]
  34. YıldırımF. DemirçalıA. KirazA.Ö. KarcıF. Synthesis of some new pyrazolo[5,1-c][1,2,4]triazine derivatives and computational study.J. Mol. Struct.2020122212885010.1016/j.molstruc.2020.128850
    [Google Scholar]
  35. KarcıF. Synthesis of disazo dyes derived from heterocyclic components.Color. Technol.2005121527528010.1111/j.1478‑4408.2005.tb00286.x
    [Google Scholar]
  36. ElnagdiM.H. SallamM.M.M. FahmyH.M. IbrahimS.A.M. EliasM.A.M. Reactions with the Arylhydrazones of α‐Cyanoketones: The structure of 2‐Arylhydrazono‐3‐ketimino‐nitriles.Helv. Chim. Acta197659255155710.1002/hlca.19760590220
    [Google Scholar]
  37. DingQ. LiM. SunY. YuY. BaellJ.B. HuangF. Copper-catalyzed [4+2] annulation reaction of β-enaminones and aryl diazonium salts without external oxidant: Synthesis of highly functionalized 3 H -1,2,4-triazines via homogeneous or heterogeneous strategy.Org. Chem. Front.20207345746310.1039/C9QO01413F
    [Google Scholar]
  38. HerreraA. RiañoA. MorenoR. CasoB. PardoZ.D. FernándezI. SáezE. MoleroD. Sánchez-VázquezA. Martínez-AlvarezR. One-pot synthesis of 1,3,5-triazine derivatives via controlled cross-cyclotrimerization of nitriles: A mechanism approach.J. Org. Chem.201479157012702410.1021/jo501144v 25010006
    [Google Scholar]
  39. PaveglioG.C. CasagrandeG.A. PizzutiL. CalheirosL.C. MouraS. BackD.F. Practical one-pot synthesis of 4,6-Bis(hetero)aryl- and 4-(hetero)aryl-6-methyl-substituted 1,3,5-Triazin-2-amines.Synthesis20235571130113810.1055/a‑1970‑8229
    [Google Scholar]
  40. ZhangJ. ZhengT. ZhangJ. I2/K2S2O8 mediated direct oxidative annulation of alkylazaarenes with amidines for the synthesis of substituted 1,3,5‐triazines.Eur. J. Org. Chem.20202020786086510.1002/ejoc.201901737
    [Google Scholar]
  41. WangM. MengY. WeiW. WuJ. YuW. ChangJ. Iodine/copper(I)-catalyzed direct annulation of N-benzimidazolyl amidines with aldehydes for the synthesis of ortho -fused 1,3,5-triazines.Adv. Synth. Catal.201710.1002/adsc.201701126
    [Google Scholar]
  42. KailaJ.C. BaraiyaA.B. PandyaA.N. JalaniH.B. SudarsanamV. VasuK.K. A convenient one-pot synthesis of trisubstituted 1,3,5-triazines through intermediary amidinothioureas.Tetrahedron Lett.201051111486148910.1016/j.tetlet.2010.01.034
    [Google Scholar]
  43. LiF. WangC. XuY. ZhaoZ. SuJ. LuoC. NingY. LiZ. LiC. WangL. Efficient synthesis of unsymmetrical trisubstituted 1,3,5-triazines catalyzed by hemoglobin.Molecular Catalysis202150511151910.1016/j.mcat.2021.111519
    [Google Scholar]
  44. SinghM. JamraR. MehraS. RattanS. SinghV. Potassium Tert-butoxide-promoted synthesis of fluorescent β-Carboline Tethered 1,3,5-Triazines and assessment of their luminescent properties.Asian J. Org. Chem.202110218410.1002/ajoc.202100281
    [Google Scholar]
  45. SalemA.B. SalahB.B. MhallaD. TriguiM. MourerM. Regnouf-de-VainsJ-B. KossentiniM. Synthesis, crystal structure and biological studies of novel amidrazones, triazoles, thiatriazole and triazine compounds.J. Mol. Struct.2020121412820910.1016/j.molstruc.2020.128209
    [Google Scholar]
  46. AliW. WięcekM. ŁażewskaD. KurczabR. Jastrzębska-WięsekM. SatałaG. Kucwaj-BryszK. LubelskaA. Głuch-LutwinM. MordylB. SiwekA. NasimM.J. PartykaA. SudołS. LataczG. WesołowskaA. Kieć-KononowiczK. HandzlikJ. Synthesis and computer-aided SAR studies for derivatives of phenoxyalkyl-1,3,5-triazine as the new potent ligands for serotonin receptors 5-HT6.Eur. J. Med. Chem.201917874075110.1016/j.ejmech.2019.06.022 31229876
    [Google Scholar]
  47. ŁażewskaD. KurczabR. WięcekM. SatałaG. Kieć-KononowiczK. HandzlikJ. Synthesis and computer-aided analysis of the role of linker for novel ligands of the 5-HT6 serotonin receptor among substituted 1,3,5-triazinylpiperazines.Bioorg. Chem.20198431932510.1016/j.bioorg.2018.11.046 30530073
    [Google Scholar]
  48. SudołK. Kucwaj-BryszR. KurczabN. JastrzębskaWięsek, G.; Wilczyńska, W.; JastrzębskaWięsek, G. Chlorine substituents and linker topology as factors of 5-HT6R activity for novel highly active 1,3,5-triazine derivatives with procognitive properties in vivo.Eur. J. Med. Chem.202020311252910.1016/j.ejmech.2020.112529 32693296
    [Google Scholar]
  49. AsadiP. AlvaniM. HajhashemiV. RostamiM. KhodarahmiG. Design, synthesis, biological evaluation, and molecular docking study on triazine based derivatives as anti-inflammatory agents.J. Mol. Struct.2021124313076010.1016/j.molstruc.2021.130760
    [Google Scholar]
  50. Al-ZaydiK.M. KhalilH.H. El-FahamA. KhattabS.N. Synthesis, characterization and evaluation of 1,3,5-triazine aminobenzoic acid derivatives for their antimicrobial activity.Chem. Cent. J.20171113910.1186/s13065‑017‑0267‑3 29086830
    [Google Scholar]
  51. GengT.M. FangX.C. WangF.Q. ZhuF. The synthesis of covalent triazine‐based frameworks via Friedel–Crafts reactions of cyanuric chloride with thienyl and carbazolyl derivatives for fluorescence sensing to picric acid, iodine and capturing iodine.Macromol. Mater. Eng.202130611210046110.1002/mame.202100461
    [Google Scholar]
  52. PanchalJ. JainS. JainP.K. KishoreD. DwivediJ. Greener approach toward synthesis of biologically active s‐Triazine (TCT) derivatives: A recent update.J. Heterocycl. Chem.202158112049206610.1002/jhet.4343
    [Google Scholar]
  53. DandiaA. SainiP. KumarK. SethiM. RathoreK.S. MeenaM.L. ParewaV. Synergetic effect of functionalized graphitic carbon nitride catalyst and ultrasound in aqueous medium: An efficient and sustainable synthesis of 1,3,5-triazines.Current Research Green Sust. Chem2021410017010.1016/j.crgsc.2021.100170
    [Google Scholar]
  54. SalmanM. AnsariK.R. HaqueJ. SrivastavaV. QuraishiM.A. MazumderM.A.J. Ultrasound‐assisted synthesis of substituted triazines and their corrosion inhibition behavior on N80 steel/acid interface.J. Heterocycl. Chem.20205752157217210.1002/jhet.3936
    [Google Scholar]
  55. EhsanfarM. MossleminM.H. HassanabadiA. An efficient synthesis of novel 1,3,5-triazine-2-selenones from acyl isoselenocyanates and 2-aminobenzimidazole.Org. Prep. Proced. Int.202153326226710.1080/00304948.2021.1872357
    [Google Scholar]
  56. ZhaoP. ZhouY. YuX.X. HuangC. WuY.D. YinG. WuA.X. Iodine-promoted multicomponent synthesis of 2,4-Diamino-1,3,5-triazines.Org. Lett.202022218528853210.1021/acs.orglett.0c03130 33047965
    [Google Scholar]
  57. JunaidA. LimF.P.L. ChuahL.H. DolzhenkoA.V. 6,N2-Diaryl-1,3,5-triazine-2,4-diamines: Synthesis, antiproliferative activity and 3D-QSAR modeling.RSC Advances20201021121351214410.1039/D0RA00643B 35497593
    [Google Scholar]
  58. PatilV. Noonikara-PoyilA. JoshiS.D. PatilS.A. PatilS.A. LewisA.M. BugarinA. Synthesis, molecular docking studies, and in vitro evaluation of 1,3,5-triazine derivatives as promising antimicrobial agents.J. Mol. Struct.2020122012868710.1016/j.molstruc.2020.128687
    [Google Scholar]
  59. ChaurasiaS.R. DangeR. BhanageB.M. Graphene oxide as a carbo-catalyst for the synthesis of tri-substituted 1,3,5-triazines using biguanides and alcohols.Catal. Commun.202013710593310.1016/j.catcom.2020.105933
    [Google Scholar]
  60. ZengM. XieZ.P. CuiD.M. ZhangC. Ruthenium-catalyzed synthesis of arylethyl 1,3,5-triazines from arylallyl alcohols and biguanides.Org. Biomol. Chem.201816336140614510.1039/C8OB01397G 30101252
    [Google Scholar]
  61. WangR. WangL. XuQ. RenB.Y. LiangF. Visible-light-promoted [5+1] annulation initiated by electron-donor–acceptor complexes: Synthesis of perfluoroalkyl-s-triazines.Org. Lett.20192193072307610.1021/acs.orglett.9b00655 30994359
    [Google Scholar]
  62. ZhangC. BanM.T. ZhuK. ZhangL.Y. LuoZ.Y. GuoS.N. CuiD.M. ZhangY. Copper-catalyzed synthesis of substituted 2,4-diamino-1,3,5-triazines from 1,1-dibromoalkenes and biguanides.Org. Lett.201719153947394910.1021/acs.orglett.7b01608 28708406
    [Google Scholar]
  63. ChalermnonM. CherdchomS. SereemaspunA. RojanathanesR. KhotavivattanaT. Biguanide-based synthesis of 1,3,5-triazine derivatives with anticancer activity and 1,3,5-triazine incorporated calcium citrate nanoparticles.Molecules2021264102810.3390/molecules26041028 33672071
    [Google Scholar]
  64. GhasemianM. KakanejadifardA. AzarbaniF. ZabardastiA. ShiraliS. SakiZ. KakanejadifardS. The triazine-based azo-azomethine dyes: Synthesis, characterization, spectroscopy, solvatochromism and biological properties of 2,2′-(((6-methoxy-1,3,5-triazine-2,4-diyl)bis(sulfanediyl)bis(2,1-phenylene))bis(azanylylidene)bis(methanylylidene))bis(4-(phenyldiazenyl)phenol).Spectrochim. Acta A Mol. Biomol. Spectrosc.201513864364710.1016/j.saa.2014.11.048 25541403
    [Google Scholar]
  65. MiladinovaP.M. TodorovaD.A. Synthesis, characterization, and application of new reactive triazine dye on cotton and paper.Fibers Polym.20222361614162010.1007/s12221‑022‑4020‑8
    [Google Scholar]
  66. PatelM.J. TandelR.C. Synthesis of reactive dyes by the introduction of phenyl urea derivatives into the triazine ring and their application on different fibers.Mater. Today Proc.2021466459646410.1016/j.matpr.2021.03.575
    [Google Scholar]
  67. KonstantinovaT. PetrovaP. On the synthesis of some bifunctional reactive triazine dyes.Dyes Pigments200252211512010.1016/S0143‑7208(01)00080‑8
    [Google Scholar]
  68. GhasemianM. KakanejadifardA. AzarbaniF. ZabardastiA. KakanejadifardS. The triazine-based azo–azomethine dyes: Spectroscopy, solvatochromism and biological properties of 2,2′-((2,2′-(6-methoxy-1,3,5-triazine-2,4-diyl) bis(oxy)bis(2,1-phenylene))bis(azan-1-yl-1-ylidene)bis(methan-1-yl-1-ylidene))bis(4-phenyldiazenyl)phenol.J. Mol. Liq.2014195353910.1016/j.molliq.2014.01.011
    [Google Scholar]
  69. PatelD.H. ChikhaliaK.H. ShahN.K. PatelD.P. KaswalaP.B. BuhaV.M. Synthesis and antimicrobial studies of s-triazine based heterocycles.J. Enzyme Inhib. Med. Chem.201025112112510.3109/14756360903027956 19814592
    [Google Scholar]
  70. SharmaA. GhabbourH. KhanS.T. de la TorreB.G. AlbericioF. El-FahamA. Novel pyrazolyl-s-triazine derivatives, molecular structure and antimicrobial activity.J. Mol. Struct.2017114524425310.1016/j.molstruc.2017.05.040
    [Google Scholar]
  71. DinariM. GharahiF. AsadiP. Synthesis, spectroscopic characterization, antimicrobial evaluation and molecular docking study of novel triazine-quinazolinone based hybrids.J. Mol. Struct.20181156435010.1016/j.molstruc.2017.11.087
    [Google Scholar]
  72. HaibaN.S. KhalilH.H. MoniemM.A. El-WakilM.H. BekhitA.A. KhattabS.N. Design, synthesis and molecular modeling studies of new series of s-triazine derivatives as antimicrobial agents against multi-drug resistant clinical isolates.Bioorg. Chem.20198910301310.1016/j.bioorg.2019.103013
    [Google Scholar]
  73. MaliszewskiD. DemirelR. WróbelA. BaradynM. RatkiewiczA. DrozdowskaD. s-Triazine derivatives functionalized with alkylating 2-chloroethylamine fragments as promising antimicrobial agents: Inhibition of bacterial DNA gyrases, molecular docking studies, and antibacterial and antifungal activity.Pharmaceuticals2023169124810.3390/ph16091248 37765056
    [Google Scholar]
  74. KimE.Y. KumarS.D. BangJ.K. ShinS.Y. Mechanisms of antimicrobial and antiendotoxin activities of a triazine‐based amphipathic polymer.Biotechnol. Bioeng.2020117113508352110.1002/bit.27499 32662872
    [Google Scholar]
  75. FahimA.M. IsmaelE.H.I. ElsayedG.H. FaragA.M. Synthesis, antimicrobial, anti-proliferative activities, molecular docking and DFT studies of novel pyrazolo[5,1-c][1, 2, 4]triazine-3-carboxamide derivatives.J. Biomol. Struct. Dyn.202140199177919310.1080/07391102.2021.1930582 34106038
    [Google Scholar]
  76. GornowiczA. SzymanowskaA. MojzychM. CzarnomysyR. BielawskiK. BielawskaA. The anticancer action of a novel 1,2,4-triazine sulfonamide derivative in colon cancer cells.Molecules2021267204510.3390/molecules26072045 33918514
    [Google Scholar]
  77. ElmorsyM.R. Abdel-LatifE. GafferH.E. MahmoudS.E. FaddaA.A. Anticancer evaluation and molecular docking of new pyridopyrazolo-triazine and pyridopyrazolo-triazole derivatives.Sci. Rep.2023131278210.1038/s41598‑023‑29908‑y 36797448
    [Google Scholar]
  78. AlelaimatM.A. Al-Sha’erM.A. BasheerH.A. Novel sulfonamide–triazine hybrid derivatives: Docking, synthesis, and biological evaluation as anticancer agents.ACS Omega2023815142471426310.1021/acsomega.3c01273 37091406
    [Google Scholar]
  79. FarooqM. SharmaA. AlmarhoonZ. Al-DhfyanA. El-FahamA. TahaN.A. WadaanM.A.M. TorreB.G. AlbericioF. Design and synthesis of mono-and di-pyrazolyl-s-triazine derivatives, their anticancer profile in human cancer cell lines, and in vivo toxicity in zebrafish embryos.Bioorg. Chem.20198745746410.1016/j.bioorg.2019.03.063 30927586
    [Google Scholar]
  80. SantraS. SharapovA.D. FatykhovR.F. PotapovaA.P. KhalymbadzhaI.A. ValievaM.I. KopchukD.S. ZyryanovG.V. BunevA.S. MelekhinV.V. GavikoV.S. ZonovA.A. Xanthone-1,2,4-triazine and Acridone-1,2,4-triazine conjugates: Synthesis and anticancer activity.Pharmaceuticals202316340310.3390/ph16030403 36986502
    [Google Scholar]
  81. BhatH.R. MasihA. ShakyaA. GhoshS.K. SinghU.P. Design, synthesis, anticancer, antibacterial, and antifungal evaluation of 4‐aminoquinoline‐1,3,5‐triazine derivatives.J. Heterocycl. Chem.201910.1002/jhet.3791
    [Google Scholar]
  82. MorenoL.M. QuirogaJ. AboniaR. Ramírez-PradaJ. InsuastyB. Synthesis of new 1,3,5-triazine-based 2-pyrazolines as potential anticancer agents.Molecules2018238195610.3390/molecules23081956 30082588
    [Google Scholar]
  83. ArshadM. BhatA.R. HoiK.K. ChoiI. AtharF. Synthesis, characterization and antibacterial screening of some novel 1,2,4-triazine derivatives.Chin. Chem. Lett.20172871559156510.1016/j.cclet.2016.12.037
    [Google Scholar]
  84. MarziM. PourshamsianK. HatamjafariF. ShiroudiA. OliaeyA.R. Synthesis of new N-Benzoyl-N'-Triazine thiourea derivatives and their antibacterial activity.Russ. J. Bioorganic Chem.201945539139710.1134/S106816201905008X
    [Google Scholar]
  85. ZvarychV. StasevychM. NovikovV. RusanovE. VovkM. SzwedaP. GreckaK. MilewskiS. Anthra[1,2-d][1,2,3]triazine-4,7,12(3H)-triones as a new class of antistaphylococcal agents: Synthesis and biological evaluation.Molecules20192424458110.3390/molecules24244581 31847306
    [Google Scholar]
  86. CaiD. LiT. XieQ. YuX. XuW. ChenY. JinZ. HuC. Synthesis, characterization, and biological evaluation of novel 7-oxo-7H-thiazolo[3,2-b]-1,2,4-triazine-2-carboxylic acid derivatives.Molecules2020256130710.3390/molecules25061307 32182992
    [Google Scholar]
  87. DoganciM.D. BalciH. DavarcıD. ŞenkuytuE. AysanA. DoganciE. Effects of solvent casted poly (lactic acid)/poly(ethylene glycol)/paraben derivative triazine films on antibacterial performance and cytotoxicity.Polym. Adv. Technol.2024353e633810.1002/pat.6338
    [Google Scholar]
  88. El-MekabatyA. FaddaA.A. Novel pyrazolo[1,5‐a]pyrimidines and pyrazolo[5,1‐c][1,2,4]triazines incorporating indole moiety as a new class of antioxidant agents.J. Heterocycl. Chem.201855102303230810.1002/jhet.3288
    [Google Scholar]
  89. LolakN. BogaM. TunegM. KarakocG. AkocakS. SupuranC.T. Sulphonamides incorporating 1,3,5-triazine structural motifs show antioxidant, acetylcholinesterase, butyrylcholinesterase, and tyrosinase inhibitory profile.J. Enzyme Inhib. Med. Chem.202035142443110.1080/14756366.2019.1707196 31899985
    [Google Scholar]
  90. LolakN. TuneğM. DoğanA. BoğaM. AkocakS. Synthesis and biological evaluation of 1,3,5-triazine-substituted ureido benzenesulfonamides as antioxidant, acetylcholinesterase and butyrylcholinesterase inhibitors.Bioorganic Med. Chem. Reports202032223110.25135/acg.bmcr.22.20.07.1706
    [Google Scholar]
  91. HavránkováE. ČalkovskáN. PadrtováT. CsölleiJ. OpatřilováR. PazderaP. Antioxidative activity of 1,3,5-triazine analogues incorporating aminobenzene sulfonamide, aminoalcohol/phenol, piperazine, chalcone, or stilbene motifs.Molecules2020258178710.3390/molecules25081787 32295147
    [Google Scholar]
  92. CastroR.I. Valenzuela-RiffoF. Morales-QuintanaL. In silico and in vitro analysis of the 4,4′,4′′-((1,3,5-Triazine-2,4,6-triyl)tris(azanediyl))triphenol), an antioxidant agent with a possible anti-inflammatory function.Biomed. Res. Int.201920191910.1155/2019/9165648
    [Google Scholar]
  93. EzzatzadehE. Soleimani-AmiriS. HossainiZ. Khandan BaraniK. Synthesis and evaluation of the antioxidant activity of new spiro-1,2,4-triazine derivatives applying Ag/Fe3O4/CdO@MWCNT MNCs as efficient organometallic nanocatalysts.Front Chem.202210100170710.3389/fchem.2022.1001707 36262344
    [Google Scholar]
  94. SelimY.A. Abd El-AzimM.H.M. El-FarargyA.F. Synthesis and anti‐inflammatory activity of some new 1,2,3‐Benzotriazine derivatives using 2‐(4‐Oxo‐6‐phenylbenzo[d][1,2,3]triazin‐3(4H)‐yl)acetohydrazide as a starting material.J. Heterocycl. Chem.20185571756176410.1002/jhet.3213
    [Google Scholar]
  95. ShindeR.S. MasandV.H. PatilM.k. Antiinflammatory activity of Triazine Thiazolidinone derivatives: Molecular docking and pharmacophore modelling.Indian J. Pharm. Sci.201981851858
    [Google Scholar]
  96. ElshemyH.A.H. AbdelallE.K.A. AzouzA.A. MoawadA. AliW.A.M. SafwatN.M. Synthesis, anti-inflammatory, cyclooxygenases inhibitions assays and histopathological study of poly-substituted 1,3,5-triazines: Confirmation of regiospecific pyrazole cyclization by HMBC.Eur. J. Med. Chem.2017127102110.1016/j.ejmech.2016.12.030 28038322
    [Google Scholar]
  97. GhanimA.M. RezqS. IbrahimT.S. RomeroD.G. KothayerH. Novel 1,2,4-triazine-quinoline hybrids: The privileged scaffolds as potent multi-target inhibitors of LPS-induced inflammatory response via dual COX-2 and 15-LOX inhibition.Eur. J. Med. Chem.202121911345710.1016/j.ejmech.2021.113457 33892270
    [Google Scholar]
  98. NirajV.P. DhruboJ.S. Synthesis of substituted 7-methyl-2,8-dihydropyrazolo-[1,5-α][1,3,5]-triazine derivatives for anti-inflammatory and antimicrobial screening.Am. J. Adv. Drug Deliv201320132321547X
    [Google Scholar]
  99. ShindeR.S. SalunkeS.D. Synthesis and studies of novel piperidine-substituted triazine derivatives as potential anti-inflammatory and antimicrobial agents.J. Chem. Pharm. Res.20157704714
    [Google Scholar]
/content/journals/coc/10.2174/0113852728378748250529173728
Loading
/content/journals/coc/10.2174/0113852728378748250529173728
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): anticancer; biological activities; organic chemistry; pharmaceutic; synthesis; Triazine
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test