Skip to content
2000
image of Synthesis of 5-[4ʹ-(phenoxydimethylenoxy)-phenyl]-10,15,20-tris(N-methylpyridin-ium-3ʹ-yl)porphyrin Triiodide and the Study of its Interaction with Representative Oligonucleotides poly[d(AT)2] and poly[d(GC)2]

Abstract

Porphyrins and their analogues, due to their unique physicochemical properties, have a wide range of applications. Synthetic tetraarylporphyrins with an asymmetric substituent system are of particular interest. In this regard, an asymmetric porphyrin was synthesized, containing a phenyl fragment on the periphery of the porphyrin macrocycle. Subsequent quaternization of the compound with methyl iodide was carried out in order to obtain water-soluble porphyrin. Its structure was confirmed by 1H NMR spectroscopy and MALDI-TOF spectrometry. The photochemical properties and structural features of the complexation of synthesized porphyrin with representative oligonucleotides poly[d(AT)] and poly[d(GC)] have been studied. According to the results obtained, the studied compound forms a highly stable complex with poly[d(GC)] by the intercalation mechanism. In the case of poly[d(AT)], porphyrin binds in the minor groove.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728378664250507060849
2025-05-20
2025-08-13
Loading full text...

Full text loading...

References

  1. Koifman O.I. Ageeva T.A. Beletskaya I.P. Averin A.D. Yakushev A.A. Tomilova L.G. Dubinina T.V. Tsivadze A.Y. Gorbunova Y.G. Martynov A.G. Konarev D.V. Khasanov S.S. Lyubovskaya R.N. Lomova T.N. Korolev V.V. Zenkevich E.I. Blaudeck T. von Borczyskowski C. Zahn D.R.T. Mironov A.F. Bragina N.A. Ezhov A.V. Zhdanova K.A. Stuzhin P.A. Pakhomov G.L. Rusakova N.V. Semenishyn N.N. Smola S.S. Parfenyuk V.I. Vashurin A.S. Makarov S.V. Dereven’kov I.A. Mamardashvili N.Z. Kurtikyan T.S. Martirosyan G.G. Burmistrov V.А. Aleksandriiskii V.V. Novikov I.V. Pritmov D.A. Grin M.A. Suvorov N.V. Tsigankov A.A. Fedorov A.Y. Kuzmina N.S. Nyuchev A.V. Otvagin V.F. Kustov A.V. Belykh D.V. Berezin D.B. Solovieva A.B. Timashev P.S. Milaeva E.R. Gracheva Y.A. Dodokhova M.A. Safronenko A.V. Shpakovsky D.B. Syrbu S.A. Gubarev Y.A. Kiselev A.N. Koifman M.O. Lebedeva N.S. Yurina E.S. Macroheterocyclic compounds a key building block in new functional materials and molecular devices. Macroheterocycles 2020 13 4 311 467 10.6060/mhc200814k
    [Google Scholar]
  2. Amos-Tautua B. Songca S. Oluwafemi O. Application of porphyrins in antibacterial photodynamic therapy. Molecules 2019 24 13 2456 10.3390/molecules24132456 31277423
    [Google Scholar]
  3. Shi Y. Zhang F. Linhardt R.J. Porphyrin-based compounds and their applications in materials and medicine. Dyes Pigments 2021 188 109136 10.1016/j.dyepig.2021.109136
    [Google Scholar]
  4. Wang T. Yasukochi W. Korposh S. James S.W. Tatam R.P. Lee S.W. A long period grating optical fiber sensor with nano-assembled porphyrin layers for detecting ammonia gas. Sens. Actuators B Chem. 2016 228 573 580 10.1016/j.snb.2016.01.058
    [Google Scholar]
  5. Abudukeremu H. Kari N. Zhang Y. Wang J. Nizamidin P. Abliz S. Yimit A. Highly sensitive free-base-porphyrin-based thin-film optical waveguide sensor for detection of low concentration NO2 gas at ambient temperature. J. Mater. Sci. 2018 53 15 10822 10834 10.1007/s10853‑018‑2374‑5
    [Google Scholar]
  6. Martin M.M. Lungerich D. Haines P. Hampel F. Jux N. Electronic communication across porphyrin hexabenzocoronene isomers. Angew. Chem. Int. Ed. 2019 58 26 8932 8937 10.1002/anie.201903654 30968516
    [Google Scholar]
  7. Balu K. Kaliyamoorthy S. Durai M. Aguiar A. Sobral M.C.M. Muthuvel I. Kumaravel S. Avula B. Sobral A.J.F.N. Ahn Y.H. Porphyrins and ZnO hybrid semiconductor materials: A review. Inorg. Chem. Commun. 2023 154 110973 10.1016/j.inoche.2023.110973
    [Google Scholar]
  8. Mishra M.K. Choudhary H. Cordes D.B. Kelley S.P. Rogers R.D. Structural diversity in tetrakis(4-pyridyl)porphyrin supramolecular building blocks. Cryst. Growth Des. 2019 19 6 3529 3542 10.1021/acs.cgd.9b00399
    [Google Scholar]
  9. Zwick P. Dulić D. van der Zant H.S.J. Mayor M. Porphyrins as building blocks for single-molecule devices. Nanoscale 2021 13 37 15500 15525 10.1039/D1NR04523G 34558586
    [Google Scholar]
  10. Zhang H. Han J. The synthesis and applications of porphyrin-containing pillararenes. Org. Biomol. Chem. 2020 18 26 4894 4905 10.1039/D0OB00763C 32543629
    [Google Scholar]
  11. Cook L.P. Brewer G. Wong-Ng W. Structural aspects of porphyrins for functional materials applications. Crystals (Basel) 2017 7 7 223 10.3390/cryst7070223
    [Google Scholar]
  12. Tian J. Zhang W. Synthesis, self-assembly and applications of functional polymers based on porphyrins. Prog. Polym. Sci. 2019 95 65 117 10.1016/j.progpolymsci.2019.05.002
    [Google Scholar]
  13. Gujarathi P.B. Recent emerging applications of porphyrins and Metalloporphyrins and their analogue in diverse areas. Pharma Innov. 2020 9 4 80 86 10.22271/tpi.2020.v9.i4b.4571
    [Google Scholar]
  14. Huang H. Song W. Rieffel J. Lovell J.F. Emerging applications of porphyrins in photomedicine. Front. Phys. (Lausanne) 2015 3 1 15 10.3389/fphy.2015.00023 28553633
    [Google Scholar]
  15. Bryden F. Boyle R.W. Metalloporphyrins for medical imaging applications. Adv. Inorg. Chem. 2016 68 141 221 10.1016/bs.adioch.2015.09.003
    [Google Scholar]
  16. Kiselev A.N. Lebedev M.A. Syrbu S.A. Yurina E.S. Gubarev Y.A. Lebedeva N.S. Belyanina N.A. Shirokova I.Y. Kovalishena O.V. Koifman O.I. Synthesis and study of water-soluble asymmetric cationic porphyrins as potential photoinactivators of pathogens. Russ. Chem. Bull. 2022 71 12 2691 2700 10.1007/s11172‑022‑3698‑5
    [Google Scholar]
  17. Lebedeva N.S. Gubarev Y.A. Koifman M.O. Koifman O.I. The application of porphyrins and their analogues for inactivation of viruses. Molecules 2020 25 19 4368 10.3390/molecules25194368 32977525
    [Google Scholar]
  18. Yang X. Palasuberniam P. Kraus D. Chen B. Aminolevulinic acid-based tumor detection and therapy: Molecular mechanisms and strategies for enhancement. Int. J. Mol. Sci. 2015 16 10 25865 25880 10.3390/ijms161025865 26516850
    [Google Scholar]
  19. Lebedeva N.S. Yurina E.S. Gubarev Y.A. Syrbu S.A. Interactions of tetracationic porphyrins with DNA and their effects on DNA cleavage. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018 199 235 241 10.1016/j.saa.2018.03.066 29625380
    [Google Scholar]
  20. Murav’eva T.D. Dadeko A.V. Kiselev V.M. Kris’ko T.K. Kislyakov I.M. Kris’ko A.V. Starodubtsev A.M. Bagrov I.V. Belousova I.M. Ponomarev G.V. Comparative study of the photophysical properties of low-toxicity photosensitizers based on endogenous porphyrins. J. Opt. Technol. 2018 85 11 709 721 10.1364/JOT.85.000709
    [Google Scholar]
  21. Yang M. Deng J. Guo D. Zhang J. Yang L. Wu F. A folate-conjugated platinum porphyrin complex as a new cancer-targeting photosensitizer for photodynamic therapy. Org. Biomol. Chem. 2019 17 21 5367 5374 10.1039/C9OB00698B 31106316
    [Google Scholar]
  22. Yuan Y. Liu Z.Q. Jin H. Sun S. Liu T.J. Wang X. Fan H.J. Hou S.K. Ding H. Photodynamic antimicrobial chemotherapy with the novel amino acid-porphyrin conjugate 4I: In vitro and in vivo studies. PLoS One 2017 12 5 e0176529 10.1371/journal.pone.0176529 28493985
    [Google Scholar]
  23. Meng S. Xu Z. Hong G. Zhao L. Zhao Z. Guo J. Ji H. Liu T. Synthesis, characterization and in vitro photodynamic antimicrobial activity of basic amino acid–porphyrin conjugates. Eur. J. Med. Chem. 2015 92 35 48 10.1016/j.ejmech.2014.12.029 25544685
    [Google Scholar]
  24. Zhang S. Lv H. Zhao J. Cheng M. Sun S. Synthesis of porphyrin-conjugated silica-coated Au nanorods for synergistic photothermal therapy and photodynamic therapy of tumor. Nanotechnology 2019 30 26 265102 10.1088/1361‑6528/ab0bd1 30822761
    [Google Scholar]
  25. Wu F. Chen L. Yue L. Wang K. Cheng K. Chen J. Luo X. Zhang T. Small-molecule porphyrin-based organic nanoparticles with remarkable photothermal conversion efficiency for in vivo photoacoustic imaging and photothermal therapy. ACS Appl. Mater. Interfaces 2019 11 24 21408 21416 10.1021/acsami.9b06866 31120723
    [Google Scholar]
  26. Zou Q. Abbas M. Zhao L. Li S. Shen G. Yan X. Biological photothermal nanodots based on self-assembly of peptide–porphyrin conjugates for antitumor therapy. J. Am. Chem. Soc. 2017 139 5 1921 1927 10.1021/jacs.6b11382 28103663
    [Google Scholar]
  27. Pan D. Liang P. Zhong X. Wang D. Cao H. Wang W. He W. Yang Z. Dong X. Self-assembled porphyrin-based nanoparticles with enhanced near-infrared absorbance for fluorescence imaging and cancer photodynamic therapy. ACS Appl. Bio Mater. 2019 2 3 999 1005 10.1021/acsabm.8b00530 35021390
    [Google Scholar]
  28. Jones L.M. Dunham D. Rennie M.Y. Kirman J. Lopez A.J. Keim K.C. Little W. Gomez A. Bourke J. Ng H. DaCosta R.S. Smith A.C. In vitro detection of porphyrin-producing wound bacteria with real-time fluorescence imaging. Future Microbiol. 2020 15 5 319 332 10.2217/fmb‑2019‑0279 32101035
    [Google Scholar]
  29. Walsh C. Rajora M.A. Ding L. Nakamura S. Endisha H. Rockel J. Chen J. Kapoor M. Zheng G. Protease-activatable porphyrin molecular beacon for osteoarthritis management. Chem. Biomed. Imaging 2023 1 1 66 80 10.1021/cbmi.3c00005 37122828
    [Google Scholar]
  30. Battisti A. Morici P. Ghetti F. Sgarbossa A. Spectroscopic characterization and fluorescence imaging of Helicobacter pylori endogenous porphyrins. Biophys. Chem. 2017 229 19 24 10.1016/j.bpc.2017.05.010 28576278
    [Google Scholar]
  31. Yang M. Deng J. Guo D. Sun Q. Wang Z. Wang K. Wu F. Mitochondria-targeting Pt/Mn porphyrins as efficient photosensitizers for magnetic resonance imaging and photodynamic therapy. Dyes Pigments 2019 166 189 195 10.1016/j.dyepig.2019.03.048
    [Google Scholar]
  32. Malatesti N. Munitic I. Jurak I. Porphyrin-based cationic amphiphilic photosensitisers as potential anticancer, antimicrobial and immunosuppressive agents. Biophys. Rev. 2017 9 2 149 168 10.1007/s12551‑017‑0257‑7 28510089
    [Google Scholar]
  33. Takahashi J. Misawa M. Iwahashi H. Transcriptome analysis of porphyrin-accumulated and X-ray-irradiated cell cultures under limited proliferation and non-lethal conditions. Microarrays (Basel) 2015 4 1 25 40 10.3390/microarrays4010025 27600211
    [Google Scholar]
  34. Janas K. Boniewska-Bernacka E. Dyrda G. Słota R. Porphyrin and phthalocyanine photosensitizers designed for targeted photodynamic therapy of colorectal cancer. Bioorg. Med. Chem. 2021 30 115926 10.1016/j.bmc.2020.115926 33341498
    [Google Scholar]
  35. Cheng M.-J. Cao Y.-G. TMPYP4 exerted antitumor effects in human cervical cancer cells through activation of p38 mitogen-activated protein kinase. Biol. Res. 2017 50 1 24 10.1186/s40659‑017‑0129‑4 28673331
    [Google Scholar]
  36. Chen J.J. Gao L.J. Liu T.J. Photodynamic therapy with a novel porphyrin-based photosensitizer against human gastric cancer. Oncol. Lett. 2016 11 1 775 781 10.3892/ol.2015.3953 26870283
    [Google Scholar]
  37. Broughton L.J. Giuntini F. Savoie H. Bryden F. Boyle R.W. Maraveyas A. Madden L.A. Duramycin-porphyrin conjugates for targeting of tumour cells using photodynamic therapy. J. Photochem. Photobiol. B. 2016 163 374 384 10.1016/j.jphotobiol.2016.09.001 27619739
    [Google Scholar]
  38. Maisch T. Hackbarth S. Regensburger J. Felgenträger A. Bäumler W. Landthaler M. Röder B. Photodynamic inactivation of multi‐resistant bacteria (PIB) – A new approach to treat superficial infections in the 21 st century. J. Dtsch. Dermatol. Ges. 2011 9 5 360 366 10.1111/j.1610‑0387.2010.07577.x 21114627
    [Google Scholar]
  39. Hirayanagi K. Ozaki H. Tsukagoshi S. Furuta N. Ikeda Y. Porphyrins ameliorate spinocerebellar ataxia type 36 GGCCTG repeat expansion-mediated cytotoxicity. Neurosci. Res. 2021 171 92 102 10.1016/j.neures.2021.03.001 33705846
    [Google Scholar]
  40. Lee B.I. Lee S. Suh Y.S. Lee J.S. Kim A. Kwon O.Y. Yu K. Park C.B. Photoexcited porphyrins as a strong suppressor of β‐amyloid aggregation and synaptic toxicity. Angew. Chem. Int. Ed. 2015 54 39 11472 11476 10.1002/anie.201504310 26178411
    [Google Scholar]
  41. Hanakova A. Bogdanova K. Tomankova K. Pizova K. Malohlava J. Binder S. Bajgar R. Langova K. Kolar M. Mosinger J. Kolarova H. The application of antimicrobial photodynamic therapy on S. aureus and E. coli using porphyrin photosensitizers bound to cyclodextrin. Microbiol. Res. 2014 169 2-3 163 170 10.1016/j.micres.2013.07.005 23899404
    [Google Scholar]
  42. Szymczak K. Szewczyk G. Rychłowski M. Sarna T. Zhang L. Grinholc M. Nakonieczna J. Photoactivated gallium porphyrin reduces Staphylococcus aureus colonization on the skin and suppresses its ability to produce enterotoxin C and TSST-1. Mol. Pharm. 2023 20 10 5108 5124 10.1021/acs.molpharmaceut.3c00399 37653709
    [Google Scholar]
  43. Zhang L. Ouyang M. Zhang Y. Zhang L. Huang Z. He L. Lei Y. Zou Z. Feng F. Yang R. The fluorescence imaging and precise suppression of bacterial infections in chronic wounds by porphyrin-based metal–organic framework nanorods. J. Mater. Chem. B Mater. Biol. Med. 2021 9 38 8048 8055 10.1039/D1TB01649K 34486642
    [Google Scholar]
  44. Hamblin M.R. Antimicrobial photodynamic inactivation: A bright new technique to kill resistant microbes. Curr. Opin. Microbiol. 2016 33 67 73 10.1016/j.mib.2016.06.008 27421070
    [Google Scholar]
  45. Taub A.F. Photodynamic therapy: Other uses. Dermatol. Clin. 2007 25 1 101 109 10.1016/j.det.2006.09.007 17126748
    [Google Scholar]
  46. Kou J. Dou D. Yang L. Porphyrin photosensitizers in photodynamic therapy and its applications. Oncotarget 2017 8 46 81591 81603 10.18632/oncotarget.20189 29113417
    [Google Scholar]
  47. Nyman E.S. Hynninen P.H. Research advances in the use of tetrapyrrolic photosensitizers for photodynamic therapy. J. Photochem. Photobiol. B. 2004 73 1-2 1 28 10.1016/j.jphotobiol.2003.10.002 14732247
    [Google Scholar]
  48. Koifman O.I. Ageeva T.A. Kuzmina N.S. Otvagin V.F. Nyuchev A.V. Fedorov A.Y. Belykh D.V. Lebedeva N.S. Yurina E.S. Syrbu S.A. Koifman M.O. Gubarev Y.A. Synthesis strategy of tetrapyrrolic photosensitizers for their practical application in photodynamic therapy. Macroheterocycles 2022 15 4 207 304 10.6060/mhc224870k
    [Google Scholar]
  49. Lebedeva N.S. Yurina E.S. Kiselev A.N. Lebedev M.A. Syrbu S.A. Features of the interaction of 5-[4′-(6″-aminopurin-2″-yl)phenyl]-10,15,20-tri(N-methylpyridin-3′-yl)-porphyrin with nucleic acids. Int. J. Biol. Macromol. 2025 294 139411 10.1016/j.ijbiomac.2024.139411 39743061
    [Google Scholar]
  50. Endo M. Fujitsuka M. Majima T. Diastereochemically controlled porphyrin dimer formation on a DNA duplex scaffold. J. Org. Chem. 2008 73 3 1106 1112 10.1021/jo7025004 18184013
    [Google Scholar]
  51. Stulz E. Bouamaied I. Synthesis and spectroscopic properties of porphyrin-substituted uridine and deoxyuridine. Synlett 2004 9 9 1579 1583 10.1055/s‑2004‑829541
    [Google Scholar]
  52. Lebedeva N.S. Yurina E.S. Porphyrins as polyfunctional ligands for binding to DNA. Prospects for application (A review). Russ. J. Bioorganic Chem. 2024 50 6 2567 2579 10.1134/S1068162024060360
    [Google Scholar]
  53. Mathew D. Sujatha S. Interactions of porphyrins with DNA: A review focusing recent advances in chemical modifications on porphyrins as artificial nucleases. J. Inorg. Biochem. 2021 219 111434 10.1016/j.jinorgbio.2021.111434 33819802
    [Google Scholar]
  54. Chakraborti A.S. Interaction of porphyrins with heme proteins - A brief review. Mol. Cell. Biochem. 2003 253 1/2 49 54 10.1023/A:1026097117057 14619955
    [Google Scholar]
  55. Syrbu S.A. Kiselev A.N. Lebedev M.A. Gubarev Y.A. Yurina E.S. Lebedeva N.S. Synthesis of hetaryl-substituted asymmetric porphyrins and their affinity to SARS-CoV-2 helicase. Russ. J. Gen. Chem. 2021 91 6 1039 1049 10.1134/S1070363221060098 34345157
    [Google Scholar]
  56. Haq I. Thermodynamics of drug–DNA interactions. Arch. Biochem. Biophys. 2002 403 1 1 15 10.1016/S0003‑9861(02)00202‑3 12061796
    [Google Scholar]
  57. Lindemose S. Nielsen P.E. Hansen M. Møllegaard N.E. A DNA minor groove electronegative potential genome map based on photo-chemical probing. Nucleic Acids Res. 2011 39 14 6269 6276 10.1093/nar/gkr204 21478164
    [Google Scholar]
  58. Pratviel G. Porphyrins in complex with DNA: Modes of interaction and oxidation reactions. Coord. Chem. Rev. 2016 308 460 477 10.1016/j.ccr.2015.07.003
    [Google Scholar]
  59. Syrbu S.A. Kiselev A.N. Lebedev M.A. Yurina E.S. Lebedeva N.S. Synthesis of 5-[4′-(1′′,3′′,7′′-trimethyixanth-2′′-yl)phenyl]-10,15,20-tris-(N-methylpyridinium-3′-yl)porphyrin Triiodide and features of its reaction with poly[d(AT)2]. Russ. J. Gen. Chem. 2023 93 S2 S562 S571 10.1134/S1070363223150197
    [Google Scholar]
  60. Lebedeva N.S. Yurina E.S. Guseinov S.S. Gubarev Y.A. Influence of the position of the N-methyl group in tetra-(N-methylpyridyl)porphyrin on the features of its interaction with oligonucleotides. Spectral and thermochemical study. Dyes Pigments 2023 220 111723 10.1016/j.dyepig.2023.111723
    [Google Scholar]
  61. Lebedeva N.S. Yurina E.S. Guseinov S.S. Koifman O.I. Interaction of monoheteryl substituted cationic porphyrins with synthetic nucleic acids. Macroheterocycles 2023 16 3 211 217 10.6060/mhc235287l
    [Google Scholar]
  62. Lebedeva N.S. Yurina E.S. Guseinov S.S. Syrbu S.A. Complexes of cationic non-symmetric porphyrin with synthetic and natural nucleic acids. J. Incl. Phenom. Macrocycl. Chem. 2023 103 11-12 429 440 10.1007/s10847‑023‑01207‑z
    [Google Scholar]
  63. Akins D.L. Özçelik S. Zhu H.R. Guo C. Fluorescence decay kinetics and structure of aggregated tetrakis( p-sulfonatophenyl)porphyrin. J. Phys. Chem. 1996 100 34 14390 14396 10.1021/jp961013v
    [Google Scholar]
  64. Paulo P.M.R. Costa S.M.B. nteractions in noncovalent PAMAM/TMPyP systems studied by fluorescence spectroscopy. J. Phys. Chem. B 2005 109 29 13928 13940 10.1021/jp050894f
    [Google Scholar]
  65. Keane P.M. Kelly J.M. Transient absorption and time-resolved vibrational studies of photophysical and photochemical processes in DNA-intercalating polypyridyl metal complexes or cationic porphyrins. Coord. Chem. Rev. 2018 364 137 154 10.1016/j.ccr.2018.02.018
    [Google Scholar]
  66. Kang J. Wu H. Lu X. Wang Y. Zhou L. Study on the interaction of new water-soluble porphyrin with DNA. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2005 61 9 2041 2047 10.1016/j.saa.2004.08.009 15911390
    [Google Scholar]
  67. Barkhudaryan V.G. Ananyan G.V. Development of viscometric methods for studying the interaction of porphyrins with DNA. J. Biomol. Struct. Dyn. 2020 38 12 3489 3495 10.1080/07391102.2019.1660217 31451096
    [Google Scholar]
  68. Chen Y. Zhao D. Liu Y. Polysaccharide–porphyrin–fullerene supramolecular conjugates as photo-driven DNA cleavage reagents. Chem. Commun. (Camb.) 2015 51 61 12266 12269 10.1039/C5CC04625D 26179740
    [Google Scholar]
  69. Jin S. Zhao P. Xu L. Zheng M. Lu J. Zhao P. Su Q. Chen H. Tang D. Chen J. Lin J. Synthesis, G-quadruplexes DNA binding, and photocytotoxicity of novel cationic expanded porphyrins. Bioorg. Chem. 2015 60 110 117 10.1016/j.bioorg.2015.05.001 25989424
    [Google Scholar]
  70. Zhu L.N. Shi S. Yang L. Zhang M. Liu K-K. Zhang L-N. Water soluble cationic porphyrin TMPipEOPP-induced G-quadruplex and double-stranded DNA photocleavage and cell phototoxicity. RSC Advances 2016 6 16 13080 13087 10.1039/C5RA24964C
    [Google Scholar]
  71. McBrayer D. Schoonover M. Long K.J. Escobedo R. Kerwin S.M. N‐methylmesoporphyrin IX exhibits G‐quadruplex‐specific photocleavage activity. ChemBioChem 2019 20 15 1924 1927 10.1002/cbic.201900002 30850998
    [Google Scholar]
  72. Zhu Z. Tran H. Mathahs M.M. Fink B.D. Albert J.A. Moninger T.O. Meier J.L. Li M. Schmidt W.N. Zinc protoporphyrin binding to telomerase complexes and inhibition of telomerase activity. Pharmacol. Res. Perspect. 2021 9 6 e00882 10.1002/prp2.882 34747573
    [Google Scholar]
  73. Johnson K. Seidel J.M. Cech T.R. Small molecule telomerase inhibitors are also potent inhibitors of telomeric C-strand synthesis. RNA 2024 30 9 1213 1226 10.1261/rna.080043.124 38918043
    [Google Scholar]
  74. Dass C.R. Vehicles for oligonucleotide delivery to tumours. J. Pharm. Pharmacol. 2002 54 1 3 27 10.1211/0022357021771887 11829127
    [Google Scholar]
  75. Ruttkay-Nedecky B. Kudr J. Nejdl L. Maskova D. Kizek R. Adam V. G-quadruplexes as sensing probes. Molecules 2013 18 12 14760 14779 10.3390/molecules181214760 24288003
    [Google Scholar]
/content/journals/coc/10.2174/0113852728378664250507060849
Loading
/content/journals/coc/10.2174/0113852728378664250507060849
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test