Skip to content
2000
image of Synthesis and State of Hydroxy-substituted Porphyrins in Premicellar and Micellar Solutions of SDS

Abstract

The use of micelles enables the resolution of a number of problems associated with the aggregation and reduction in photocatalytic activity of porphyrins. The formation of transport systems is impossible without information on the localization of porphyrins containing hydrophilic and hydrophobic parts in highly organized systems, such as liposomes or model systems–micelles. To solve the above issues, 5,10,15,20-tetra(3ʹ,4ʹ-dihydroxyphenyl)porphin (), 5-(3ʹ,4ʹ-dihydroxyphenyl)-10,15,20-triphenylporphin (), and 5-(3ʹ,4ʹ-dihydroxyphenyl)-10,15,20-tri(pyridinium-3ʹ-yl)porphine () were synthesized, and their state was studied in aqueous media in the presence of an anionic surfactant in the premicellar region. It was found that the porphyrins are sedimentation-stable in the premicellar region, while in the micellar region, and are localized inside SDS micelles. However, the peripheral substituents of are oriented toward the “head” of the surfactant. is the worst isolated from water molecules of all the studied porphyrins, and can be located both on the surface and inside the micelle, orienting the OH groups toward the surface of the micelle, or the channels inside it. The results obtained can be used to design transport systems for the delivery of hydroxy-substituted porphyrin photosensitizers.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728378651250507075627
2025-05-20
2025-09-16
Loading full text...

Full text loading...

References

  1. Barona-Castaño J. Carmona-Vargas C. Brocksom T. De Oliveira K. Porphyrins as catalysts in scalable organic reactions. Molecules 2016 21 3 310 10.3390/molecules21030310 27005601
    [Google Scholar]
  2. Tian J. Huang B. Nawaz M.H. Zhang W. Recent advances of multi-dimensional porphyrin-based functional materials in photodynamic therapy. Coord. Chem. Rev. 2020 420 213410 10.1016/j.ccr.2020.213410
    [Google Scholar]
  3. Costa e Silva R. Oliveira da Silva L. de Andrade Bartolomeu A. Brocksom T.J. de Oliveira K.T. e Silva Recent applications of porphyrins as photocatalysts in organic synthesis: Batch and continuous flow approaches. Beilstein J. Org. Chem. 2020 16 1 917 955 10.3762/bjoc.16.83
    [Google Scholar]
  4. Shi Y. Zhang F. Linhardt R.J. Porphyrin-based compounds and their applications in materials and medicine. Dyes Pigments 2021 188 109136 10.1016/j.dyepig.2021.109136
    [Google Scholar]
  5. Park J.M. Lee J.H. Jang W.D. Applications of porphyrins in emerging energy conversion technologies. Coord. Chem. Rev. 2020 407 213157 10.1016/j.ccr.2019.213157
    [Google Scholar]
  6. Lermontova S.A. Grigor’ev I.S. Ladilina E.Y. Balalaeva I.V. Shilyagina N.Y. Klapshina L.G. Porphyrazine structures with electron-withdrawing substituents as the base for materials for photonics and biomedicine. Russ. J. Coord. Chem. 2018 44 4 301 315 10.1134/S1070328418040061
    [Google Scholar]
  7. Wang L. Li H. Deng J. Cao D. Recent advances in porphyrin-derived sensors. Curr. Org. Chem. 2013 17 24 3078 3091 10.2174/13852728113179990024
    [Google Scholar]
  8. Kiselev A.N. Lebedev M.A. Syrbu S.A. Yurina E.S. Gubarev Y.A. Lebedeva N.S. Belyanina N.A. Shirokova I.Y. Kovalishena O.V. Koifman O.I. Synthesis and study of water-soluble asymmetric cationic porphyrins as potential photoinactivators of pathogens. Russ. Chem. Bull. 2022 71 12 2691 2700 10.1007/s11172‑022‑3698‑5
    [Google Scholar]
  9. Lebedeva N.S. Yurina E.S. Gubarev Y.A. Syrbu S.A. Koifman O.I. Aggregation of protein complexes with porphyrins under light irradiation. J. Porphyr. Phthalocyanines 2021 25 2 145 152 10.1142/S1088424621500061
    [Google Scholar]
  10. Lebedeva N.S. Gubarev Y.A. Koifman M.O. Koifman O.I. The application of porphyrins and their analogues for inactivation of viruses. Molecules 2020 25 19 4368 10.3390/molecules25194368 32977525
    [Google Scholar]
  11. Amos-Tautua B. Songca S. Oluwafemi O. Application of porphyrins in antibacterial photodynamic therapy. Molecules 2019 24 13 2456 10.3390/molecules24132456 31277423
    [Google Scholar]
  12. Kou J. Dou D. Yang L. Porphyrin photosensitizers in photodynamic therapy and its applications. Oncotarget 2017 8 46 81591 81603 10.18632/oncotarget.20189 29113417
    [Google Scholar]
  13. Weyergang A. Berg K. Kaalhus O. Peng Q. Selbo P.K. Photodynamic therapy targets the mTOR signaling network in vitro and in vivo. Mol. Pharm. 2009 6 1 255 264 10.1021/mp800156e 19125612
    [Google Scholar]
  14. Teles A.V. Oliveira T.M.A. Bezerra F.C. Alonso L. Alonso A. Borissevitch I.E. Gonçalves P.J. Souza G.R.L. Photodynamic inactivation of Bovine herpesvirus type 1 (BoHV-1) by porphyrins. J. Gen. Virol. 2018 99 9 1301 1306 10.1099/jgv.0.001121 30058992
    [Google Scholar]
  15. Ries A.S. Cargnelutti J.F. Basso G. Acunha T.V. Iglesias B.A. Flores E.F. Weiblen R. Water-soluble tetra-cationic porphyrins display virucidal activity against Bovine adenovirus and Bovine alphaherpesvirus 1. Photodiagn. Photodyn. Ther. 2020 31 101947 10.1016/j.pdpdt.2020.101947 32768587
    [Google Scholar]
  16. Sułek A. Pucelik B. Kobielusz M. Barzowska A. Dąbrowski J.M. Photodynamic inactivation of bacteria with porphyrin derivatives: Effect of charge, lipophilicity, ROS generation, and cellular uptake on their biological activity in vitro. Int. J. Mol. Sci. 2020 21 22 8716 10.3390/ijms21228716 33218103
    [Google Scholar]
  17. Yi M. Lin Y. Li Y. Xiong B. Huang Y. Guo W. Lu B. An enzyme-responsive porphyrin metal-organic framework nanosystem for targeted and enhanced synergistic cancer photo-chemo Therapy. Curr. Drug Deliv. 2024 21 1 14 10.2174/0115672018286563240223072702 38424427
    [Google Scholar]
  18. Tyagi R. Yadav K. Srivastava N. Sagar R. Applications of pyrrole and pyridine-based heterocycles in cancer diagnosis and treatment. Curr. Pharm. Des. 2024 30 4 255 277 10.2174/0113816128280082231205071504 38711394
    [Google Scholar]
  19. Imran M. Ramzan M. Qureshi A.K. Khan M.A. Tariq M. Emerging applications of porphyrins and metalloporphyrins in biomedicine and diagnostic magnetic resonance imaging. Biosensors 2018 8 4 95 10.3390/bios8040095 30347683
    [Google Scholar]
  20. Malatesti N. Munitic I. Jurak I. Porphyrin-based cationic amphiphilic photosensitisers as potential anticancer, antimicrobial and immunosuppressive agents. Biophys. Rev. 2017 9 2 149 168 10.1007/s12551‑017‑0257‑7 28510089
    [Google Scholar]
  21. Yang X. Palasuberniam P. Kraus D. Chen B. Aminolevulinic acid-based tumor detection and therapy: Molecular mechanisms and strategies for enhancement. Int. J. Mol. Sci. 2015 16 10 25865 25880 10.3390/ijms161025865 26516850
    [Google Scholar]
  22. Takahashi J. Misawa M. Iwahashi H. Transcriptome analysis of porphyrin-accumulated and X-ray-irradiated cell cultures under limited proliferation and non-lethal conditions. Microarrays 2015 4 1 25 40 10.3390/microarrays4010025 27600211
    [Google Scholar]
  23. Banala S. Fokong S. Brand C. Andreou C. Kräutler B. Rueping M. Kiessling F. Quinone-fused porphyrins as contrast agents for photoacoustic imaging. Chem. Sci. (Camb.) 2017 8 9 6176 6181 10.1039/C7SC01369H 28989649
    [Google Scholar]
  24. Vahidfar N. Jalilian A. An overview of labeled porphyrin molecules in medical imaging. Recent Pat. Top. Imaging 2015 5 1 3 12 10.2174/2451827105666150522235440
    [Google Scholar]
  25. Singh S. Aggarwal A. Bhupathiraju N.V.S.D.K. Arianna G. Tiwari K. Drain C.M. Glycosylated porphyrins, phthalocyanines, and other porphyrinoids for diagnostics and therapeutics. Chem. Rev. 2015 115 18 10261 10306 10.1021/acs.chemrev.5b00244 26317756
    [Google Scholar]
  26. Zhang X. Lovejoy K.S. Jasanoff A. Lippard S.J. Water-soluble porphyrins as a dual-function molecular imaging platform for MRI and fluorescence zinc sensing. Proc. Natl. Acad. Sci. USA 2007 104 26 10780 10785 10.1073/pnas.0702393104 17578918
    [Google Scholar]
  27. Battisti A. Morici P. Ghetti F. Sgarbossa A. Spectroscopic characterization and fluorescence imaging of Helicobacter pylori endogenous porphyrins. Biophys. Chem. 2017 229 19 24 10.1016/j.bpc.2017.05.010 28576278
    [Google Scholar]
  28. Kano K. Molecular complexes of water-soluble porphyrins. J. Porphyr. Phthalocyanines 2004 8 2 148 155 10.1142/S1088424604000143
    [Google Scholar]
  29. Kubát P. Lang K. Procházková K. Anzenbacher P. Self-aggregates of cationic meso-tetratolylporphyrins in aqueous solutions. Langmuir 2003 19 2 422 428 10.1021/la026183f
    [Google Scholar]
  30. Gandini S.C.M. Gelamo E.L. Itri R. Tabak M. Small angle X-ray scattering study of meso-tetrakis (4-sulfonatophenyl) porphyrin in aqueous solution: A self-aggregation model. Biophys. J. 2003 85 2 1259 1268 10.1016/S0006‑3495(03)74561‑5 12885669
    [Google Scholar]
  31. Kano K. Fukuda K. Wakami H. Nishiyabu R. Pasternack R.F. Factors influencing self-aggregation tendencies of cationic porphyrins in aqueous solution. J. Am. Chem. Soc. 2000 122 31 7494 7502 10.1021/ja000738g
    [Google Scholar]
  32. Zagami R. Castriciano M.A. Romeo A. Scolaro L.M. J-aggregates of 5, 10, 15, 20-tetrakis (4-sulfonatophenyl)-porphyrin. An overview of the supramolecular self-assembling mechanism. J. Porphyrins Phthalocyanines 2023 27 463 10.1142/S1088424623500153
    [Google Scholar]
  33. Hollingsworth J.V. Richard A.J. Vicente M.G.H. Russo P.S. Characterization of the self-assembly of meso -Tetra(4-sulfonatophenyl)porphyrin (H 2 TPPS 4– ) in aqueous solutions. Biomacromolecules 2012 13 1 60 72 10.1021/bm201078d 21995760
    [Google Scholar]
  34. Zhou Y. Liang X. Dai Z. Porphyrin-loaded nanoparticles for cancer theranostics. Nanoscale 2016 8 25 12394 12405 10.1039/C5NR07849K 26730838
    [Google Scholar]
  35. Lebedeva N.S. Yurina E.S. Gubarev Y.A. Koifman O.I. A pH-controllable protein container for the delivery of hydrophobic porphyrins. Mendeleev Commun. 2017 27 1 47 49 10.1016/j.mencom.2017.01.014
    [Google Scholar]
  36. Lebedeva N.S. Gubarev Y.A. Yurina E.S. Smirnova E.N. Syrbu S.A. A new strategy for targeted delivery of non-water-soluble porphyrins in chitosan-albumin capsules. Colloid Polym. Sci. 2017 295 11 2173 2182 10.1007/s00396‑017‑4191‑9
    [Google Scholar]
  37. Konan Y.N. Berton M. Gurny R. Allémann E. Enhanced photodynamic activity of meso-tetra(4-hydroxyphenyl)porphyrin by incorporation into sub-200 nm nanoparticles. Eur. J. Pharm. Sci. 2003 18 3-4 241 249 10.1016/S0928‑0987(03)00017‑4 12659935
    [Google Scholar]
  38. Li B. Moriyama E.H. Li F. Jarvi M.T. Allen C. Wilson B.C. Diblock copolymer micelles deliver hydrophobic protoporphyrin IX for photodynamic therapy. Photochem. Photobiol. 2007 83 6 1505 1512 10.1111/j.1751‑1097.2007.00194.x 18028227
    [Google Scholar]
  39. Postigo F. Mora M. De Madariaga M.A. Nonell S. Sagristá M.L. Incorporation of hydrophobic porphyrins into liposomes: Characterization and structural requirements. Int. J. Pharm. 2004 278 2 239 254 10.1016/j.ijpharm.2004.03.004 15196629
    [Google Scholar]
  40. Temizel E. Sagir T. Ayan E. Isik S. Ozturk R. Delivery of lipophilic porphyrin by liposome vehicles: Preparation and photodynamic therapy activity against cancer cell lines. Photodiagn. Photodyn. Ther. 2014 11 4 537 545 10.1016/j.pdpdt.2014.07.006 25107838
    [Google Scholar]
  41. Sheng N. Zong S. Cao W. Jiang J. Wang Z. Cui Y. Water dispersible and biocompatible porphyrin-based nanospheres for biophotonics applications: A novel surfactant and polyelectrolyte-based fabrication strategy for modifying hydrophobic porphyrins. ACS Appl. Mater. Interfaces 2015 7 35 19718 19725 10.1021/acsami.5b05256 26292182
    [Google Scholar]
  42. Ferro S. Ricchelli F. Mancini G. Tognon G. Jori G. Inactivation of methicillin-resistant Staphylococcus aureus (MRSA) by liposome-delivered photosensitising agents. J. Photochem. Photobiol. B 2006 83 2 98 104 10.1016/j.jphotobiol.2005.12.008 16446097
    [Google Scholar]
  43. Tsai T. Yang Y.T. Wang T.H. Chien H.F. Chen C.T. Improved photodynamic inactivation of gram‐positive bacteria using hematoporphyrin encapsulated in liposomes and micelles. Lasers Surg. Med. 2009 41 4 316 322 10.1002/lsm.20754 19347938
    [Google Scholar]
  44. Cheng Y. Samia A.C. Meyers J.D. Panagopoulos I. Fei B. Burda C. Highly efficient drug delivery with gold nanoparticle vectors for in vivo photodynamic therapy of cancer. J. Am. Chem. Soc. 2008 130 32 10643 10647 10.1021/ja801631c 18642918
    [Google Scholar]
  45. Roy I. Ohulchanskyy T.Y. Pudavar H.E. Bergey E.J. Oseroff A.R. Morgan J. Dougherty T.J. Prasad P.N. Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug-carrier system for photodynamic therapy. J. Am. Chem. Soc. 2003 125 26 7860 7865 10.1021/ja0343095 12823004
    [Google Scholar]
  46. Roby A. Erdogan S. Torchilin V.P. Enhanced in vivo antitumor efficacy of poorly soluble PDT agent, meso-tetraphenylporphine, in PEG-PE-based tumor-targeted immunomicelles. Cancer Biol. Ther. 2007 6 7 1136 1142 10.4161/cbt.6.7.4345 17611407
    [Google Scholar]
  47. Zhang J.X. Hansen C.B. Allen T.M. Boey A. Boch R. Lipid-derivatized poly(ethylene glycol) micellar formulations of benzoporphyrin derivatives. J. Control. Release 2003 86 2-3 323 338 10.1016/S0168‑3659(02)00442‑X 12526828
    [Google Scholar]
  48. Kadish K.M. Maiya G.B. Araullo C. Guilard R. Micellar effects on the aggregation of tetraanionic porphyrins. Spectroscopic characterization of free-base meso-tetrakis(4-sulfonatophenyl)porphyrin, (TPPS)H2, and (TPPS)M (M = zinc(II), copper(II), and vanadyl) in aqueous micellar media. Inorg. Chem. 1989 28 14 2725 2731 10.1021/ic00313a008
    [Google Scholar]
  49. Gonçalves P.J. Franzen P.L. Correa D.S. Almeida L.M. Takara M. Ito A.S. Zílio S.C. Borissevitch I.E. Effects of environment on the photophysical characteristics of mesotetrakis methylpyridiniumyl porphyrin (TMPyP). Spectrochim. Acta A Mol. Biomol. Spectrosc. 2011 79 5 1532 1539 10.1016/j.saa.2011.05.012 21641855
    [Google Scholar]
  50. Qiu W.G. Li Z.F. Bai G.M. Meng S.N. Dai H.X. He H. Interaction of water-soluble cationic porphyrin with anionic surfactant. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2007 68 5 1164 1169 10.1016/j.saa.2007.01.015 17482869
    [Google Scholar]
  51. Gandini S.C.M. Yushmanov V.E. Borissevitch I.E. Tabak M. Interaction of the tetra (4-sulfonatophenyl) porphyrin with ionic surfactants: Aggregation and location in micelles. Langmuir 1999 15 19 6233 6243 10.1021/la990108w
    [Google Scholar]
  52. Sobczyński J. Smistad G. Hegge A.B. Kristensen S. Molecular interactions and solubilization of structurally related meso -porphyrin photosensitizers by amphiphilic block copolymers (Pluronics). Drug Dev. Ind. Pharm. 2015 41 8 1237 1246 10.3109/03639045.2014.938657 25027806
    [Google Scholar]
  53. Mamardashvili G.M. Kaigorodova E.Y. Simonova O.R. Lazovskiy D.A. Mamardashvili N.Z. Interaction of the Sn(IV)-tetra(4-sulfonatophenyl)porphyrin axial complexes with cetyltrimethylammonium bromide: Aggregation and location in micelles, fluorescence properties and photochemical stability. J. Mol. Liq. 2020 318 113988 10.1016/j.molliq.2020.113988
    [Google Scholar]
  54. Gandini S.C.M. Yushmanov V.E. Tabak M. Interaction of Fe(III)- and Zn(II)-tetra(4-sulfonatophenyl) porphyrins with ionic and nonionic surfactants: aggregation and binding. J. Inorg. Biochem. 2001 85 4 263 277 10.1016/S0162‑0134(01)00211‑2 11551384
    [Google Scholar]
  55. Santiago P.S. Gandini S.C.M. Moreira L.M. Tabak M. Interaction of cationic water-soluble meso -tetrakis(4-N-methylpyridiniumyl)porphyrin (TMPyP) with ionic and nonionic micelles: Aggregation and binding. J. Porphyr. Phthalocyanines 2008 12 8 942 952 10.1142/S1088424608000327
    [Google Scholar]
  56. Monsú Scolaro L. Donato C. Castriciano M. Romeo A. Romeo R. Micellar aggregates of platinum(II) complexes containing porphyrins. Inorg. Chim. Acta 2000 300-302 978 986 10.1016/S0020‑1693(99)00617‑9
    [Google Scholar]
  57. Gradova M.A. Gradov O.V. Zhdanova K.A. Bragina N.A. Lobanov A.V. Self-assembly of amphiphilic meso -aryl-substituted porphyrin derivatives in the presence of surfactants. J. Porphyrins Phthalocyanines 2020 24 4 505 514 10.1142/S108842461950175X
    [Google Scholar]
  58. Vermathen M. Louie E.A. Chodosh A.B. Ried S. Simonis U. Interactions of water-insoluble tetraphenylporphyrins with micelles probed by UV−Visible and NMR spectroscopy. Langmuir 2000 16 1 210 221 10.1021/la990903+
    [Google Scholar]
  59. Gradova M.A. Gradov O.V. Bychkova A.V. Motyakin M.V. Ionova I.S. Lobanov A.V. Interaction between meso-tetra-(4-hydroxyphenyl)porphyrin and SDS in aqueous solutions: Premicellar porphyrin-surfactant J-aggregate formation. Chem. Phys. 2022 562 111655 10.1016/j.chemphys.2022.111655
    [Google Scholar]
  60. Nascimento B.F.O. Pereira N.A.M. Valente A.J.M. Pinho e Melo T.M.V.D. Pineiro M. A review on (Hydro)Porphyrin-loaded polymer micelles: Interesting and valuable platforms for enhanced cancer nanotheranostics. Pharmaceutics 2019 11 2 81 10.3390/pharmaceutics11020081 30769938
    [Google Scholar]
  61. Ma H. Sun S. Chen X. Wu D. Zhu P. Du B. Wei Q. Spectroscopic studies of aggregation behavior of meso -tetra(4-hydroxyphenyl)porphyrin in aqueous AOT solution. J. Porphyrins Phthalocyanines 2008 12 2 101 108 10.1142/S1088424608000133
    [Google Scholar]
  62. Li X. Li D. Han M. Chen Z. Zou G. Neutral porphyrin J-aggregates in premicellar SDS solution. Colloids Surf. A Physicochem. Eng. Asp. 2005 256 2-3 151 156 10.1016/j.colsurfa.2005.01.006
    [Google Scholar]
  63. Rothemund P. Formation of porphyrins from pyrrole and aldehydes. J. Am. Chem. Soc. 1935 57 10 2010 2011 10.1021/ja01313a510
    [Google Scholar]
  64. Adler A.D. Longo F.R. Shergalis W. Mechanistic investigations of porphyrin syntheses. I. preliminary studies on ms -Tetraphenylporphin. J. Am. Chem. Soc. 1964 86 15 3145 3149 10.1021/ja01069a035
    [Google Scholar]
  65. Treibs A. Häberle N. On the synthesis and electron spectra of ms-substituted porphins. Justus Liebigs Ann. Chem. 1968 718 1 183 207 10.1002/jlac.19687180118 5704489
    [Google Scholar]
  66. Dolphin D. Porphyrinogens and porphodimethenes, intermediates in the synthesis of meso ‐tetraphenylporphins from pyrroles and benzaldehyde. J. Heterocycl. Chem. 1970 7 2 275 283 10.1002/jhet.5570070205
    [Google Scholar]
  67. Adler A.D. Longo F.R. Finarelli J.D. Goldmacher J. Assour J. Korsakoff L. A simplified synthesis for meso-tetraphenylporphine. J. Org. Chem. 1967 32 2 476 10.1021/jo01288a053
    [Google Scholar]
  68. Kim J.B. Leonard J.J. Longo F.R. Mechanistic study of the synthesis and spectral properties of meso-tetraarylporphyrins. J. Am. Chem. Soc. 1972 94 11 3986 3992 10.1021/ja00766a056 5037983
    [Google Scholar]
  69. Semeikin A.S. Koifman O.I. Berezin B.D. Improved method for the synthesis of substituted tetraphenylporphines. Chem. Heterocycl. Compd. 1986 6 798 801
    [Google Scholar]
  70. Lindsey J.S. Hsu H.C. Schreiman I.C. Synthesis of tetraphenylporphyrins under very mild conditions. Tetrahedron Lett. 1986 27 41 4969 4970 10.1016/S0040‑4039(00)85109‑6
    [Google Scholar]
  71. Lindsey J.S. Schreiman I.C. Hsu H.C. Kearney P.C. Marguerettaz A.M. Rothemund and Adler-Longo reactions revisited: synthesis of tetraphenylporphyrins under equilibrium conditions. J. Org. Chem. 1987 52 5 827 836 10.1021/jo00381a022
    [Google Scholar]
  72. Geier G.R. Lindsey J.S. Investigation of porphyrin-forming reactions. Part 2. Examination of the reaction course in two-step, one-flask syntheses of meso-substituted porphyrins. J. Chem. Soc., Perkin Trans. 2 2001 5 5 687 700 10.1039/b009092l
    [Google Scholar]
  73. Nascimento B.F.O. Pineiro M. Gonsalves A.M.A.R. Silva M.R. Beja A.M. Paixão J.A. Microwave-assisted synthesis of porphyrins and metalloporphyrins: A rapid and efficient synthetic method. J. Porphyr. Phthalocyanines 2007 11 2 77 84 10.1142/S1088424607000102
    [Google Scholar]
  74. Souza D.P.V. Gomes A.M.G.B. Goncalves P.S. Santos R.P. Maria E.J. Matos C.R.R. Synthesis and biological activity of porphyrins. Mini Rev. Org. Chem. 2013 10 1 97 102 10.2174/1570193X11310010008
    [Google Scholar]
  75. Vicente M. Smith K. Syntheses and functionalizations of porphyrin macrocycles. Curr. Org. Synth. 2014 11 1 3 28 10.2174/15701794113106660083 25484638
    [Google Scholar]
  76. Semeikin A.S. Koifman O.I. Berezin B.D. Syrbu S.A. synthesis of tetraphenylporphins with active groups in phenyl rings. 2. Obtaining tetra(oxyphenyl)porphins. Chem. Heterocycl. Compd. 1983 10 1359 1361
    [Google Scholar]
  77. Syrbu S.A. Semeikin A.S. Berezin B.D. Method for producing oxyphenyl-substituted porphyrins. SU Patent 1684284A1 1991
  78. Koifman O.I. Ageeva T.A. Main strategies for the synthesis of meso-Arylporphyrins. Russ. J. Org. Chem. 2022 58 4 443 479 10.1134/S1070428022040017
    [Google Scholar]
  79. Domínguez A. Fernández A. González N. Iglesias E. Montenegro L. Determination of critical micelle concentration of some surfactants by three techniques. J. Chem. Educ. 1997 74 10 1227 10.1021/ed074p1227
    [Google Scholar]
  80. Shah S.S. Jamroz N.U. Sharif Q.M. Micellization parameters and electrostatic interactions in micellar solution of sodium dodecyl sulfate (SDS) at different temperatures. Colloids Surf. A Physicochem. Eng. Asp. 2001 178 1-3 199 206 10.1016/S0927‑7757(00)00697‑X
    [Google Scholar]
  81. Carroll M.K. Unger M.A. Leach A.M. Morris M.J. Ingersoll C.M. Bright F.V. Interactions between Methylene Blue and Sodium Dodecyl Sulfate in aqueous solution studied by molecular spectroscopy. Appl. Spectrosc. 1999 53 7 780 784 10.1366/0003702991947568
    [Google Scholar]
  82. Imani I.M. Noei N. Azizian S. Foam analysis of aqueous solution containing ion pair of methyl violet and SDS. Colloids Surf. A Physicochem. Eng. Asp. 2020 587 124338 10.1016/j.colsurfa.2019.124338
    [Google Scholar]
  83. Wang J. Lin C.Y. Moore C. Jhunjhunwala A. Jokerst J.V. Switchable photoacoustic intensity of methylene blue via sodium dodecyl sulfate micellization. Langmuir 2018 34 1 359 365 10.1021/acs.langmuir.7b03718 29232146
    [Google Scholar]
  84. Shah P. Jha S.K. Bhattarai A. Spectrophotometric study of the sodium dodecyl sulfate in the presence of methylene blue in the methanol–water mixed solvent system. J. Mol. Liq. 2021 340 117200 10.1016/j.molliq.2021.117200
    [Google Scholar]
  85. Lebedeva N.S. Yurina E.S. Guseinov S.S. Gubarev Y.A. Influence of the position of the N-methyl group in tetra-(N-methylpyridyl)porphyrin on the features of its interaction with oligonucleotides. Spectral and thermochemical study. Dyes Pigments 2023 220 111723 10.1016/j.dyepig.2023.111723
    [Google Scholar]
  86. Uttamlal M. Holmes-Smith A.S. The excitation wavelength dependent fluorescence of porphyrins. Chem. Phys. Lett. 2008 454 4-6 223 228 10.1016/j.cplett.2008.02.012
    [Google Scholar]
  87. Baskin J.S. Yu H.Z. Zewail A.H. Ultrafast dynamics of porphyrins in the condensed phase: I. Free base tetraphenylporphyrin. J. Phys. Chem. A 2002 106 42 9837 9844 10.1021/jp020398g
    [Google Scholar]
  88. Akins D.L. Özçelik S. Zhu H.R. Guo C. Fluorescence decay kinetics and structure of aggregated tetrakis (p-sulfonatophenyl) porphyrin. J. Phys. Chem. 1996 100 34 14390 14396 10.1021/jp961013v
    [Google Scholar]
  89. Ghosh M. Nath S. Hajra A. Sinha S. Fluorescence self-quenching of tetraphenylporphyrin in liquid medium. J. Lumin. 2013 141 87 92 10.1016/j.jlumin.2013.03.025
    [Google Scholar]
  90. Kano K. Miyake T. Uomoto K. Sato T. Ogawa T. Hashimoto S. Evidence for stacking of cationic porphyrin in aqueous solution. Chem. Lett. 1983 12 12 1867 1870 10.1246/cl.1983.1867
    [Google Scholar]
  91. Lebold T.P. Yeow E.K.L. Steer R.P. Fluorescence quenching of the S1 and S2 states of zinc meso-tetrakis(4-sulfonatophenyl)porphyrin by halide ions. Photochem. Photobiol. Sci. 2004 3 2 160 166 10.1039/b310980a 14872231
    [Google Scholar]
  92. Speck M. Kurreck H. Senge M.O. Porphyrin-o-quinones as model systems for electron transfer and catecholase reactions. Eur. J. Org. Chem. 2000 2000 12 2303 2314 10.1002/1099‑0690(200006)2000:12<2303::AID‑EJOC2303>3.0.CO;2‑U
    [Google Scholar]
/content/journals/coc/10.2174/0113852728378651250507075627
Loading
/content/journals/coc/10.2174/0113852728378651250507075627
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s web site along with the published article.


  • Article Type:
    Research Article
Keywords: premicellar region ; micelles ; fluorescence ; Porphyrins ; localization ; SDS
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test