Skip to content
2000
image of Advances in Nickel-Metallaphotoredox Catalysis in Organic Synthesis: A New Approach to Targeted Reaction Design

Abstract

Nickel-metallaphotoredox catalysis has emerged as a groundbreaking approach in organic synthesis research over the last decade. It integrates the accessibility of the redox states of inexpensive, earth-abundant nickel to capture carbon-centred radicals with the ability of photoredox catalysts (PCs) to mediate single-electron transfer (SET) or energy transfer (ET) for efficient, selective, and sustainable transformations. Advances in catalyst design, reaction optimization, and mechanistic understanding have unlocked a wide range of cross-coupling protocols, enabling previously inaccessible or less efficient C-C bond formations. This progress opens new possibilities for innovative applications in pharmaceuticals, materials science, and beyond. This mini-review focuses on advancements in the last three years in the formation of challenging C(sp3)-C(sp3) and C(sp3)-C(sp2) bonds, both in two-component and three-component systems, featuring a broad substrate scope, with chemo-, regio-, and stereo-selectivity under mild conditions. Although mechanistic studies have been conducted for some systems, and kinetic isotope effects have been probed for others, detailed investigations using computational methods to understand the molecular interactions are lacking or sometimes fail to indicate a general trend of the catalytic mechanism. The discovery of novel approaches to open-shell radical species, which dictate reactivity and selectivity, will be of utmost importance in developing new reactions. These advances will enrich all areas of chemical sciences and create numerous opportunities for interdisciplinary research.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728378634250618190946
2025-07-08
2025-09-14
Loading full text...

Full text loading...

References

  1. Nicolaou K.C. Bulger P.G. Sarlah D. Palladium-catalyzed cross-coupling reactions in total synthesis. Angew. Chem. Int. Ed. 2005 44 29 4442 4489 10.1002/anie.200500368 15991198
    [Google Scholar]
  2. Knowles W.S. Sabacky M.J. Catalytic asymmetric hydrogenation employing a soluble, optically active, rhodium complex. Chem. Commun. 1968 22 1445 1446 10.1039/c19680001445
    [Google Scholar]
  3. Noyori R. Chiral metal complexes as discriminating molecular catalysts. Science 1990 248 4960 1194 1199 10.1126/science.248.4960.1194 17809904
    [Google Scholar]
  4. Bauer E.B. Chiral-at-metal complexes and their catalytic applications in organic synthesis. Chem. Soc. Rev. 2012 41 8 3153 3167 10.1039/c2cs15234g 22306968
    [Google Scholar]
  5. Heck R.F. Acylation, methylation, and carboxyalkylation of olefins by Group VIII metal derivatives. J. Am. Chem. Soc. 1968 90 20 5518 5526 10.1021/ja01022a034
    [Google Scholar]
  6. Baba S. Negishi E. A novel stereospecific alkenyl-alkenyl cross-coupling by a palladium- or nickel-catalyzed reaction of alkenylalanes with alkenyl halides. J. Am. Chem. Soc. 1976 98 21 6729 6731 10.1021/ja00437a067
    [Google Scholar]
  7. Johansson Seechurn C.C.C. Kitching M.O. Colacot T.J. Snieckus V. Palladium-catalyzed cross-coupling: A historical contextual perspective to the 2010 Nobel Prize. Angew. Chem. Int. Ed. 2012 51 21 5062 5085 10.1002/anie.201107017 22573393
    [Google Scholar]
  8. Ackermann L. Lin S. Special collection on organic electrocatalysis. Eur. J. Org. Chem. 2023 26 17 e202300214 10.1002/ejoc.202300214
    [Google Scholar]
  9. Bell E.L. Finnigan W. France S.P. Green A.P. Hayes M.A. Hepworth L.J. Lovelock S.L. Niikura H. Osuna S. Romero E. Ryan K.S. Turner N.J. Flitsch S.L. Biocatalysis. Nat. Rev. Methods Primers 2021 1 1 46 10.1038/s43586‑021‑00044‑z
    [Google Scholar]
  10. Skubi K.L. Blum T.R. Yoon T.P. Dual catalysis strategies in photochemical synthesis. Chem. Rev. 2016 116 17 10035 10074 10.1021/acs.chemrev.6b00018 27109441
    [Google Scholar]
  11. Ravelli D. Dondi D. Fagnoni M. Albini A. Photocatalysis. A multi-faceted concept for green chemistry. Chem. Soc. Rev. 2009 38 7 1999 2011 10.1039/b714786b 19551179
    [Google Scholar]
  12. Podder S. Organic transformations through cooperative bimetallic catalysis: An overview. Curr. Org. Chem. 2025 29 9 694 712 10.2174/0113852728326733240829074825
    [Google Scholar]
  13. Twilton J. Le C. Zhang P. Shaw M. H. Evans R. W. MacMillan D. W. The merger of transition metal and photocatalysis. Nat. Rev. Chem. 2017 1 0052 10.1038/s41570‑017‑0052
    [Google Scholar]
  14. Romero N.A. Nicewicz D.A. Organic photoredox catalysis. Chem. Rev. 2016 116 17 10075 10166 10.1021/acs.chemrev.6b00057 27285582
    [Google Scholar]
  15. Shaw M.H. Twilton J. MacMillan D.W.C. Photoredox catalysis in organic chemistry. J. Org. Chem. 2016 81 16 6898 6926 10.1021/acs.joc.6b01449 27477076
    [Google Scholar]
  16. Prier C.K. Rankic D.A. MacMillan D.W.C. Visible light photoredox catalysis with transition metal complexes: Applications in organic synthesis. Chem. Rev. 2013 113 7 5322 5363 10.1021/cr300503r 23509883
    [Google Scholar]
  17. Hopkinson M.N. Sahoo B. Li J.L. Glorius F. Dual catalysis sees the light: Combining photoredox with organo-, acid, and transition-metal catalysis. Chemistry 2014 20 14 3874 3886 10.1002/chem.201304823 24596102
    [Google Scholar]
  18. Kalyani D. McMurtrey K.B. Neufeldt S.R. Sanford M.S. Room-temperature C-H arylation: Merger of Pd-catalyzed C-H functionalization and visible-light photocatalysis. J. Am. Chem. Soc. 2011 133 46 18566 18569 10.1021/ja208068w 22047138
    [Google Scholar]
  19. Zuo Z. Ahneman D.T. Chu L. Terrett J.A. Doyle A.G. MacMillan D.W.C. Merging photoredox with nickel catalysis: Coupling of α-carboxyl sp 3 -carbons with aryl halides. Science 2014 345 6195 437 440 10.1126/science.1255525 24903563
    [Google Scholar]
  20. Terrett J.A. Cuthbertson J.D. Shurtleff V.W. MacMillan D.W.C. Switching on elusive organometallic mechanisms with photoredox catalysis. Nature 2015 524 7565 330 334 10.1038/nature14875 26266976
    [Google Scholar]
  21. Le C. Liang Y. Evans R.W. Li X. MacMillan D.W.C. Selective sp3 C-H alkylation via polarity-match-based cross-coupling. Nature 2017 547 7661 79 83 10.1038/nature22813 28636596
    [Google Scholar]
  22. Zhang J. Rueping M. Metallaphotoredox catalysis for sp 3 C-H functionalizations through hydrogen atom transfer (HAT). Chem. Soc. Rev. 2023 52 12 4099 4120 10.1039/D3CS00023K 37278288
    [Google Scholar]
  23. Zhang P. Le C.C. MacMillan D.W.C. Silyl radical activation of alkyl halides in metallaphotoredox catalysis: A unique pathway for cross-electrophile coupling. J. Am. Chem. Soc. 2016 138 26 8084 8087 10.1021/jacs.6b04818 27263662
    [Google Scholar]
  24. Yuan M. Gutierrez O. Mechanisms, challenges, and opportunities of dual Ni/photoredox‐catalyzed C(sp2)-C(sp3) cross‐couplings. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2022 12 3 e1573 10.1002/wcms.1573 35664524
    [Google Scholar]
  25. Smith R.T. Zhang X. Rincón J.A. Agejas J. Mateos C. Barberis M. García-Cerrada S. de Frutos O. MacMillan D.W.C. Metallaphotoredox-catalyzed cross-electrophile Csp3-Csp3 coupling of aliphatic bromides. J. Am. Chem. Soc. 2018 140 50 17433 17438 10.1021/jacs.8b12025 30516995
    [Google Scholar]
  26. Dongbang S. Activation strategies for alkyl precursors in achieving C(sp3)-C(sp3) cross-coupling via metallaphotoredox catalysis. Organometallics 2024 43 16 1662 1681 10.1021/acs.organomet.3c00537
    [Google Scholar]
  27. Yu W-Y. Chan C-M. Chow Y-C. Recent advances in photocatalytic C-N bond coupling reactions. Synthesis 2020 52 20 2899 2921 10.1055/s‑0040‑1707136
    [Google Scholar]
  28. Zhang J. Huan X.D. Wang X. Li G.Q. Xiao W.J. Chen J.R. Recent advances in C(sp3)-N bond formation via metallaphoto-redox catalysis. Chem. Commun. 2024 60 50 6340 6361 10.1039/D4CC01969E 38832416
    [Google Scholar]
  29. Zhu S. Li H. Li Y. Huang Z. Chu L. Exploring visible light for carbon-nitrogen and carbon-oxygen bond formation via nickel catalysis. Org. Chem. Front. 2023 10 2 548 569 10.1039/D2QO01700H
    [Google Scholar]
  30. Luo H. Feng Y. Lin L. Recent advance in single nickel photocatalysis for carbon‐heteroatom bond formation. ChemCatChem 2023 15 12 e202300303 10.1002/cctc.202300303
    [Google Scholar]
  31. Kuai M. Jia Z. Chen L. Gao S. Fang W. Nickel metallaphotoredox buchwald-hartwig amination reactions: A perspective on irradiation light wavelength. Eur. J. Org. Chem. 2024 27 2 e202300933 10.1002/ejoc.202300933
    [Google Scholar]
  32. Zhu C. Feng C. Dang L. Photoactive Ni-complexes in metallaphotoredox catalysis: A successful match in C-C cross-coupling reactions. Synthesis 2024 56 22 3377 3389 10.1055/a‑2293‑1007
    [Google Scholar]
  33. Lv B. Soulé J.F. Nickel/Iridium metallaphotoredox catalysis for allylic C-H bond arylation of N -Allyl heterocycles. J. Org. Chem. 2024 89 21 16028 16032 10.1021/acs.joc.4c01912 39437420
    [Google Scholar]
  34. Tasker S.Z. Standley E.A. Jamison T.F. Recent advances in homogeneous nickel catalysis. Nature 2014 509 7500 299 309 10.1038/nature13274 24828188
    [Google Scholar]
  35. Diccianni J.B. Diao T. Mechanisms of nickel-catalyzed cross-coupling reactions. Trends Chem. 2019 1 9 830 844 10.1016/j.trechm.2019.08.004
    [Google Scholar]
  36. Gui Y.Y. Sun L. Lu Z.P. Yu D.G. Photoredox sheds new light on nickel catalysis: From carbon-carbon to carbon-heteroatom bond formation. Org. Chem. Front. 2016 3 4 522 526 10.1039/C5QO00437C
    [Google Scholar]
  37. Zhou Q.Q. Lu F.D. Liu D. Lu L.Q. Xiao W.J. Dual photoredox and nickel-catalyzed desymmetric C-O coupling reactions: visible light-mediated enantioselective synthesis of 1,4-benzodioxanes. Org. Chem. Front. 2018 5 21 3098 3102 [For representative examples, see 10.1039/C8QO00805A
    [Google Scholar]
  38. Cheng X. Lu H. Lu Z. Enantioselective benzylic C-H arylation via photoredox and nickel dual catalysis. Nat. Commun. 2019 10 1 3549 10.1038/s41467‑019‑11392‑6 31391466
    [Google Scholar]
  39. Gutierrez O. Tellis J.C. Primer D.N. Molander G.A. Kozlowski M.C. Nickel-catalyzed cross-coupling of photoredox-generated radicals: uncovering a general manifold for stereoconvergence in nickel-catalyzed cross-couplings. J. Am. Chem. Soc. 2015 137 15 4896 4899 10.1021/ja513079r 25836634
    [Google Scholar]
  40. Zuo Z. Cong H. Li W. Choi J. Fu G.C. MacMillan D.W.C. Enantioselective decarboxylative arylation of α-amino acids via the merger of photoredox and nickel catalysis. J. Am. Chem. Soc. 2016 138 6 1832 1835 10.1021/jacs.5b13211 26849354
    [Google Scholar]
  41. Corcoran E.B. Pirnot M.T. Lin S. Dreher S.D. DiRocco D.A. Davies I.W. Buchwald S.L. MacMillan D.W.C. Aryl amination using ligand-free Ni(II) salts and photoredox catalysis. Science 2016 353 6296 279 283 10.1126/science.aag0209 27338703
    [Google Scholar]
  42. Maity B. Zhu C. Yue H. Huang L. Harb M. Minenkov Y. Rueping M. Cavallo L. Mechanistic insight into the photoredox-nickel-HAT triple catalyzed arylation and alkylation of α-amino Csp3-H bonds. J. Am. Chem. Soc. 2020 142 40 16942 16952 10.1021/jacs.0c05010 32900195
    [Google Scholar]
  43. Shields B.J. Kudisch B. Scholes G.D. Doyle A.G. Long-lived charge-transfer states of nickel (II) aryl halide complexes facilitate bimolecular photoinduced electron transfer. J. Am. Chem. Soc. 2018 140 8 3035 3039 10.1021/jacs.7b13281 29400956
    [Google Scholar]
  44. Till N.A. Tian L. Dong Z. Scholes G.D. MacMillan D.W.C. Mechanistic analysis of metallaphotoredox C-N coupling: Photocatalysis initiates and perpetuates Ni (I)/Ni (III) coupling activity. J. Am. Chem. Soc. 2020 142 37 15830 15841 10.1021/jacs.0c05901 32786779
    [Google Scholar]
  45. Milligan J.A. Phelan J.P. Badir S.O. Molander G.A. Alkyl carbon-carbon bond formation by Nickel/Photoredox cross‐coupling. Angew. Chem. Int. Ed. 2019 58 19 6152 6163 10.1002/anie.201809431 30291664
    [Google Scholar]
  46. Chan A.Y. Perry I.B. Bissonnette N.B. Buksh B.F. Edwards G.A. Frye L.I. Garry O.L. Lavagnino M.N. Li B.X. Liang Y. Mao E. Millet A. Oakley J.V. Reed N.L. Sakai H.A. Seath C.P. MacMillan D.W.C. Metallaphotoredox: the merger of photoredox and transition metal catalysis. Chem. Rev. 2022 122 2 1485 1542 10.1021/acs.chemrev.1c00383 34793128
    [Google Scholar]
  47. Marchi M. Gentile G. Rosso C. Melchionna M. Fornasiero P. Filippini G. Prato M. The nickel age in synthetic dual photocatalysis: A bright trip toward materials science. ChemSusChem 2022 15 18 e202201094 10.1002/cssc.202201094 35789214
    [Google Scholar]
  48. Kalck P. Urrutigoïty M. Tandem Hydroaminomethylation reaction to synthesize amines from alkenes. Chem. Rev. 2018 118 7 3833 3861 10.1021/acs.chemrev.7b00667 29493233
    [Google Scholar]
  49. Kaiser D. Tona V. Gonçalves C.R. Shaaban S. Oppedisano A. Maulide N. A general acid‐mediated hydroaminomethylation of unactivated alkenes and alkynes. Angew. Chem. Int. Ed. 2019 58 41 14639 14643 10.1002/anie.201906910 31482639
    [Google Scholar]
  50. Shang M. Chan J.Z. Cao M. Chang Y. Wang Q. Cook B. Torker S. Wasa M. C-H functionalization of amines via alkene-derived nucleophiles through cooperative action of chiral and achiral Lewis acid catalysts: Applications in enantioselective synthesis. J. Am. Chem. Soc. 2018 140 33 10593 10601 10.1021/jacs.8b06699 30045617
    [Google Scholar]
  51. Nakajima K. Miyake Y. Nishibayashi Y. Synthetic utilization of α-aminoalkyl radicals and related species in visible light photoredox catalysis. Acc. Chem. Res. 2016 49 9 1946 1956 10.1021/acs.accounts.6b00251 27505299
    [Google Scholar]
  52. Thullen S.M. Rovis T. A mild hydroaminoalkylation of conjugated dienes using a unified cobalt and photoredox catalytic system. J. Am. Chem. Soc. 2017 139 43 15504 15508 10.1021/jacs.7b09252 29048886
    [Google Scholar]
  53. Zheng J. Tang N. Xie H. Breit B. Regio‐, diastereo‐, and enantioselective decarboxylative hydroaminoalkylation of dienol ethers enabled by dual palladium/photoredox catalysis. Angew. Chem. Int. Ed. 2022 61 20 e202200105 10.1002/anie.202200105 35170841
    [Google Scholar]
  54. Zheng S. Wang W. Yuan W. Remote and proximal hydroaminoalkylation of alkenes enabled by photoredox/nickel dual catalysis. J. Am. Chem. Soc. 2022 144 39 17776 17782 10.1021/jacs.2c08039 36136777
    [Google Scholar]
  55. Beatty J.W. Stephenson C.R.J. Amine functionalization via oxidative photoredox catalysis: Methodology development and complex molecule synthesis. Acc. Chem. Res. 2015 48 5 1474 1484 10.1021/acs.accounts.5b00068 25951291
    [Google Scholar]
  56. Miyake Y. Nakajima K. Nishibayashi Y. Visible-light-mediated utilization of α-aminoalkyl radicals: Addition to electron-deficient alkenes using photoredox catalysts. J. Am. Chem. Soc. 2012 134 7 3338 3341 [For representative examples, see 10.1021/ja211770y 22296639
    [Google Scholar]
  57. Ruiz Espelt L. McPherson I.S. Wiensch E.M. Yoon T.P. Enantioselective conjugate additions of α-amino radicals via cooperative photoredox and Lewis acid catalysis. J. Am. Chem. Soc. 2015 137 7 2452 2455 10.1021/ja512746q 25668687
    [Google Scholar]
  58. Janssen-Müller D. Sahoo B. Sun S.Z. Martin R. Tackling remote sp3 C− H functionalization via Ni‐catalyzed “chain‐walking” reactions. Isr. J. Chem. 2020 60 3-4 195 206 10.1002/ijch.201900072
    [Google Scholar]
  59. Peng L. Li Z. Yin G. Photochemical nickel-catalyzed reductive migratory cross-coupling of alkyl bromides with aryl bromides. Org. Lett. 2018 20 7 1880 1883 [For representative examples, see 10.1021/acs.orglett.8b00413 29561162
    [Google Scholar]
  60. He J. Song P. Xu X. Zhu S. Wang Y. Migratory reductive acylation between alkyl halides or alkenes and alkyl carboxylic acids by nickel catalysis. ACS Catal. 2019 9 4 3253 3259 10.1021/acscatal.9b00521
    [Google Scholar]
  61. Choi J. Fu G.C. Transition metal-catalyzed alkyl-alkyl bond formation: Another dimension in cross-coupling chemistry. Science 2017 356 6334 eaaf7230 10.1126/science.aaf7230 28408546
    [Google Scholar]
  62. Wang W. Yan X. Ye F. Zheng S. Huang G. Yuan W. Nickel/photoredox dual-catalyzed regiodivergent aminoalkylation of unactivated alkyl halides. J. Am. Chem. Soc. 2023 145 42 23385 23394 10.1021/jacs.3c09705 37824756
    [Google Scholar]
  63. Badir S.O. Molander G.A. Developments in photoredox/nickel dual-catalyzed 1, 2-difunctionalizations. Chem 2020 6 6 1327 1339 10.1016/j.chempr.2020.05.013 32542207
    [Google Scholar]
  64. Sun S.Z. Duan Y. Mega R.S. Somerville R.J. Martin R. Site‐selective 1, 2‐dicarbofunctionalization of vinyl boronates through dual catalysis. Angew. Chem. Int. Ed. 2020 59 11 4370 4374 10.1002/anie.201916279 31910307
    [Google Scholar]
  65. Guo L. Yuan M. Zhang Y. Wang F. Zhu S. Gutierrez O. Chu L. General method for enantioselective three-component carboarylation of alkenes enabled by visible-light dual photoredox/nickel catalysis. J. Am. Chem. Soc. 2020 142 48 20390 20399 10.1021/jacs.0c08823 33211954
    [Google Scholar]
  66. Zhu C. Yue H. Chu L. Rueping M. Recent advances in photoredox and nickel dual-catalyzed cascade reactions: Pushing the boundaries of complexity. Chem. Sci. 2020 11 16 4051 4064 10.1039/D0SC00712A 32864080
    [Google Scholar]
  67. Li J. Luo Y. Cheo H.W. Lan Y. Wu J. Photoredox-catalysis-modulated, nickel-catalyzed divergent difunctionalization of ethylene. Chem 2019 5 1 192 203 10.1016/j.chempr.2018.10.006
    [Google Scholar]
  68. Weires N.A. Slutskyy Y. Overman L.E. Facile preparation of spirolactones by an alkoxycarbonyl radical cyclization-cross‐coupling cascade. Angew. Chem. Int. Ed. 2019 58 25 8561 8565 10.1002/anie.201903353 30989757
    [Google Scholar]
  69. Gao Y. Gao L. Zhu E. Yang Y. Jie M. Zhang J. Pan Z. Xia C. Nickel/photoredox dual catalyzed arylalkylation of nonactivated alkenes. Nat. Commun. 2023 14 1 7917 10.1038/s41467‑023‑43748‑4 38036527
    [Google Scholar]
  70. del Río-Rodríguez R. Blanco L. Collado A. Fernández-Salas J.A. Alemán J. Nickel‐catalysed cross‐electrophile coupling of benzyl bromides and sulfonium salts towards the synthesis of dihydrostilbenes. Chemistry 2022 28 54 e202201644 10.1002/chem.202201644 35748487
    [Google Scholar]
  71. Péter Á. Perry G.J.P. Procter D.J. Radical C. C bond formation using sulfonium salts and light. Adv. Synth. Catal. 2020 362 11 2135 2142 10.1002/adsc.202000220
    [Google Scholar]
  72. Wang Y. Deng L.F. Zhang X. Mou Z.D. Niu D. A radical approach to making unnatural amino acids: Conversion of C−S bonds in cysteine derivatives into C−C bonds. Angew. Chem. Int. Ed. 2021 60 4 2155 2159 10.1002/anie.202012503 33022829
    [Google Scholar]
  73. Bencivenni G. Lanza T. Leardini R. Minozzi M. Nanni D. Spagnolo P. Zanardi G. Tin-free generation of alkyl radicals from alkyl 4-pentynyl sulfides via homolytic substitution at the sulfur atom. Org. Lett. 2008 10 6 1127 1130 10.1021/ol800046k 18278931
    [Google Scholar]
  74. Crich D. Homolytic substitution at the sulfur atom as a tool for organic synthesis. Helv. Chim. Acta 2006 89 10 2167 2182 10.1002/hlca.200690204
    [Google Scholar]
  75. Geniller L. Taillefer M. Jaroschik F. Prieto A. Nickel metallaphotoredox catalysis enabling desulfurative cross coupling reactions. Adv. Synth. Catal. 2022 364 24 4249 4254 10.1002/adsc.202201152
    [Google Scholar]
  76. Negishi E. Huang Z. Wang G. Mohan S. Wang C. Hattori H. Recent advances in efficient and selective synthesis of di-, tri-, and tetrasubstituted alkenes via Pd-catalyzed alkenylation-carbonyl olefination synergy. Acc. Chem. Res. 2008 41 11 1474 1485 10.1021/ar800038e 18783256
    [Google Scholar]
  77. Dugave C. Demange L. Cis-trans isomerization of organic molecules and biomolecules: Implications and applications. Chem. Rev. 2003 103 7 2475 2532 10.1021/cr0104375 12848578
    [Google Scholar]
  78. Crespi S. Fagnoni M. Generation of alkyl radicals: From the tyranny of tin to the photon democracy. Chem. Rev. 2020 120 17 9790 9833 10.1021/acs.chemrev.0c00278 32786419
    [Google Scholar]
  79. Zhu S. Zhao X. Li H. Chu L. Catalytic three-component dicarbofunctionalization reactions involving radical capture by nickel. Chem. Soc. Rev. 2021 50 19 10836 10856 10.1039/D1CS00399B 34605828
    [Google Scholar]
  80. Huang L. Szewczyk M. Kancherla R. Maity B. Zhu C. Cavallo L. Rueping M. Modulating stereoselectivity in allylic C(sp3)-H bond arylations via nickel and photoredox catalysis. Nat. Commun. 2023 14 1 548 10.1038/s41467‑023‑36103‑0 36725849
    [Google Scholar]
  81. Nkabiti L.L. Baker P.G.L. Earth abundant metals as cost effective alternatives in photocatalytic applications: A review. Adv. Mat. Res. 2020 1158 133 146 10.4028/www.scientific.net/AMR.1158.133
    [Google Scholar]
  82. Bortolato T. Cuadros S. Simionato G. Dell’Amico L. The advent and development of organophotoredox catalysis. Chem. Commun. 2022 58 9 1263 1283 10.1039/D1CC05850A 34994368
    [Google Scholar]
  83. Wenger O.S. Photoactive complexes with earth-abundant metals. J. Am. Chem. Soc. 2018 140 42 13522 13533 10.1021/jacs.8b08822 30351136
    [Google Scholar]
  84. Larsen C.B. Wenger O.S. Photoredox catalysis with metal complexes made from earth‐abundant elements. Chemistry 2018 24 9 2039 2058 10.1002/chem.201703602 28892199
    [Google Scholar]
  85. de Groot L.H.M. Ilic A. Schwarz J. Wärnmark K. Iron photoredox catalysis-past, present, and future. J. Am. Chem. Soc. 2023 145 17 9369 9388 10.1021/jacs.3c01000 37079887
    [Google Scholar]
  86. Xiong N. Li Y. Zeng R. Merging photoinduced iron-catalyzed decarboxylation with copper catalysis for C-N and C-C couplings. ACS Catal. 2023 13 3 1678 1685 10.1021/acscatal.2c05293
    [Google Scholar]
  87. Nsouli R. Nayak S. Balakrishnan V. Lin J.Y. Chi B.K. Ford H.G. Tran A.V. Guzei I.A. Bacsa J. Armada N.R. Zenov F. Weix D.J. Ackerman-Biegasiewicz L.K.G. Decarboxylative cross-coupling enabled by Fe and Ni Metallaphotoredox catalysis. J. Am. Chem. Soc. 2024 146 43 29551 29559 10.1021/jacs.4c09621 39422549
    [Google Scholar]
  88. Dong Z. MacMillan D.W.C. Metallaphotoredox-enabled deoxygenative arylation of alcohols. Nature 2021 598 7881 451 456 10.1038/s41586‑021‑03920‑6 34464959
    [Google Scholar]
  89. Chen Y. Wang X. He X. An Q. Zuo Z. Photocatalytic dehydroxymethylative arylation by synergistic cerium and nickel catalysis. J. Am. Chem. Soc. 2021 143 13 4896 4902 10.1021/jacs.1c00618 33756079
    [Google Scholar]
  90. Huang L. Ji T. Rueping M. Remote nickel-catalyzed cross-coupling arylation via proton-coupled electron transfer-enabled C-C bond cleavage. J. Am. Chem. Soc. 2020 142 7 3532 3539 10.1021/jacs.9b12490 32017543
    [Google Scholar]
  91. Chang L. An Q. Duan L. Feng K. Zuo Z. Alkoxy radicals see the light: New paradigms of photochemical synthesis. Chem. Rev. 2022 122 2 2429 2486 10.1021/acs.chemrev.1c00256 34613698
    [Google Scholar]
  92. Murray P.R.D. Cox J.H. Chiappini N.D. Roos C.B. McLoughlin E.A. Hejna B.G. Nguyen S.T. Ripberger H.H. Ganley J.M. Tsui E. Shin N.Y. Koronkiewicz B. Qiu G. Knowles R.R. Photochemical and electrochemical applications of proton-coupled electron transfer in organic synthesis. Chem. Rev. 2022 122 2 2017 2291 10.1021/acs.chemrev.1c00374 34813277
    [Google Scholar]
  93. Zhang M. Xie J. Zhu C. A general deoxygenation approach for synthesis of ketones from aromatic carboxylic acids and alkenes. Nat. Commun. 2018 9 1 3517 10.1038/s41467‑018‑06019‑1 30158628
    [Google Scholar]
  94. Stache E.E. Ertel A.B. Rovis T. Doyle A.G. Generation of phosphoranyl radicals via photoredox catalysis enables voltage-independent activation of strong C-O bonds. ACS Catal. 2018 8 12 11134 11139 10.1021/acscatal.8b03592 31367474
    [Google Scholar]
  95. Guo H.M. Wu X. Selective deoxygenative alkylation of alcohols via photocatalytic domino radical fragmentations. Nat. Commun. 2021 12 1 5365 10.1038/s41467‑021‑25702‑4 34508098
    [Google Scholar]
  96. Tan C.Y. Kim M. Park I. Kim Y. Hong S. Site‐selective pyridine C−H Alkylation with alcohols and thiols via single‐electron transfer of frustrated Lewis Pairs. Angew. Chem. Int. Ed. 2022 61 51 e202213857 10.1002/anie.202213857 36314414
    [Google Scholar]
  97. Fang J. Jian Z. Liu H. Wang Y. Yu X. Mou Z. Wang H. Nickel metallaphotoredox-catalyzed C-O bond activation/Csp2-Csp3 coupling enabled by phosphine. Org. Chem. Front. 2024 11 11 3058 3065 10.1039/D4QO00310A
    [Google Scholar]
  98. Wang D. Dong B. Wang Y. Qian J. Zhu J. Zhao Y. Shi Z. Rhodium-catalysed direct hydroarylation of alkenes and alkynes with phosphines through phosphorous-assisted C−H activation. Nat. Commun. 2019 10 1 3539 10.1038/s41467‑019‑11420‑5 31387999
    [Google Scholar]
  99. Jin Y. Wang C. Ni-catalysed reductive arylalkylation of unactivated alkenes. Chem. Sci. 2019 10 6 1780 1785 10.1039/C8SC04279A 30842845
    [Google Scholar]
  100. Derosa J. Apolinar O. Kang T. Tran V.T. Engle K.M. Recent developments in nickel-catalyzed intermolecular dicarbofunctionalization of alkenes. Chem. Sci. 2020 11 17 4287 4296 10.1039/C9SC06006E 34122886
    [Google Scholar]
  101. Renata H. Zhou Q. Dünstl G. Felding J. Merchant R.R. Yeh C.H. Baran P.S. Development of a concise synthesis of ouabagenin and hydroxylated corticosteroid analogues. J. Am. Chem. Soc. 2015 137 3 1330 1340 10.1021/ja512022r 25594682
    [Google Scholar]
  102. Démolis A. Essayem N. Rataboul F. Synthesis and applications of alkyl levulinates. 2014 2 6 1338 1352 10.1021/sc500082n
    [Google Scholar]
  103. Jin S. Sui X. Haug G.C. Nguyen V.D. Dang H.T. Arman H.D. Larionov O.V. N-heterocyclic carbene-photocatalyzed tricomponent regioselective 1, 2-diacylation of alkenes illuminates the mechanistic details of the electron donor-acceptor complex-mediated radical relay processes. ACS Catal. 2022 12 1 285 294 10.1021/acscatal.1c04594
    [Google Scholar]
  104. White N.A. Rovis T. Enantioselective N-heterocyclic carbene-catalyzed β-hydroxylation of enals using nitroarenes: An atom transfer reaction that proceeds via single electron transfer. J. Am. Chem. Soc. 2014 136 42 14674 14677 10.1021/ja5080739 25302860
    [Google Scholar]
  105. Wang D. Ackermann L. Three-component carboacylation of alkenes via cooperative nickelaphotoredox catalysis. Chem. Sci. 2022 13 24 7256 7263 10.1039/D2SC02277J 35799820
    [Google Scholar]
  106. Heidel K.M. Dowd C.S. Phosphonate prodrugs: An overview and recent advances. Future Med. Chem. 2019 11 13 1625 1643 10.4155/fmc‑2018‑0591 31469328
    [Google Scholar]
  107. Börner A. Edited by Armin Börner phosphorus ligands in asymmetric catalysis: synthesis and applications Wiley-VCH, 2008, 1546 pp. (hardcover) ISBN 978-3-527-31746-2. Appl. Organometal Chem. 2008 24 1 1546 10.1002/aoc.1564
    [Google Scholar]
  108. Demmer C.S. Krogsgaard-Larsen N. Bunch L. Review on modern advances of chemical methods for the introduction of a phosphonic acid group. Chem. Rev. 2011 111 12 7981 8006 10.1021/cr2002646 22010799
    [Google Scholar]
  109. Morodo R. Bianchi P. Monbaliu J.C.M. Continuous flow organophosphorus chemistry. Eur. J. Org. Chem. 2020 2020 33 5236 5277 10.1002/ejoc.202000430
    [Google Scholar]
  110. Wang H. Zheng P. Wu X. Li Y. Xu T. Modular and facile access to chiral α-aryl phosphates via dual nickel-and photoredox-catalyzed reductive cross-coupling. J. Am. Chem. Soc. 2022 144 9 3989 3997 10.1021/jacs.1c12424 35192328
    [Google Scholar]
  111. Merino P. Marqués-López E. Herrera R.P. Catalytic enantioselective hydrophosphonylation of aldehydes and imines. Adv. Synth. Catal. 2008 350 9 1195 1208 10.1002/adsc.200800131
    [Google Scholar]
  112. Kaasik M. Martõnova J. Erkman K. Metsala A. Järving I. Kanger T. Enantioselective Michael addition to vinyl phosphonates via hydrogen bond-enhanced halogen bond catalysis. Chem. Sci. 2021 12 21 7561 7568 10.1039/D1SC01029H 34163847
    [Google Scholar]
  113. Dong K. Wang Z. Ding K. Rh(I)-catalyzed enantioselective hydrogenation of α-substituted ethenylphosphonic acids. J. Am. Chem. Soc. 2012 134 30 12474 12477 10.1021/ja305780z 22783876
    [Google Scholar]
  114. Proctor R.S.J. Colgan A.C. Phipps R.J. Exploiting attractive non-covalent interactions for the enantioselective catalysis of reactions involving radical intermediates. Nat. Chem. 2020 12 11 990 1004 10.1038/s41557‑020‑00561‑6 33077927
    [Google Scholar]
  115. Li X. Yuan M. Chen F. Huang Z. Qing F.L. Gutierrez O. Chu L. Three-component enantioselective alkenylation of organophosphonates via nickel metallaphotoredox catalysis. Chem 2023 9 1 154 169 10.1016/j.chempr.2022.09.020 39554778
    [Google Scholar]
/content/journals/coc/10.2174/0113852728378634250618190946
Loading
/content/journals/coc/10.2174/0113852728378634250618190946
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test