Skip to content
2000
image of A Deep Insight into the Indole Nucleus: Pharmacological Action, Structure-Activity Relationship, and Eco-Friendly Synthetic Approaches

Abstract

Ind recent years, the indole core has emerged as a highly favored scaffold in drug research. Although indole was first shown to be an anticancer agent in vinca alkaloids, it also continued to exhibit many activities with various mechanisms in other diseases, such as diabetes, HIV, Alzheimer's, and hyperlipidemia. Indole derivatives have proved that they deserve researchers’ attention due to their biochemical diversity in plenty of plants, bacteria, animals, marine organisms, and humans, as well as the fact that they are used to synthesize several FDA-approved drugs. The main review’s objective is to compile a comprehensive listing of almost all reported pharmacological activities from 2011 to 2025, with the structure-activity relationship of potentially active compounds. It also highlights several green approaches and recent indole and indole derivative synthesis trends.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728375516250627095744
2025-07-14
2025-11-06
Loading full text...

Full text loading...

References

  1. Wu Y.J. New indole-containing medicinal compounds. Top. Heterocycl. Chem. 2010 26 1 29 10.1007/7081_2010_37
    [Google Scholar]
  2. Singh A.A. Patil M.P. Kang M.J. Niyonizigiye I. Kim G-D. Biomedical application of Indole-3-carbinol: A mini-review. Phytochem. Lett. 2021 41 49 54 10.1016/j.phytol.2020.09.024
    [Google Scholar]
  3. Etesami H. Glick B.R. Bacterial indole-3-acetic acid: A key regulator for plant growth, plant-microbe interactions, and agricultural adaptive resilience. Microbiol. Res. 2024 281 127602 10.1016/j.micres.2024.127602 38228017
    [Google Scholar]
  4. Shaheen N. Miao J. Li D. Xia B. Baoyinna B. Zhao Y. Zhao J. Indole-3-acetic acid protects against lipopolysaccharide-induced endothelial cell dysfunction and lung injury through the activation of USP40. Am. J. Respir. Cell Mol. Biol. 2024 71 3 307 317 10.1165/rcmb.2024‑0159OC
    [Google Scholar]
  5. Baeyer A. Emmerling A. Synthese des indols. Ber. Dtsch. Chem. Ges. 1869 2 1 679 682 10.1002/cber.186900201268
    [Google Scholar]
  6. Horton D.A. Bourne G.T. Smythe M.L. The combinatorial synthesis of bicyclic privileged structures or privileged substructures. Chem. Rev. 2003 103 3 893 930 10.1021/cr020033s 12630855
    [Google Scholar]
  7. Bali A. Sen U. Peshin T. Synthesis, docking and pharmacological evaluation of novel indole based potential atypical antipsychotics. Eur. J. Med. Chem. 2014 74 477 490 10.1016/j.ejmech.2013.09.020 24495776
    [Google Scholar]
  8. Zhang M.Z. Chen Q. Yang G.F. A review on recent developments of indole-containing antiviral agents. Eur. J. Med. Chem. 2015 89 421 441 10.1016/j.ejmech.2014.10.065 25462257
    [Google Scholar]
  9. Kalalbandi V.K.A. Seetharamappa J. Katrahalli U. Synthesis, crystal studies and in vivo anti-hyperlipidemic activities of indole derivatives containing fluvastatin nucleus. RSC Advances 2015 5 48 38748 38759 10.1039/C5RA02908B
    [Google Scholar]
  10. Sasidharan R. Manju S.L. Uçar G. Baysal I. Mathew B. Identification of indole-based chalcones: Discovery of a potent, selective, and reversible class of MAO-B inhibitors. Arch. Pharm. 2016 349 8 627 637 10.1002/ardp.201600088 27373997
    [Google Scholar]
  11. Hamid H.A. Ramli A.N.M. Yusoff M.M. Indole alkaloids from plants as potential leads for antidepressant drugs: A mini review. Front. Pharmacol. 2017 8 8 96 10.3389/fphar.2017.00096 28293192
    [Google Scholar]
  12. Nazir M. Abbasi M.A. Aziz-ur-Rehman; Siddiqui, S.Z.; Khan, K.M.; Kanwal; Salar, U.; Shahid, M.; Ashraf, M.; Lodhi, A.M.; Khan, A.F. New indole based hybrid oxadiazole scaffolds with N-substituted acetamides: As potent anti-diabetic agents. Bioorg. Chem. 2018 81 253 263 10.1016/j.bioorg.2018.08.010 30153590
    [Google Scholar]
  13. Bisht D. Kamal Kant Arya R. Joshi T. Pal R.G. Kumar R. Review on indole derivatives used as antiulcer agents. IJRPC 2018 8 394 404
    [Google Scholar]
  14. Wan Y. Li Y. Yan C. Yan M. Tang Z. Indole: A privileged scaffold for the design of anti-cancer agents. Eur. J. Med. Chem. 2019 183 111691 10.1016/j.ejmech.2019.111691 31536895
    [Google Scholar]
  15. Angelova V.T. Rangelov M. Todorova N. Dangalov M. Andreeva-Gateva P. Kondeva-Burdina M. Karabeliov V. Shivachev B. Tchekalarova J. Discovery of novel indole-based aroylhydrazones as anticonvulsants: Pharmacophore-based design. Bioorg. Chem. 2019 90 103028 10.1016/j.bioorg.2019.103028 31220672
    [Google Scholar]
  16. Liu Y. Cui Y. Lu L. Gong Y. Han W. Piao G. Natural indole‐containing alkaloids and their antibacterial activities. Arch. Pharm. 2020 353 10 2000120 10.1002/ardp.202000120 32557757
    [Google Scholar]
  17. Pappolla M.A. Perry G. Fang X. Zagorski M. Sambamurti K. Poeggeler B. Indoles as essential mediators in the gut-brain axis. Their role in Alzheimer’s disease. Neurobiol. Dis. 2021 156 105403 10.1016/j.nbd.2021.105403 34087380
    [Google Scholar]
  18. Konus M. Çetin D. Kızılkan N.D. Yılmaz C. Fidan C. Algso M. Kavak E. Kivrak A. Kurt-Kızıldoğan A. Otur Ç. Mutlu D. Abdelsalam A.H. Arslan S. Synthesis and biological activity of new indole based derivatives as potent anticancer, antioxidant and antimicrobial agents. J. Mol. Struct. 2022 1263 133168 10.1016/j.molstruc.2022.133168
    [Google Scholar]
  19. Ma J. Jiang Y. Zhuang X. Chen H. Shen Y. Mao Z. Rao G. Wang R. Discovery of novel indole and indoline derivatives against Candida albicans as potent antifungal agents. Bioorg. Med. Chem. Lett. 2022 71 128826 10.1016/j.bmcl.2022.128826 35661686
    [Google Scholar]
  20. Nisha N. Singh S. Sharma N. Chandra R. The indole nucleus as a selective COX-2 inhibitor and anti-inflammatory agent (2011-2022). Org. Chem. Front. 2022 9 13 3624 3639 10.1039/D2QO00534D
    [Google Scholar]
  21. Tan C. Yang S.J. Zhao D.H. Li J. Yin L.Q. Antihypertensive activity of indole and indazole analogues: A review. Arab. J. Chem. 2022 15 5 103756 10.1016/j.arabjc.2022.103756
    [Google Scholar]
  22. Ciccone V. Diotallevi A. Gómez-Benmansour M. Maestrini S. Mantellini F. Mari G. Galluzzi L. Lucarini S. Favi G. Easy one-pot synthesis of multifunctionalized indole-pyrrole hybrids as a new class of antileishmanial agents. RSC Advances 2024 14 22 15713 15720 10.1039/D4RA02790F 38746834
    [Google Scholar]
  23. Sharma S. Singh S. The biological and pharmacological potentials of indole-based heterocycles. Lett. Org. Chem. 2023 20 8 711 729 10.2174/1570178620666230215121808
    [Google Scholar]
  24. Ma J. Feng R. Dong Z.B. Recent advances in indole synthesis and the related alkylation. Asian J. Org. Chem. 2023 12 6 e202300092 10.1002/ajoc.202300092
    [Google Scholar]
  25. Mondal D. Kalar P.L. Kori S. Gayen S. Das K. Recent developments on synthesis of indole derivatives through green approaches and their pharmaceutical applications. Curr. Org. Chem. 2020 24 22 2665 2693 10.2174/1385272824999201111203812
    [Google Scholar]
  26. Sundberg R.J. Electrophilic substitution reactions of indoles. Top. Heterocycl. Chem. 2010 26 47 115 10.1007/7081_2010_52
    [Google Scholar]
  27. Fischer E. Jourdan F. Ueber die hydrazine der brenztraubensäure. Ber. Dtsch. Chem. Ges. 1883 16 2 2241 2245 10.1002/cber.188301602141
    [Google Scholar]
  28. Hughes D.L. Progress in the fischer indole reaction. A review. Org. Prep. Proced. Int. 1993 25 6 607 632 10.1080/00304949309356257
    [Google Scholar]
  29. Padmavathi S. Vemula M. Komre G. Kattupalli S. Kondamudi S. Lagadapati L. A comprehensive knowledge on review of indole derivatives. Int. J. Pharma Bio Sci. 2021 11 4 19 24 10.22376/ijpbs/lpr.2021.11.4.P19‑24
    [Google Scholar]
  30. Reissert A. Einwirkung von oxalester und natrium€athylat auf nitrotoluole. synthese nitrirter phenylbrenztraubens€auren. Ber. Dtsch. Chem. Ges. 1897 30 1 1030 1053 10.1002/cber.189703001200
    [Google Scholar]
  31. Batcho A.D. Leimgruber W. Indoles from 2-methylnitrobenzenes by condensation with formamide acetals followed by reduction: 4-benzyloxyindole. Org. Synth. 1985 63 214 10.15227/orgsyn.063.0214
    [Google Scholar]
  32. Baudin J.B. Julia S.A. Synthesis of indoles from N-aryl-1-alkenylsulphinamides. Tetrahedron Lett. 1986 27 7 837 840 10.1016/S0040‑4039(00)84114‑3
    [Google Scholar]
  33. Neumann J.J. Rakshit S. Dröge T. Würtz S. Glorius F. Exploring the oxidative cyclization of substituted N-aryl enamines: Pd-catalyzed formation of indoles from anilines. Chemistry 2011 17 26 7298 7303 10.1002/chem.201100631 21567506
    [Google Scholar]
  34. Yang Q.Q. Xiao C. Lu L.Q. An J. Tan F. Li B.J. Xiao W.J. Synthesis of indoles through highly efficient cascade reactions of sulfur ylides and N-(ortho-chloromethyl)aryl amides. Angew. Chem. 2012 124 36 9271 9274 10.1002/ange.201203657
    [Google Scholar]
  35. Inman M. Carbone A. Moody C.J. Two-step route to indoles and analogues from haloarenes: A variation on the Fischer indole synthesis. J. Org. Chem. 2012 77 3 1217 1232 10.1021/jo201866c 21977901
    [Google Scholar]
  36. Wang C. Sun H. Fang Y. Huang Y. General and efficient synthesis of indoles through triazene-directed C-H annulation. Angew. Chem. Int. Ed. 2013 52 22 5795 5798 10.1002/anie.201301742 23606211
    [Google Scholar]
  37. Zheng L. Hua R. Rhodium(III)-catalyzed C-H activation and indole synthesis with hydrazone as an auto-formed and auto-cleavable directing group. Chemistry 2014 20 8 2352 2356 10.1002/chem.201304302 24458554
    [Google Scholar]
  38. Zhang X. Guo R. Zhao X. Organoselenium-catalyzed synthesis of indoles through intramolecular C-H amination. Org. Chem. Front. 2015 2 10 1334 1337 10.1039/C5QO00179J
    [Google Scholar]
  39. Fra L. Muñiz K. Indole synthesis through sequential electrophilic N-H and C-H bond activation using iodine (III) reactivity. Chemistry 2016 22 13 4351 4354 10.1002/chem.201504974 26690791
    [Google Scholar]
  40. Vaitla J. Bayer A. Hopmann K.H. Synthesis of indoles and pyrroles utilizing iridium carbenes generated from sulfoxonium ylides. Angew. Chem. Int. Ed. 2017 56 15 4277 4281 10.1002/anie.201610520 28319303
    [Google Scholar]
  41. Bugaenko D.I. Dubrovina A.A. Yurovskaya M.A. Karchava A.V. Synthesis of indoles via electron-catalyzed intramolecular C−N bond formation. Org. Lett. 2018 20 23 7358 7362 10.1021/acs.orglett.8b02784 30431287
    [Google Scholar]
  42. Gabrielli S. Panmand D. Ballini R. Palmieri A. β-Nitroacrylates: New key precursors of indole-2-carboxylates via Fischer indole synthesis. Appl. Sci. 2019 9 23 5168 10.3390/app9235168
    [Google Scholar]
  43. Özkaya B. Bub C.L. Patureau F.W. Step and redox efficient nitroarene to indole synthesis. Chem. Commun. 2020 56 86 13185 13188 10.1039/D0CC03258A 33020764
    [Google Scholar]
  44. Chung H. Kim J. González-Montiel G.A. Ha-Yeon Cheong P. Lee H.G. Modular counter-Fischer−indole synthesis through radical-enolate coupling. Org. Lett. 2021 23 3 1096 1102 10.1021/acs.orglett.1c00003 33415986
    [Google Scholar]
  45. Govaerts S. Nakamura K. Constantin T. Leonori D. A halogen-atom transfer (XAT)-based approach to indole synthesis using aryl diazonium salts and alkyl iodides. Org. Lett. 2022 24 43 7883 7887 10.1021/acs.orglett.2c02840 36268790
    [Google Scholar]
  46. Parmar G.R. Rao N.N. Emerging control technologies for volatile organic compounds. Crit. Rev. Environ. Sci. Technol. 2008 39 1 41 78 10.1080/10643380701413658
    [Google Scholar]
  47. Anastas P. Eghbali N. Green chemistry: Principles and practice. Chem. Soc. Rev. 2010 39 1 301 312 10.1039/B918763B 20023854
    [Google Scholar]
  48. Nasri S. Bayat M. Miankooshki F.R. Samet N.H. Recent developments in green approaches for sustainable synthesis of indole-derived scaffolds. Mol. Divers. 2022 26 6 3411 3445 10.1007/s11030‑021‑10376‑3 35031935
    [Google Scholar]
  49. Li J.T. Sun M.X. He G.Y. Xu X.Y. Efficient and green synthesis of bis(indolyl)methanes catalyzed by ABS in aqueous media under ultrasound irradiation. Ultrason. Sonochem. 2011 18 1 412 414 10.1016/j.ultsonch.2010.07.016 20727812
    [Google Scholar]
  50. Li B.L. Xu D.Q. Zhong A.G. Novel SO3H-functionalized ionic liquids catalyzed a simple, green and efficient procedure for Fischer indole synthesis in water under microwave irradiation. J. Fluor. Chem. 2012 144 45 50 10.1016/j.jfluchem.2012.09.010
    [Google Scholar]
  51. Kumar S.T.O. Mahadevan K.M. Green synthesis of 2,3,4,9-tetrahydro-1H-carbazoles/ 2,3-dimethylindoles catalyzed by [Bmim (BF4)] ionic liquid in methanol. Org Commun 2013 6 31 40
    [Google Scholar]
  52. Zille M. Stolle A. Wild A. Schubert U.S. ZnBr2-mediated synthesis of indoles in a ball mill by intramolecular hydroamination of 2-alkynylanilines. RSC Advances 2014 4 25 13126 13133 10.1039/c4ra00715h
    [Google Scholar]
  53. Nasseri M.A. Ahrari F. Zakerinasab B. Nickel oxide nanoparticles: A green and recyclable catalytic system for the synthesis of diindolyloxindole derivatives in aqueous medium. RSC Advances 2015 5 18 13901 13905 10.1039/C4RA14551H
    [Google Scholar]
  54. Wu C.J. Meng Q.Y. Lei T. Zhong J.J. Liu W.Q. Zhao L.M. Li Z.J. Chen B. Tung C.H. Wu L.Z. An oxidant-free strategy for indole synthesis via intramolecular C-C bond construction under visible light irradiation: Cross-coupling hydrogen evolution reaction. ACS Catal. 2016 6 7 4635 4639 10.1021/acscatal.6b00917
    [Google Scholar]
  55. Lin W. Zheng Y.X. Xun Z. Huang Z.B. Shi D.Q. Bin., Shi, D. Q. Microwave-Assisted regioselective synthesis of 3-functionalized indole derivatives via three-component domino reaction. ACS Comb. Sci. 2017 19 11 708 713 10.1021/acscombsci.7b00126 28985045
    [Google Scholar]
  56. Dharavath N. Eligeti R. Reddy Y.N. Pittala P.K. Modugu N.R. PEG-400 mediated an efficient green synthesis of isoxazolyl indole-3-carboxylic acid esters via Nentizescu condensation reaction and their anti-inflammatory and analgesic activity. ChemistrySelect 2017 2 18 5110 5114 10.1002/slct.201700640
    [Google Scholar]
  57. Baharfar R. Azimi R. Asdollahpour Z. Bagheri H. Solvent-free synthesis of highly functionalized indole-based 4,5-dihydrofurans and evaluation of their antioxidant activity. Res. Chem. Intermed. 2018 44 2 859 871 10.1007/s11164‑017‑3140‑z
    [Google Scholar]
  58. Shaikh T. Sharma A. Kaur H. Ultrasonication-assisted synthesis of 3-substituted indoles in water using polymer grafted ZnO nanoparticles as eco-friendly catalyst. ChemistrySelect 2019 4 1 245 249 10.1002/slct.201802702
    [Google Scholar]
  59. Devi T.J. Singh T.P. Singh R.R. Sharma K.G. Singh O.M. Synthesis of tri-indolylmethane derivatives using a deep eutectic solvent. Russ. J. Org. Chem. 2021 57 2 255 264 10.1134/S1070428021020172
    [Google Scholar]
  60. Yuan C. Huang X. Lu Y. Fang Z. Liu C. Chen B. Guo K. Metal, iodine and oxidant-free electrosynthesis of substituted indoles from 1-(2-aminophenyl)alcohols. Green Synth Catal. 2023 4 4 311 315 10.1016/j.gresc.2022.12.002
    [Google Scholar]
  61. Neuss N. Johnson I.S. Armstrong J.G. Jansen C.J. The vinca alkaloids. Adv. Chemother. 1964 12 133 174 10.1016/B978‑1‑4831‑9929‑0.50010‑3 14198207
    [Google Scholar]
  62. Bertram J.S. The molecular biology of cancer. Mol. Aspects Med. 2000 21 6 167 223 10.1016/S0098‑2997(00)00007‑8 11173079
    [Google Scholar]
  63. Hanahan D. Weinberg R.A. Hallmarks of cancer: The next generation. Cell 2011 144 5 646 674 10.1016/j.cell.2011.02.013 21376230
    [Google Scholar]
  64. Rana M. Ranjan R. Ghosh S.N. Kumar D. Singh R. A Review on indole as a cardinal scaffold for anticancer drugs development. Curr. Cancer Ther. Rev. 2024 20 4 372 385 10.2174/0115733947249518231001001728
    [Google Scholar]
  65. Mansoori B. Mohammadi A. Davudian S. Shirjang S. Baradaran B. The different mechanisms of cancer drug resistance: A brief review. Adv. Pharm. Bull. 2017 7 3 339 348 10.15171/apb.2017.041
    [Google Scholar]
  66. World Health Organization (WHO) 2025 Available from [(accessed 2023-02-08)] https://www.who.int/news-room/fact-sheets/detail/cancer
    [Google Scholar]
  67. Peerzada M.N. Khan P. Ahmad K. Hassan M.I. Azam A. Synthesis, characterization and biological evaluation of tertiary sulfonamide derivatives of pyridyl-indole based heteroaryl chalcone as potential carbonic anhydrase IX inhibitors and anticancer agents. Eur. J. Med. Chem. 2018 155 13 23 10.1016/j.ejmech.2018.05.034 29852328
    [Google Scholar]
  68. Bakherad Z. Safavi M. Fassihi A. Sadeghi-Aliabadi H. Bakherad M. Rastegar H. Saeedi M. Ghasemi J.B. Saghaie L. Mahdavi M. Design and synthesis of novel cytotoxic indole‐thiosemicarbazone derivatives: Biological evaluation and docking study. Chem. Biodivers. 2019 16 4 e1800470 10.1002/cbdv.201800470 30845369
    [Google Scholar]
  69. Iacopetta D. Catalano A. Ceramella J. Barbarossa A. Carocci A. Fazio A. Torre L.C. Caruso A. Ponassi M. Rosano C. Franchini C. Sinicropi M.S. Synthesis, anticancer and antioxidant properties of new indole and pyranoindole derivatives. Bioorg. Chem. 2020 105 104440 10.1016/j.bioorg.2020.104440 33217633
    [Google Scholar]
  70. Hassan A.S. Moustafa G.O. Awad H.M. Nossier E.S. Mady M.F. Design, synthesis, anticancer evaluation, enzymatic assays, and a molecular modeling study of novel pyrazole-indole hybrids. ACS Omega 2021 6 18 12361 12374 10.1021/acsomega.1c01604 34056388
    [Google Scholar]
  71. Gaur A. Peerzada M.N. Khan N.S. Ali I. Azam A. Synthesis and anticancer evaluation of novel indole based arylsulfonylhydrazides against human breast cancer cells. ACS Omega 2022 7 46 42036 42043 10.1021/acsomega.2c03908 36440122
    [Google Scholar]
  72. Citron M. Alzheimer’s disease: Treatments in discovery and development. Nat. Neurosci. 2002 5 S11 1055 1057 10.1038/nn940 12403985
    [Google Scholar]
  73. Hardy J. Selkoe D.J. The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science 2002 297 5580 353 356 10.1126/science.1072994 12130773
    [Google Scholar]
  74. Chow V.W. Mattson M.P. Wong P.C. Gleichmann M. An overview of APP processing enzymes and products. Neuromolecular Med. 2010 12 1 1 12 10.1007/s12017‑009‑8104‑z 20232515
    [Google Scholar]
  75. Alzheimer’s disease international (ADI) 2021 Available from [(accessed 2023-02-19)]. https://www.alzint.org/resource/world-alzheimer-report-2021/
    [Google Scholar]
  76. Zou Y. Li L. Chen W. Chen T. Ma L. Wang X. Xiong B. Xu Y. Shen J. Virtual screening and structure-based discovery of indole acylguanidines as potent β-secretase (BACE1) inhibitors. Molecules 2013 18 5 5706 5722 10.3390/molecules18055706 23681056
    [Google Scholar]
  77. Nerella A. Jeripothula M. Design, synthesis and biological evaluation of novel deoxyvasicinone-indole as multi-target agents for Alzheimer’s disease. Bioorg. Med. Chem. Lett. 2021 49 128212 10.1016/j.bmcl.2021.128212 34153471
    [Google Scholar]
  78. Iraji A. Nikfar P. Montazer N.M. Karimi M. Edraki N. Saeedi M. Mirfazli S.S. Synthesis, biological evaluation and molecular modeling studies of methyl indole-isoxazole carbohydrazide derivatives as multi-target anti-Alzheimer’s agents. Sci. Rep. 2024 14 1 21115 10.1038/s41598‑024‑71729‑0 39256495
    [Google Scholar]
  79. Aminov R. History of antimicrobial drug discovery: Major classes and health impact. Biochem. Pharmacol. 2017 133 4 19 10.1016/j.bcp.2016.10.001 27720719
    [Google Scholar]
  80. Davies J. Origins and evolution of antibiotic resistance. Microbiologia 1996 12 1 9 16 10.1128/MMBR.00016‑10 9019139
    [Google Scholar]
  81. Turner N.A. Sharma-Kuinkel B.K. Maskarinec S.A. Eichenberger E.M. Shah P.P. Carugati M. Holland T.L. Fowler V.G. Methicillin-resistant Staphylococcus aureus: An overview of basic and clinical research. Nat. Rev. Microbiol. 2019 17 4 203 218 10.1038/s41579‑018‑0147‑4 30737488
    [Google Scholar]
  82. Dhingra S. Rahman N.A.A. Peile E. Rahman M. Sartelli M. Hassali M.A. Islam T. Islam S. Haque M. Microbial resistance movements: An overview of global public health threats posed by antimicrobial resistance, and how best to counter. Front. Public Health 2020 8 535668 10.3389/fpubh.2020.535668 33251170
    [Google Scholar]
  83. Bate P.N.N. Orock A.E. Nyongbela K.D. Babiaka S.B. Kukwah A. Ngemenya M.N. In vitro activity against multi-drug resistant bacteria and cytotoxicity of lichens collected from mount cameroon. J. King Saud Univ. Sci. 2020 32 1 614 619 10.1016/j.jksus.2018.09.001
    [Google Scholar]
  84. Kumar D. Sharma S. Kalra S. Singh G. Monga V. Kumar B. Medicinal perspective of indole derivatives: Recent developments and structure-activity relationship studies. Curr. Drug Targets 2020 21 9 864 891 10.2174/18735592MTA1FMTE62 32156235
    [Google Scholar]
  85. Al-Qawasmeh R.A. Huesca M. Nedunuri V. Peralta R. Wright J. Lee Y. Young A. Potent antimicrobial activity of 3-(4,5-diaryl-1H-imidazol-2-yl)-1H-indole derivatives against methicillin-resistant Staphylococcus aureus. Bioorg. Med. Chem. Lett. 2010 20 12 3518 3520 10.1016/j.bmcl.2010.04.137 20483613
    [Google Scholar]
  86. Abo-Ashour M.F. Eldehna W.M. George R.F. Abdel-Aziz M.M. Elaasser M.M. Gawad A.N.M. Gupta A. Bhakta S. Abou-Seri S.M. Novel indole-thiazolidinone conjugates: Design, synthesis and whole-cell phenotypic evaluation as a novel class of antimicrobial agents. Eur. J. Med. Chem. 2018 160 49 60 10.1016/j.ejmech.2018.10.008 30317025
    [Google Scholar]
  87. Li Z.Z. Tangadanchu V.K.R. Battini N. Bheemanaboina R.R.Y. Zang Z.L. Zhang S.L. Zhou C.H. Indole-nitroimidazole conjugates as efficient manipulators to decrease the genes expression of methicillin-resistant Staphylococcus aureus. Eur. J. Med. Chem. 2019 179 723 735 10.1016/j.ejmech.2019.06.093 31284082
    [Google Scholar]
  88. Ramesh D. Joji A. Vijayakumar B.G. Sethumadhavan A. Mani M. Kannan T. Indole chalcones: Design, synthesis, in vitro and in silico evaluation against Mycobacterium tuberculosis. Eur. J. Med. Chem. 2020 198 112358 10.1016/j.ejmech.2020.112358 32361610
    [Google Scholar]
  89. Simakov S. Kartsev V. Petrou A. Nicolaou I. Geronikaki A. Ivanov M. Kostic M. Glamočlija J. Soković M. Talea D. Vizirianakis I.S. 4-(Indol-3-yl) thiazole-2-amines and 4-ιndol-3-yl) thiazole acylamines as novel antimicrobial agents: Synthesis, in silico and in vitro evaluation. Pharmaceuticals 2021 14 11 1096 10.3390/ph14111096 34832877
    [Google Scholar]
  90. Centers for Disease Control and Prevention (CDC) Available from [(accessed 2023-02-03)] https://www.cdc.gov/fungal/candida-auris/c-auris-drug-resistant.html
    [Google Scholar]
  91. Gao Y. Huang D.C. Liu C. Song Z.L. Liu J.R. Guo S.K. Tan J.Y. Qiu R.L. Jin B. Zhang H. Mulholland N. Han X. Xia Q. Ali A.S. Guo D. Deng Y. Gu Y.C. Zhang M.Z. Streptochlorin analogues as potential antifungal agents: Design, synthesis, antifungal activity and molecular docking study. Bioorg. Med. Chem. 2021 35 116073 10.1016/j.bmc.2021.116073 33610010
    [Google Scholar]
  92. Wang C. Fan L. Pan Z. Fan S. Shi L. Li X. Zhao J. Wu L. Yang G. Xu C. Synthesis of novel indole Schiff base compounds and their antifungal activities. Molecules 2022 27 20 6858 10.3390/molecules27206858 36296452
    [Google Scholar]
  93. Feng R. Liu F. Wang Y. Xu S. Liu W. Qiao S. Liu S. Chen Y. Feng X. Wang Q. Rao W. The discovery of 3-fluoroalkyl indoles as potential antifungal agents to control tomato gray mold caused by Botrytis cinerea. Phytochem. Lett. 2023 55 175 183 10.1016/j.phytol.2023.05.009
    [Google Scholar]
  94. Mo X. Rao D.P. Kaur K. Hassan R. Abdel-Samea A.S. Farhan S.M. Bräse S. Hashem H. Indole derivatives: A versatile scaffold in modern drug discovery-an updated review on their multifaceted therapeutic applications (2020-2024). Molecules 2024 29 19 4770 10.3390/molecules29194770 39407697
    [Google Scholar]
  95. Leneva I.A. Fadeeva N.I. Fedyakina I.T. Gus’kova T.A. Khristova N.L. Sokolova M.V. Kharitonenkov I.G. Use of enzyme immunoassay to identify virus-specific antigens in studying a new anti-influenza preparation, arbidol. Pharm. Chem. J. 1994 28 9 605 610 10.1007/BF02219196
    [Google Scholar]
  96. Tran J.Q. Gerber J.G. Kerr B.M. Delavirdine. Clin. Pharmacokinet. 2001 40 3 207 226 10.2165/00003088‑200140030‑00005 11327199
    [Google Scholar]
  97. Gallo R.C. Human retroviruses after 20 years: A perspective from the past and prospects for their future control. Immunol. Rev. 2002 185 1 236 265 10.1034/j.1600‑065X.2002.18520.x 12190935
    [Google Scholar]
  98. Safadi E.Y. Vivet-Boudou V. Marquet R. HIV-1 reverse transcriptase inhibitors. Appl. Microbiol. Biotechnol. 2007 75 4 723 737 10.1007/s00253‑007‑0919‑7 17370068
    [Google Scholar]
  99. Jochmans D. Novel HIV-1 reverse transcriptase inhibitors. Virus Res. 2008 134 1-2 171 185 10.1016/j.virusres.2008.01.003 18308412
    [Google Scholar]
  100. Dousson C. Alexandre F.R. Amador A. Bonaric S. Bot S. Caillet C. Convard T. Costa D.D. Lioure M.P. Roland A. Rosinovsky E. Maldonado S. Parsy C. Trochet C. Storer R. Stewart A. Wang J. Mayes B.A. Musiu C. Poddesu B. Vargiu L. Liuzzi M. Moussa A. Jakubik J. Hubbard L. Seifer M. Standring D. Discovery of the aryl-phospho-indole IDX899, a highly potent anti-HIV non-nucleoside reverse transcriptase inhibitor. J. Med. Chem. 2016 59 5 1891 1898 10.1021/acs.jmedchem.5b01430 26804933
    [Google Scholar]
  101. Ji K. Zhang G.N. Zhao J.Y. Zhu M. Wang M.H. Wang J.X. Cen S. Wang Y.C. Li W.Y. Design, synthesis, and anti-influenza A virus activity evaluation of novel indole containing derivatives of triazole. Bioorg. Med. Chem. Lett. 2022 64 128681 10.1016/j.bmcl.2022.128681 35304224
    [Google Scholar]
  102. Pizzino G. Irrera N. Cucinotta M. Pallio G. Mannino F. Arcoraci V. Squadrito F. Altavilla D. Bitto A. Oxidative stress: Harms and benefits for human health. Oxid. Med. Cell. Longev. 2017 2017 8416763 10.1155/2017/8416763
    [Google Scholar]
  103. Kumar S. Saxena J. Srivastava V.K. Kaushik S. Singh H. Abo-EL-Sooud K. Abdel-Daim M.M. Jyoti A. Saluja R. The interplay of oxidative stress and ROS scavenging: Antioxidants as a therapeutic potential in sepsis. Vaccines 2022 10 10 1575 10.3390/vaccines10101575 36298439
    [Google Scholar]
  104. Ahmad S.B. Ali A. Bilal M. Rashid S.M. Wani A.B. Bhat R.R. Rehman M.U. Melatonin and health: Insights of melatonin action, biological functions, and associated disorders. Cell. Mol. Neurobiol. 2023 43 6 2437 2458 10.1007/s10571‑023‑01324‑w 36752886
    [Google Scholar]
  105. El-Mekabaty A. Fadda A.A. Novel pyrazolo[1,5-a] pyrimidines and pyrazolo[5,1-c][1,2,4]triazines incorporating indole moiety as a new class of antioxidant agents. J. Heterocycl. Chem. 2018 55 10 2303 2308 10.1002/jhet.3288
    [Google Scholar]
  106. Demurtas M. Baldisserotto A. Lampronti I. Moi D. Balboni G. Pacifico S. Vertuani S. Manfredini S. Onnis V. Indole derivatives as multifunctional drugs: Synthesis and evaluation of antioxidant, photoprotective and antiproliferative activity of indole hydrazones. Bioorg. Chem. 2019 85 568 576 10.1016/j.bioorg.2019.02.007 30825715
    [Google Scholar]
  107. Pravin N.J. Kavalapure R.S. Alegaon S.G. Gharge S. Ranade S.D. Indoles as promising Therapeutics: A review of recent drug discovery efforts. Bioorg. Chem. 2025 154 108092 10.1016/j.bioorg.2024.108092 39740309
    [Google Scholar]
  108. Alam U. Asghar O. Azmi S. Malik R.A. General aspects of diabetes mellitus. Handb. Clin. Neurol. 2014 126 211 222 10.1016/B978‑0‑444‑53480‑4.00015‑1
    [Google Scholar]
  109. Alqahtani A.S. Hidayathulla S. Rehman M.T. ElGamal A.A. Al-Massarani S. Razmovski-Naumovski V. Alqahtani M.S. Dib E.R.A. AlAjmi M.F. Alpha-amylase and alpha-glucosidase enzyme inhibition and antioxidant potential of 3-oxolupenal and katononic acid isolated from Nuxia Oppositifolia. Biomolecules 2019 10 1 61 10.3390/biom10010061 31905962
    [Google Scholar]
  110. Badria F.A. Atef S. Al-Majid A.M. Ali M. Elshaier Y.A.M.M. Ghabbour H.A. Islam M.S. Barakat A. Synthesis and inhibitory effect of some indole-pyrimidine based hybrid heterocycles on α-glucosidase and α-amylase as potential hypoglycemic agents. ChemistryOpen 2019 8 10 1288 1297 10.1002/open.201900240 31649838
    [Google Scholar]
  111. Hu C. Liang B. Sun J. Li J. Xiong Z. Wang S.H. Xuetao X. Synthesis and biological evaluation of indole derivatives containing thiazolidine-2,4-dione as α-glucosidase inhibitors with antidiabetic activity. Eur. J. Med. Chem. 2024 264 115957 10.1016/j.ejmech.2023.115957 38029465
    [Google Scholar]
  112. Kim J.S. Kornhuber H.H. Schmid-Burgk W. Holzmüller B. Low cerebrospinal fluid glutamate in schizophrenic patients and a new hypothesis on schizophrenia. Neurosci. Lett. 1980 20 3 379 382 10.1016/0304‑3940(80)90178‑0 6108541
    [Google Scholar]
  113. Bradford A. The dopamine and glutamate theories of schizophrenia: A short review. Curr. Anaesth. Crit. Care 2009 20 5-6 240 241 10.1016/j.cacc.2009.07.008
    [Google Scholar]
  114. Li Q. Shah S. Structure-based virtual screening. Methods Mol. Biol. 2017 1558 111 124 10.1007/978‑1‑4939‑6783‑4_5 28150235
    [Google Scholar]
  115. Kondej M. Wróbel T.M. Targowska-Duda K.M. Martínez L.A. Koszła O. Stępnicki P. Zięba A. Paz A. Wronikowska-Denysiuk O. Loza M.I. Castro M. Kaczor A.A. Multitarget derivatives of D2AAK1 as potential antipsychotics: The effect of substitution in the indole moiety. ChemMedChem 2022 17 15 e202200238 10.1002/cmdc.202200238 35610178
    [Google Scholar]
  116. Singh M.B. Negi G. Bhole P. Jaiprakash M. Pain And inflammation: A review. Ijpsr 2012 3 4697 4709 10.13040/IJPSR.0975‑8232.3(12).4697‑09
    [Google Scholar]
  117. Vane J. Botting R. Inflammation and the mechanism of action of anti‐inflammatory drugs. FASEB J. 1987 1 2 89 96 10.1096/fasebj.1.2.3111928 3111928
    [Google Scholar]
  118. Green G.A. Understanding NSAIDs: From aspirin to COX-2. Clin. Cornerstone 2001 3 5 50 59 10.1016/S1098‑3597(01)90069‑9 11464731
    [Google Scholar]
  119. Xia Q. Bao X. Sun C. Wu D. Rong X. Liu Z. Gu Y. Zhou J. Liang G. Design, synthesis and biological evaluation of novel 2-sulfonylindoles as potential anti-inflammatory therapeutic agents for treatment of acute lung injury. Eur. J. Med. Chem. 2018 160 120 132 10.1016/j.ejmech.2018.10.014 30326372
    [Google Scholar]
  120. Bhat M.A. Al-Omar M.A. Raish M. Ansari M.A. Abuelizz H.A. Bakheit A.H. Naglah A.M. Indole derivatives as cyclooxygenase inhibitors: Synthesis, biological evaluation and docking studies. Molecules 2018 23 6 1250 10.3390/molecules23061250 29882911
    [Google Scholar]
  121. World Health Organization Depressive disorder (depression). 2023 Available from 2023 [(accessed 2023-07-23)]. [https://www.who.int/news-room/fact-sheets/detail/depression
    [Google Scholar]
  122. Cui L. Li S. Wang S. Wu X. Liu Y. Yu W. Wang Y. Tang Y. Xia M. Li B. Major depressive disorder: Hypothesis, mechanism, prevention and treatment. Signal Transduct. Target. Ther. 2024 9 1 30 10.1038/s41392‑024‑01738‑y 38331979
    [Google Scholar]
  123. Kumar R.R. Kumar V. Kaur D. Nandi N.K. Dwivedi A.R. Kumar V. Kumar B. Investigation of indole-3-piperazinyl derivatives as potential antidepressants: Design, synthesis, in-vitro, in-vivo and in-silico analysis. Chem. Sel 2021 6 41 11276 11284 10.1002/slct.202103568
    [Google Scholar]
  124. Golightly L.K. Pindolol: A review of its pharmacology, pharmacokinetics, clinical uses, and adverse effects. Pharmacotherapy 1982 2 3 134 147 10.1002/j.1875‑9114.1982.tb04521.x 6133267
    [Google Scholar]
  125. Staessen J.A. Wang J. Bianchi G. Birkenhäger W.H. Essential hypertension. Lancet 2003 361 9369 1629 1641 10.1016/S0140‑6736(03)13302‑8 12747893
    [Google Scholar]
  126. Zhu W. Bao X. Ren H. Da Y. Wu D. Li F. Yan Y. Wang L. Chen Z. N-Phenyl indole derivatives as AT1 antagonists with anti-hypertension activities: Design, synthesis and biological evaluation. Eur. J. Med. Chem. 2016 115 161 178 10.1016/j.ejmech.2016.03.021 27017546
    [Google Scholar]
  127. Danilenko A.V. Volov A.N. Volov N.A. Platonova Y.B. Savilov S.V. Design, synthesis and biological evaluation of novel indole-3-carboxylic acid derivatives with antihypertensive activity. Bioorg. Med. Chem. Lett. 2023 90 129349 10.1016/j.bmcl.2023.129349 37236375
    [Google Scholar]
  128. Anwar H. Khan Q.U. Nadeem N. Pervaiz I. Ali M. Cheema F.F. Epileptic seizures. Discoveries 2020 8 2 e110 10.15190/d.2020.7 32577498
    [Google Scholar]
  129. Kerzare D.R. Menghani S.S. Rarokar N.R. Khedekar P.B. Development of novel indole‐linked pyrazoles as anticonvulsant agents: A molecular hybridization approach. Arch. Pharm. 2021 354 1 2000100 10.1002/ardp.202000100 32909304
    [Google Scholar]
  130. Kris-Etherton P.M. Sanders L. Lawler O. Riley T. Maki K. Hyperlipidemia. In:Encyclopedia of Human Nutrition. Amsterdam, Netherlands Elsevier 2022 361 379 10.1016/B978‑0‑12‑821848‑8.00175‑X
    [Google Scholar]
  131. Rajan S. Puri S. Kumar D. Babu M.H. Shankar K. Varshney S. Srivastava A. Gupta A. Reddy M.S. Gaikwad A.N. Novel indole and triazole based hybrid molecules exhibit potent anti-adipogenic and antidyslipidemic activity by activating Wnt3a/β-catenin pathway. Eur. J. Med. Chem. 2018 143 1345 1360 10.1016/j.ejmech.2017.10.034 29153558
    [Google Scholar]
  132. Moore D.J. West A.B. Dawson V.L. Dawson T.M. Molecular pathophysiology of Parkinson’s disease. Annu. Rev. Neurosci. 2005 28 1 57 87 10.1146/annurev.neuro.28.061604.135718 16022590
    [Google Scholar]
  133. Tan Y.Y. Jenner P. Chen S.D. Monoamine Oxidase-B inhibitors for the treatment of Parkinson’s disease: Past, present, and future. J. Parkinsons Dis. 2022 12 2 477 493 10.3233/JPD‑212976 34957948
    [Google Scholar]
  134. Nam M.H. Park M. Park H. Kim Y. Yoon S. Sawant V.S. Choi J.W. Park J.H. Park K.D. Min S.J. Lee C.J. Choo H. Indole-substituted benzothiazoles and benzoxazoles as selective and reversible MAO-B inhibitors for treatment of Parkinson’s disease. ACS Chem. Neurosci. 2017 8 7 1519 1529 10.1021/acschemneuro.7b00050 28332824
    [Google Scholar]
  135. Elkamhawy A. Paik S. Kim H.J. Park J.H. Londhe A.M. Lee K. Pae A.N. Park K.D. Roh E.J. Discovery of N -(1-(3-fluorobenzoyl)-1 H -indol-5-yl)pyrazine-2-carboxamide: A novel, selective, and competitive indole-based lead inhibitor for human monoamine oxidase B. J. Enzyme Inhib. Med. Chem. 2020 35 1 1568 1580 10.1080/14756366.2020.1800666 32752896
    [Google Scholar]
  136. Almalki F.A. Baryyan A.O. Recent advances in the green synthesis of indole and its derivatives using microwave irradiation and the role of indole moiety in cancer. Green Chem. Lett. Rev. 2024 17 1 2362925 10.1080/17518253.2024.2362925
    [Google Scholar]
  137. Nweze J.A. Mbaoji F.N. Li Y.M. Yang L.Y. Huang S.S. Chigor V.N. Eze E.A. Pan L.X. Zhang T. Yang D.F. Potentials of marine natural products against malaria, leishmaniasis, and trypanosomiasis parasites: A review of recent articles. Infect. Dis. Poverty 2021 10 1 9 10.1186/s40249‑021‑00796‑6 33482912
    [Google Scholar]
  138. Elshemy H.A.H. Zaki M.A. Mohamed E.I. Khan S.I. Lamie P.F. A multicomponent reaction to design antimalarial pyridyl-indole derivatives: Synthesis, biological activities and molecular docking. Bioorg. Chem. 2020 97 103673 10.1016/j.bioorg.2020.103673 32106041
    [Google Scholar]
  139. Tiwari S. Kirar S. Banerjee U.C. Neerupudi K.B. Singh S. Wani A.A. Bharatam P.V. Singh I.P. Synthesis of N-substituted indole derivatives as potential antimicrobial and antileishmanial agents. Bioorg. Chem. 2020 99 103787 10.1016/j.bioorg.2020.103787 32251947
    [Google Scholar]
  140. Kuna L. Jakab J. Smolic R. Raguz-Lucic N. Vcev A. Smolic M. Peptic ulcer disease: A brief review of conventional therapy and herbal treatment options. J. Clin. Med. 2019 8 2 179 10.3390/jcm8020179 30717467
    [Google Scholar]
  141. Yuan Y. Padol I.T. Hunt R.H. Peptic ulcer disease today. Nat. Clin. Pract. Gastroenterol. Hepatol. 2006 3 2 80 89 10.1038/ncpgasthep0393 16456574
    [Google Scholar]
  142. Alomari A.A. The anti-ulcer activity of the Schiff base: 1H-indole-3-ethylenesalicyldamine and its zinc (II), nickel (II) and copper (II) complexes. Asian J. Adv. Basic Sci. 2015 3 74 78
    [Google Scholar]
  143. Akhtar M.S. Malik A. Arshad H. Batool S. Raza A.R. Tabassum T. Murtaza M.A. Riaz M. Noreen M. Rasool G. Protective effect of newly synthesized indole imines against ethanol-induced gastric ulcer in rats. Biotechnol. Biotechnol. Equip. 2021 35 1 231 237 10.1080/13102818.2020.1868330
    [Google Scholar]
  144. Sanchez L.A. Holdsworth M. Bartel S.B. Stratified administration of serotonin 5-HT3 receptor antagonists (setrons) for chemotherapy-induced emesis. Economic implications. PharmacoEconomics 2000 18 6 533 556 10.2165/00019053‑200018060‑00002 11227393
    [Google Scholar]
  145. Chadha N. Silakari O. Indoles: As multitarget directed ligands in medicinal chemistry. In key heterocycle cores for designing multitargeting molecules. In:Key Heterocycle Cores for Designing Multitargeting Molecules. Amsterdam, Netherlands Elsevier 2018 285 321 10.1016/B978‑0‑08‑102083‑8.00008‑X
    [Google Scholar]
  146. Denholm L. Gallagher G. Physiology and pharmacology of nausea and vomiting. Anaesth. Intensive Care Med. 2024 25 8 589 592 10.1016/j.mpaic.2024.06.019
    [Google Scholar]
/content/journals/coc/10.2174/0113852728375516250627095744
Loading
/content/journals/coc/10.2174/0113852728375516250627095744
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test