Skip to content
2000
image of Synthesis and In Vitro Screening of Some New Thiazolone-based Schiff Bases as Potential MurB Inhibitors

Abstract

MurB is an enzyme that is crucial to the survival of bacterial strains. Recently, considerable interest has been generated in developing new antibacterial agents that effectively inhibit MurB. We synthesized herein new thiazolone-based Schiff bases derived from salicylaldehydes in good yields. The appropriate thiosemicarbazones were prepared and then reacted with a variety of hydrazonyl chlorides in dioxane. The reaction was mediated using an equimolar amount of triethylamine. The new Schiff bases were tested against six different ATCC bacterial strains with the reference ciprofloxacin. Generally, Schiff bases linked to 5-((4-chlorophenyl)thio)methyl units outperformed their analogues linked to 5-(phenylthio)methyl units fourfold. The best activity was obtained from Schiff base linked to the 5-(2-(4-methoxyphenyl)hydrazineyl)thiazol-4(5)-one unit. Product had more effective antibacterial activity than ciprofloxacin, with MIC/MBC of 1.8/3.7 µM against and . It also exhibited good activity against and , with MIC/MBC values of 3.7/7.4 µM. Moreover, exhibited the second-highest activity against all tested strains, with MIC/MBC values of 3.8/7.6 µM for S. aureus and E. faecalis, and 7.6/15.3 µM for and . Schiff bases with potential antibacterial activity were further screened for their MurB inhibitory activity. Furthermore, and displayed the best inhibitory activity against MurB with IC of 5.0 and 4.6 µM, respectively.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728373744250630064554
2025-08-29
2025-11-06
Loading full text...

Full text loading...

References

  1. Mekky A.E.M. Sanad S.M.H. Novel bis(pyrazole-benzofuran) hybrids possessing piperazine linker: Synthesis of potent bacterial biofilm and MurB inhibitors. Bioorg. Chem. 2020 102 104094 10.1016/j.bioorg.2020.104094 32711085
    [Google Scholar]
  2. Singh B. Bhat A. Ravi K. Antibiotics misuse and antimicrobial resistance development in agriculture: A global challenge. Environ. Health 2024 2 9 618 622 10.1021/envhealth.4c00094 39512391
    [Google Scholar]
  3. Bdair I.A. Bdair O.A. Maribbay G.M.L. Elzehiri D. Hassan E.S. Tolentino A.D. Emara M.M. Ali E.K. Abdelmeged R.M. Fadul M.O. Public awareness towards antibiotics use, misuse and resistance in Saudi community: A cross-sectional population survey. J. Appl. Pharm. Sci. 2024 14 9 217 226 10.7324/JAPS.2024.167162
    [Google Scholar]
  4. Naghavi M. Vollset S.E. Ikuta K.S. Swetschinski L.R. Gray A.P.S.H.H. Zyoud S.H. Hay S.I. Stergachis A. Sartorius B. Cooper B.S. Dolecek C. Murray C.J.L. Wool, E.E.; Aguilar, RG.; Mestrovic, T.; Smith, G.; Han, C.; Hsu, R.L.; Chalek, J.; Araki, D.T.; Chung, E.; Raggi, C.; Gershberg Hayoon, A.; Davis Weaver, N.; Lindstedt, P.A.; Smith, A.E.; Altay, U.; Bhattacharjee, N.V.; Giannakis, K.; Fell, F.; McManigal, B.; Ekapirat, N.; Mendes, J.A.; Runghien, T.; Srimokla, O.; Abdelkader, A.; Abd-Elsalam, S.; Aboagye, R.G.; Abolhassani, H.; Abualruz, H.; Abubakar, U.; Abukhadijah, H.J.; Aburuz, S.; Abu-Zaid, A.; Achalapong, S.; Addo, I.Y.; Adekanmbi, V.; Adeyeoluwa, T.E.; Adnani, Q.E.S.; Adzigbli, L.A.; Afzal, M.S.; Afzal, S.; Agodi, A.; Ahlstrom, A.J.; Ahmad, A.; Ahmad, S.; Ahmad, T.; Ahmadi, A.; Ahmed, A.; Ahmed, H.; Ahmed, I.; Ahmed, M.; Ahmed, S.; Ahmed, S.A.; Akkaif, M.A.; Al Awaidy, S.; Al Thaher, Y.; Alalalmeh, S.O.; AlBataineh, M.T.; Aldhaleei, W.A.; Al-Gheethi, A.A.S.; Alhaji, N.B.; Ali, A.; Ali, L.; Ali, S.S.; Ali, W.; Allel, K.; Al-Marwani, S.; Alrawashdeh, A.; Altaf, A.; Al- Tammemi, A.B.; Al-Tawfiq, J.A.; Alzoubi, K.H.; Al-Zyoud, W.A.; Amos, B.; Amuasi, J.H.; Ancuceanu, R.; Andrews, J.R.; Anil, A.; Anuoluwa, I.A.; Anvari, S.; Anyasodor, A.E.; Apostol, G.L.C.; Arabloo, J.; Arafat, M.; Aravkin, A.Y.; Areda, D.; Aremu, A.; Artamonov, A.A.; Ashley, E.A.; Asika, M.O.; Athari, S.S.; Atout, M.M.W.; Awoke, T.; Azadnajafabad, S.; Azam, J.M.; Aziz, S.; Azzam, A.Y.; Babaei, M.; Babin, F-X.; Badar, M.; Baig, A.A.; Bajcetic, M.; Baker, S.; Bardhan, M.; Barqawi, H.J.; Basharat, Z.; Basiru, A.; Bastard, M.; Basu, S.; Bayleyegn, N.S.; Belete, M.A.; Bello, O.O.; Beloukas, A.; Berkley, J.A.; Bhagavathula, A.S.; Bhaskar, S.; Bhuyan, S.S.; Bielicki, J.A.; Briko, N.I.; Brown, C.S.; Browne, A.J.; Buonsenso, D.; Bustanji, Y.; Carvalheiro, C.G.; Castañeda-Orjuela, C.A.; Cenderadewi, M.; Chadwick, J.; Chakraborty, S.; Chandika, R.M.; Chandy, S.; Chansamouth, V.; Chattu, V.K.; Chaudhary, A.A.; Ching, P.R.; Chopra, H.; Chowdhury, F.R.; Chu, D-T.; Chutiyami, M.; Cruz-Martins, N.; da Silva, A.G.; Dadras, O.; Dai, X.; Darcho, S.D.; Das, S.; De la Hoz, F.P.; Dekker, D.M.; Dhama, K.; Diaz, D.; Dickson, B.F.R.; Djorie, S.G.; Dodangeh, M.; Dohare, S.; Dokova, K.G.; Doshi, O.P.; Dowou, R.K.; Dsouza, H.L.; Dunachie, S.J.; Dziedzic, A.M.; Eckmanns, T.; Ed-Dra, A.; Eftekharimehrabad, A.; Ekundayo, T.C.; El Sayed, I.; Elhadi, M.; El-Huneidi, W.; Elias, C.; Ellis, S.J.; Elsheikh, R.; Elsohaby, I.; Eltaha, C.; Eshrati, B.; Eslami, M.; Eyre, D.W.; Fadaka, A.O.; Fagbamigbe, A.F.; Fahim, A.; Fakhri-Demeshghieh, A.; Fasina, F.O.; Fasina, M.M.; Fatehizadeh, A.; Feasey, N.A.; Feizkhah, A.; Fekadu, G.; Fischer, F.; Fitriana, I.; Forrest, K.M.; Fortuna Rodrigues, C.; Fuller, J.E.; Gadanya, M.A.; Gajdács, M.; Gandhi, A.P.; Garcia-Gallo, E.E.; Garrett, D.O.; Gautam, R.K.; Gebregergis, M.W.; Gebrehiwot, M.; Gebremeskel, T.G.; Geffers, C.; Georgalis, L.; Ghazy, R.M.; Golechha, M.; Golinelli, D.; Gordon, M.; Gulati, S.; Gupta, R.D.; Gupta, S.; Gupta, V.K.; Habteyohannes, A.D.; Haller, S.; Harapan, H.; Harrison, M.L.; Hasaballah, A.I.; Hasan, I.; Hasan, R.S.; Hasani, H.; Haselbeck, A.H.; Hasnain, M.S.; Hassan, I.I.; Hassan, S.; Hassan Zadeh Tabatabaei, M.S.; Hayat, K.; He, J.; Hegazi, O.E.; Heidari, M.; Hezam, K.; Holla, R.; Holm, M.; Hopkins, H.; Hossain, M.M.; Hosseinzadeh, M.; Hostiuc, S.; Hussein, N.R.; Huy, L.D.; Ibáñez-Prada, E.D.; Ikiroma, A.; Ilic, I.M.; Islam, S.M.S.; Ismail, F.; Ismail, N.E.; Iwu, C.D.; Iwu-Jaja, C.J.; Jafarzadeh, A.; Jaiteh, F.; Jalilzadeh Yengejeh, R.; Jamora, R.D.G.; Javidnia, J.; Jawaid, T.; Jenney, A.W.J.; Jeon, H.J.; Jokar, M.; Jomehzadeh, N.; Joo, T.; Joseph, N.; Kamal, Z.; Kanmodi, K.K.; Kantar, R.S.; Kapisi, J.A.; Karaye, I.M.; Khader, Y.S.; Khajuria, H.; Khalid, N.; Khamesipour, F.; Khan, A.; Khan, M.J.; Khan, M.T.; Khanal, V.; Khidri, F.F.; Khubchandani, J.; Khusuwan, S.; Kim, M.S.; Kisa, A.; Korshunov, V.A.; Krapp, F.; Krumkamp, R.; Kuddus, M.; Kulimbet, M.; Kumar, D.; Kumaran, E.A.P.; Kuttikkattu, A.; Kyu, H.H.; Landires, I.; Lawal, B.K.; Le, T.T.T.; Lederer, I.M.; Lee, M.; Lee, S.W.; Lepape, A.; Lerango, T.L.; Ligade, V.S.; Lim, C.; Lim, S.S.; Limenh, L.W.; Liu, C.; Liu, X.; Liu, X.; Loftus, M.J.; M Amin, H.I.; Maass, K.L.; Maharaj, S.B.; Mahmoud, M.A.; Maikanti-Charalampous, P.; Makram, O.M.; Malhotra, K.; Malik, A.A.; Mandilara, G.D.; Marks, F.; Martinez-Guerra, B.A.; Martorell, M.; Masoumi- Asl, H.; Mathioudakis, A.G.; May, J.; McHugh, T.A.; Meiring, J.; Meles, H.N.; Melese, A.; Melese, E.B.; Minervini, G.; Mohamed, N.S.; Mohammed, S.; Mohan, S.; Mokdad, A.H.; Monasta, L.; Moodi Ghalibaf, A.A.; Moore, C.E.; Moradi, Y.; Mossialos, E.; Mougin, V.; Mukoro, G.D.; Mulita, F.; Muller-Pebody, B.; Murillo-Zamora, E.; Musa, S.; Musicha, P.; Musila, L.A.; Muthupandian, S.; Nagarajan, A.J.; Naghavi, P.; Nainu, F.; Nair, T.S.; Najmuldeen, H.H.R.; Natto, Z.S.; Nauman, J.; Nayak, B.P.; Nchanji, G.T.; Ndishimye, P.; Negoi, I.; Negoi, R.I.; Nejadghaderi, S.A.; Nguyen, Q.A.P.; Noman, E.A.; Nwakanma, D.C.; O’Brien, S.;°Choa, T.J.; Odetokun, I.A.; Ogundijo, O.A.; Ojo-Akosile, T.R.; Okeke, S.R.; Okonji, O.C.; Olagunju, A.T.; Olivas-Martinez, A.; Olorukooba, A.A.; Olwoch, P.; Onyedibe, K.I.; Ortiz-Brizuela, E.; Osuolale, O.; Ounchanum, P.; Oyeyemi, O.T.; P A, M.P.; Paredes, J.L.; Parikh, R.R.; Patel, J.; Patil, S.; Pawar, S.; Peleg, A.Y.; Peprah, P.; Perdigão, J.; Perrone, C.; Petcu, I-R.; Phommasone, K.; Piracha, Z.Z.; Poddighe, D.; Pollard, A.J.; Poluru, R.; Ponce-De-Leon, A.; Puvvula, J.; Qamar, F.N.; Qasim, N.H.; Rafai, C.D.; Raghav, P.; Rahbarnia, L.; Rahim, F.; Rahimi-Movaghar, V.; Rahman, M.; Rahman, M.A.; Ramadan, H.; Ramasamy, S.K.; Ramesh, P.S.; Ramteke, P.W.; Rana, R.K.; Rani, U.; Rashidi, M-M.; Rathish, D.; Rattanavong, S.; Rawaf, S.; Redwan, E.M.M.; Reyes, L.F.; Roberts, T.; Robotham, J.V.; Rosenthal, V.D.; Ross, A.G.; Roy, N.; Rudd, K.E.; Sabet, C.J.; Saddik, B.A.; Saeb, M.R.; Saeed, U.; Saeedi Moghaddam, S.; Saengchan, W.; Safaei, M.; Saghazadeh, A.; Saheb Sharif- Askari, N.; Sahebkar, A.; Sahoo, S.S.; Sahu, M.; Saki, M.; Salam, N.; Saleem, Z.; Saleh, M.A.; Samodra, Y.L.; Samy, A.M.; Saravanan, A.; Satpathy, M.; Schumacher, A.E.; Sedighi, M.; Seekaew, S.; Shafie, M.; Shah, P.A.; Shahid, S.; Shahwan, M.J.; Shakoor, S.; Shalev, N.; Shamim, M.A.; Shamshirgaran, M.A.; Shamsi, A.; Sharifan, A.; Shastry, R.P.; Shetty, M.; Shittu, A.; Shrestha, S.; Siddig, E.E.; Sideroglou, T.; Sifuentes-Osornio, J.; Silva, L.M.L.R.; Simões, E.A.F.; Simpson, A.J.H.; Singh, A.; Singh, S.; Sinto, R.; Soliman, S.S.M.; Soraneh, S.; Stoesser, N.; Stoeva, T.Z.; Swain, C.K.; Szarpak, L.; T y, S.S.; Tabatabai, S.; Tabche, C.; Taha, Z.M-A.; Tan, K-K.; Tasak, N.; Tat, N.Y.; Thaiprakong, A.; Thangaraju, P.; Tigoi, C.C.; Tiwari, K.; Tovani-Palone, M.R.; Tran, T.H.; Tumurkhuu, M.; Turner, P.; Udoakang, A.J.; Udoh, A.; Ullah, N.; Ullah, S.; Vaithinathan, A.G.; Valenti, M.; Vos, T.; Vu, H.T.L.; Waheed, Y.; Walker, A.S.; Walson, J.L.; Wangrangsimakul, T.; Weerakoon, K.G.; Wertheim, H.F.L.; Williams, P.C.M.; Wolde, A.A.; Wozniak, T.M.; Wu, F.; Wu, Z.; Yadav, M.K.K.; Yaghoubi, S.; Yahaya, Z.S.; Yarahmadi, A.; Yezli, S.; Yismaw, Y.E.; Yon, D.K.; Yuan, C-W.; Yusuf, H.; Zakham, F.; Zamagni, G.; Zhang, H.; Zhang, Z-J.; Zielińska, M.; Zumla, A.; Zyoud, S.H.H.; Zyoud, S.H.; Hay, S.I.; Stergachis, A.; Sartorius, B.; Cooper, B.S.; Dolecek, C.; Murray, C.J.L. Global burden of bacterial antimicrobialGlobal burden of bacterial antimicrobial resistance 1990-2021: A systematic analysis with forecasts to 2050. Lancet 2024 404 10459 1199 1226 10.1016/S0140‑6736(24)01867‑1 39299261
    [Google Scholar]
  5. Alara J.A. Alara O.R. An overview of the global alarming increase of multiple drug resistant: A major challenge in clinical diagnosis. Infect. Disord. Drug Targets 2024 24 3 e250723219043 10.2174/1871526523666230725103902 37909431
    [Google Scholar]
  6. Brüssow H. The antibiotic resistance crisis and the development of new antibiotics. Microb. Biotechnol. 2024 17 7 e14510 10.1111/1751‑7915.14510 38970161
    [Google Scholar]
  7. Gopikrishnan M. Haryini S. George P.D.C. Emerging strategies and therapeutic innovations for combating drug resistance in staphylococcus aureus strains: A comprehensive review. J. Basic Microbiol. 2024 64 5 2300579 10.1002/jobm.202300579 38308076
    [Google Scholar]
  8. Salas-Orozco M.F. Lorenzo-Leal A.C. de Alba Montero I. Marín N.P. Santana M.A.C. Bach H. Mechanism of escape from the antibacterial activity of metal-based nanoparticles in clinically relevant bacteria: A systematic review. Nanomedicine 2024 55 102715 10.1016/j.nano.2023.102715 37907198
    [Google Scholar]
  9. Aboelnaga N. Elsayed S.W. Abdelsalam N.A. Salem S. Saif N.A. Elsayed M. Ayman S. Nasr M. Elhadidy M. Deciphering the dynamics of methicillin-resistant staphylococcus aureus biofilm formation: From molecular signaling to nanotherapeutic advances. Cell Commun. Signal. 2024 22 1 188 10.1186/s12964‑024‑01511‑2 38519959
    [Google Scholar]
  10. Niu H. Gu J. Zhang Y. Bacterial persisters: Molecular mechanisms and therapeutic development. Signal Transduct. Target. Ther. 2024 9 1 174 10.1038/s41392‑024‑01866‑5 39013893
    [Google Scholar]
  11. Şahin Y. Çoban E.P. Özgener H. Bıyık H.H. Sevincek R. Aygün M. Gürbüz B. Effects of diborolane containing Oxo/Amine compounds on clinically important bacteria and Candida species. J. Mol. Struct. 2024 1304 137618 10.1016/j.molstruc.2024.137618
    [Google Scholar]
  12. Cangui-Panchi S.P. Ñacato-Toapanta A.L. Enríquez-Martínez L.J. Salinas-Delgado G.A. Reyes J. Garzon-Chavez D. Machado A. Battle royale: Immune response on biofilms - host-pathogen interactions. Curr. Res. Immunol. 2023 4 100057 10.1016/j.crimmu.2023.100057 37025390
    [Google Scholar]
  13. Sedarat Z. Taylor-Robinson A.W. Biofilm formation by pathogenic bacteria: Applying a Staphylococcus aureus model to appraise potential targets for therapeutic intervention. Pathogens 2022 11 4 388 10.3390/pathogens11040388 35456063
    [Google Scholar]
  14. Vacariu C.M. Tanner M.E. Recent advances in the synthesis and biological applications of peptidoglycan fragments. Chemistry 2022 28 43 e202200788 10.1002/chem.202200788 35560956
    [Google Scholar]
  15. Sun J. Rutherford S.T. Silhavy T.J. Huang K.C. Physical properties of the bacterial outer membrane. Nat. Rev. Microbiol. 2022 20 4 236 248 10.1038/s41579‑021‑00638‑0 34732874
    [Google Scholar]
  16. Theuretzbacher U. Blasco B. Duffey M. Piddock L.J.V. Unrealized targets in the discovery of antibiotics for Gram-negative bacterial infections. Nat. Rev. Drug Discov. 2023 22 12 957 975 10.1038/s41573‑023‑00791‑6 37833553
    [Google Scholar]
  17. Andres C.J. Bronson J.J. D’Andrea S.V. Deshpande M.S. Falk P.J. Grant-Young K.A. Harte W.E. Ho H.T. Misco P.F. Robertson J.G. Stock D. Sun Y. Walsh A.W. 4-Thiazolidinones: Novel inhibitors of the bacterial enzyme murB. Bioorg. Med. Chem. Lett. 2000 10 8 715 717 10.1016/S0960‑894X(00)00073‑1 10782671
    [Google Scholar]
  18. Kumar D. Sarkar N. Roy K.K. Bisht D. Kumar D. Mandal B. Rajagopal M. Dey Y.N. The potential of Mur enzymes as targets for antimicrobial drug discovery. Curr. Drug Targets 2023 24 8 627 647 10.2174/1389450124666230608150759 37291783
    [Google Scholar]
  19. Kumari M. Waseem M. Subbarao N. Discovery of multi-target mur enzymes inhibitors with anti-mycobacterial activity through a scaffold approach. J. Biomol. Struct. Dyn. 2023 41 7 2878 2899 10.1080/07391102.2022.2040593 35174764
    [Google Scholar]
  20. Almufarriji F.M. Alotaibi B.S. Alamri A.S. Alkhalil S.S. Alkhorayef N. Structure-guided identification of potential inhibitors of MurB from S. typhimurium LT2 strain: Towards therapeutic development against multidrug resistance. Mol. Divers. 2024 ••• 14 10.1007/s11030‑024‑11069‑3 39673564
    [Google Scholar]
  21. Verma A. Kumar V. Naik B. Masood Khan J. Singh P. Erik Joakim Saris P. Gupta S. Screening and molecular dynamics simulation of compounds inhibiting MurB enzyme of drug-resistant mycobacterium tuberculosis: An in-silico approach. Saudi J. Biol. Sci. 2023 30 8 103730 10.1016/j.sjbs.2023.103730 37483837
    [Google Scholar]
  22. Ravindar L. Bukhari S.N.A. Rakesh K.P. Manukumar H.M. Vivek H.K. Mallesha N. Xie Z.Z. Qin H.L. Aryl fluorosulfate analogues as potent antimicrobial agents: SAR, cytotoxicity and docking studies. Bioorg. Chem. 2018 81 107 118 10.1016/j.bioorg.2018.08.001 30118982
    [Google Scholar]
  23. Ahmed A.A.M. Mekky A.E.M. Sanad S.M.H. Effective synthesis of new benzo-fused macrocyclic and heteromacrocyclic bis(Schiff bases). J. Indian Chem. Soc. 2022 19 5 1711 1722 10.1007/s13738‑021‑02409‑3
    [Google Scholar]
  24. Nath B.D. Islam M.M. Karim M.R. Rahman S. Shaikh M.A.A. Georghiou P.E. Menelaou M. Recent progress in metal‐incorporated acyclic Schiff‐base derivatives: Biological aspects. ChemistrySelect 2022 7 14 e202104290 10.1002/slct.202104290
    [Google Scholar]
  25. Khalil T.E. Elbadawy H.A. Attia A.A. El-Sayed D.S. Synthesis, spectroscopic, and computational studies on molecular charge-transfer complex of 2-((2-hydroxybenzylidene) amino)-2-(hydroxymethyl) propane-1, 3-diol with chloranilic acid: Potential antiviral activity simulation of CT-complex against SARS-CoV-2. J. Mol. Struct. 2022 1251 132010 10.1016/j.molstruc.2021.132010 34866653
    [Google Scholar]
  26. Hashem H.E. Nath A. Kumer A. Synthesis, molecular docking, molecular dynamic, quantum calculation, and antibacterial activity of new Schiff base-metal complexes. J. Mol. Struct. 2022 1250 131915 10.1016/j.molstruc.2021.131915
    [Google Scholar]
  27. Siwach A. Verma P.K. Therapeutic potential of oxadiazole or furadiazole containing compounds. BMC Chem. 2020 14 1 70 10.1186/s13065‑020‑00721‑2 33372629
    [Google Scholar]
  28. Al-Humaidi J.Y. Gomha S.M. Abdelrazek F.M. Abdel-aziz H.M. Abdelmonsef A.H. Synthesis and molecular docking study of some new thiazole-coumarin molecular hybrids as antibacterial agents. Curr. Org. Synth. 2024 21 6 810 821 10.2174/1570179420666230707142817 37563816
    [Google Scholar]
  29. Metwally H.M. Abdel-Latif E. El-Rayyes A. In Silico ADME and molecular docking studies of new thiazolyl-bipyrazole, pyrazolopyridine and pyrano[2,3-d]pyrazolopyridine derivatives as antibacterial agents. Curr. Org. Chem. 2024 28 18 1460 1470 10.2174/0113852728312561240523060417
    [Google Scholar]
  30. Zhu X. Zhang Y. Ma Z. He Y. Song P. Wang R. Construction of thiazole-zwitterionic copolymer nanospheres with iso-bifunctional groups for excellent antibacterial activity. Prog. Org. Coat. 2024 186 108084 10.1016/j.porgcoat.2023.108084
    [Google Scholar]
  31. Garzan A. Ahmed S.K. Haese N.N. Sulgey G. Medica S. Smith J.L. Zhang S. Ahmad F. Karyakarte S. Rasmussen L. DeFilippis V. Tekwani B. Bostwick R. Suto M.J. Hirsch A.J. Morrison T.E. Heise M.T. Augelli-Szafran C.E. Streblow D.N. Pathak A.K. Moukha-Chafiq O. 4-substituted-2-thiazole amides as viral replication inhibitors of alphaviruses. J. Med. Chem. 2024 67 23 20858 20878 10.1021/acs.jmedchem.4c01073 39621435
    [Google Scholar]
  32. de Moraes Gomes P.A.T. Barros Freitas L.A. Pessoa Siqueira L.R. da Conceição J.M. dos Santos I.R. Pinto A.F. de Melo Silva V.G. Nunes J.S. de Oliveira Cardoso M.V. Pena L.J. Leite L. A.C. Identification of novel zika virus inhibitors: A screening using thiosemicarbazones and thiazoles templates. Curr. Top. Med. Chem. 2023 23 6 426 439 10.2174/1568026623666221222124433 36567284
    [Google Scholar]
  33. Athina G. Tratrat C. Petrou A. Fesatidou M. Haroun M. Venugopala K. Sreeharsha N. Chemali J. 5-membered heterocyclic compounds as antiviral agents. Curr. Top. Med. Chem. 2023 23 7 520 538 10.2174/1568026623666230325153927 37254567
    [Google Scholar]
  34. Saleem A. Shabir G. Rafique H. Saeed A. An in‐depth review on recent progress in synthetic approaches and biological activities of thiazol‐2(3H)‐imine derivatives. ChemistrySelect 2024 9 32 e202400630 10.1002/slct.202400630
    [Google Scholar]
  35. Sriharsha S.N. Jainab N.H. Biradar M.S. Thapa S. Venkatesh E.S. Bidye D.P. Pujar G. Dixit S. Novel β-L-1,3-thiazolidine pyrimidine nucleoside analogues: Design, synthesis, molecular docking, and anti-HIV activity. J. Mol. Struct. 2023 1294 136304 10.1016/j.molstruc.2023.136304
    [Google Scholar]
  36. Deng C. Yan H. Wang J. Liu B. Liu K. Shi Y. The anti-HIV potential of imidazole, oxazole and thiazole hybrids: A mini-review. Arab. J. Chem. 2022 15 11 104242 10.1016/j.arabjc.2022.104242
    [Google Scholar]
  37. Tan J. He Y. Lin Y. Zhong Y. He S. Zuo J. Yang C. Synthesis of 2-amino-9 H -chromeno[2,3- d]thiazol-9-ones with anti-inflammatory activity via cascade reactions of 2-amino-3 iodochromones with amines and carbon disulfide. RSC Advances 2024 14 5 3158 3162 10.1039/D3RA07209F 38249667
    [Google Scholar]
  38. Fang S. Huang X. Cai F. Qiu G. Lin F. Cai X. Design, synthesis and molecular docking of novel D-ring substituted steroidal 4,5-dihydropyrazole thiazole derivatives that act as iNOS/COX-2 inhibitors with potent anti-inflammatory activity against LPS-induced RAW264.7 macrophage cells. J. Steroid Biochem. Mol. Biol. 2024 240 106478 10.1016/j.jsbmb.2024.106478 38430971
    [Google Scholar]
  39. Hosseininezhad S. Ramazani A. Thiazole ring- the antimicrobial, anti-inflammatory, and anticancer active scaffold. Arab. J. Chem. 2023 16 11 105234 10.1016/j.arabjc.2023.105234
    [Google Scholar]
  40. Naseem M. Rafique H. Tayyab M. Saeed A. Mumtaz A. Design, synthesis, qsar studies, and molecular modeling of some novel bis methyl 2-[3-(benzo[d]thiazol-2-yl)-2-terephthaloyl-bis-4-oxo-thiazolidin- 5-ylidene]acetates and screening of their antioxidant and enzyme inhibition properties. Curr. Org. Synth. 2024 21 7 917 927 10.2174/1570179421666230905094559 37670713
    [Google Scholar]
  41. Matta R. Pochampally J. Dhoddi B.N. Bhookya S. Bitla S. Akkiraju A.G. Synthesis, antimicrobial and antioxidant activity of triazole, pyrazole containing thiazole derivatives and molecular docking studies on COVID-19. BMC Chem. 2023 17 1 61 10.1186/s13065‑023‑00965‑8 37330518
    [Google Scholar]
  42. Borik R.M. Novel chalcone derivatives containing pyridone and thiazole moieties: Design, synthesis, molecular docking, antibacterial, and antioxidant activities. Curr. Org. Chem. 2023 27 22 1960 1977 10.2174/0113852728278212231215045922
    [Google Scholar]
  43. Shosha M.I. El-Ablack F.Z. Saad E.A. New thiazole derivative as a potential anticancer and topoisomerase II inhibitor. Sci. Rep. 2025 15 1 710 10.1038/s41598‑024‑81294‑1 39753588
    [Google Scholar]
  44. Negm A. Al-Faiyz Y.S. Riyadh S.M. Sayed A.R. Synthesis, DPPH radical scavenging, cytotoxic activity, and apoptosis induction efficacy of novel thiazoles and bis-thiazoles. Curr. Org. Synth. 2024 21 8 1081 1090 10.2174/0115701794264504231017113027 37936471
    [Google Scholar]
  45. Leite A.C.L. de Siqueira L.R.P. de Lima Ferreira L.P. de Oliveira Filho G.B. de Oliveira M.V.G. Pinto A.F. de Melo Silva V.G. de Moraes Gomes P.A.T. de Oliveira Cardoso M.V. de Nazaré Correia Soeiro M. dos Santos F.A. da Rocha Pitta M.G. Nunes J.S. de Melo Rego M.J.B. Synthesis, ADMET prediction, and antitumor profile of phenoxyhydrazine- 1,3-thiazoles derivatives. Curr. Top. Med. Chem. 2023 23 4 265 282 10.2174/1568026623666221226090807 36573055
    [Google Scholar]
  46. Bhagat D.S. Chawla P.A. Gurnule W.B. Shejul S.K. Bumbrah G.S. An insight into synthesis and anticancer potential of thiazole and 4-thiazolidinone containing motifs. Curr. Org. Chem. 2021 25 7 819 841 10.2174/1385272825999210101234704
    [Google Scholar]
  47. Abid M.A. Abed A.A. Musa M. Izuagie T. Agwamba E.C. Anti-diabetic, anti-bacterial and anti-oxidant potential of new biologically active thiazole-derivatives: Experimental and molecular docking studies. J. Mol. Struct. 2025 1321 139482 10.1016/j.molstruc.2024.139482
    [Google Scholar]
  48. Thabet K.H. Ammar Y.A. Imran M. Helal H.M. Ibrahim Alaqel S. Alshehri A. Ash Mohd A. Abusaif M.S. Ragab A. Unveiling anti-diabetic potential of new thiazole-sulfonamide derivatives: Design, synthesis, in vitro bio-evaluation targeting DPP-4, α-glucosidase, and α-amylase with in-silico ADMET and docking simulation. Bioorg. Chem. 2024 151 107671 10.1016/j.bioorg.2024.107671 39067419
    [Google Scholar]
  49. Hussain R. Rehman W. Khan S. Maalik A. Hefnawy M. Alanazi A.S. Khan Y. Rasheed L. Imidazopyridine-based thiazole derivatives as potential antidiabetic agents: Synthesis, in vitro bioactivity, and in silico molecular modeling approach. Pharmaceuticals 2023 16 9 1288 10.3390/ph16091288 37765096
    [Google Scholar]
  50. Kalita T. Choudhury A. Shakya A. Ghosh S.K. Singh U.P. Bhat H.R. A review on synthetic thiazole derivatives as an antimalarial agent. Curr. Drug Discov. Technol. 2024 21 5 e240124226141 10.2174/0115701638276379231223101625 38279721
    [Google Scholar]
  51. Yadav A. Verma P. Chauhan B. Mishra A.P. In silco study, synthesis of thiazole molecules as possible dihydrofolate reductase inhibitors against malaria. J. Pharm. Negat. Results 2023 14 3 1909 1916 10.47750/pnr.2023.14.03.247
    [Google Scholar]
  52. Silva B.R.M.G.D. Bezerra Júnior N.D.S. Oliveira J.F.D. Duarte D.M.F.A. Marques D.S.C. Nogueira F. Lima M.C.A.D. Cruz Filho I.J.D. In silico ADMET prediction, evaluation of cytotoxicity in mouse splenocytes and preliminary evaluation of in vitro antimalarial activity of 4-(4-chlorophenyl)thiazole compounds. An Acad. Bras. Cienc. 2023 95 e20230566 10.1590/0001‑3765202320230566 38055446
    [Google Scholar]
  53. Hussain R. Ullah H. Rahim F. Sarfraz M. Taha M. Iqbal R. Rehman W. Khan S. Shah S.A.A. Hyder S. Alhomrani M. Alamri A.S. Abdulaziz O. Abdelaziz M.A. Multipotent cholinesterase inhibitors for the treatment of alzheimer’s disease: Synthesis, biological analysis and molecular docking study of benzimidazole-based thiazole derivatives. Molecules 2022 27 18 6087 10.3390/molecules27186087 36144820
    [Google Scholar]
  54. Hatami M. Basri Z. Sakhvidi B.K. Mortazavi M. Thiadiazole - A promising structure in design and development of anti-Alzheimer agents. Int. Immunopharmacol. 2023 118 110027 10.1016/j.intimp.2023.110027 37011500
    [Google Scholar]
  55. Mekky A.E.M. Sanad S.M.H. El-Idreesy T.T. New thiazole and thiazole-chromene hybrids possessing morpholine units: Piperazine-mediated one-pot synthesis of potential acetylcholinesterase inhibitors. Synth. Commun. 2021 51 21 3332 3344 10.1080/00397911.2021.1970774
    [Google Scholar]
  56. Abdallah Z.A. Sanad S.M.H. Mekky A.E.M. Ahmed M.S.M. New arylazo-based (chromene-thiazole) hybrids as potential MRSA inhibitors. Chem. Biodivers. 2023 20 4 e202300206 10.1002/cbdv.202300206 36950775
    [Google Scholar]
  57. Mekky A.E.M. Sanad S.M.H. Microwave-assisted synthesis of nicotinonitrile and/or arene-linked bis(chromene-thiazoles) as new VRE and MRSA inhibitors. Synth. Commun. 2022 52 24 2276 2290 10.1080/00397911.2022.2144378
    [Google Scholar]
  58. Mekky A.E.M. Sanad S.M.H. Microwave‐assisted synthesis of novel bis(thiazoles) incorporating piperazine moiety. J. Heterocycl. Chem. 2019 56 5 1560 1566 10.1002/jhet.3531
    [Google Scholar]
  59. Kushwaha P. Pandey S. 1,3-Thiazole derivatives as a promising scaffold in medicinal chemistry: A recent overview. Antiinflamm. Antiallergy Agents Med. Chem. 2023 22 3 133 163 10.2174/0118715230276678231102150158 37997807
    [Google Scholar]
  60. Amrithanjali G. Shaji G. Kumar R.A. Antimicrobial activity and synthesis of thiazole derivatives: A recent update. J. Chem. Rev. 2023 5 221 240 10.22034/jcr.2023.383674.1211
    [Google Scholar]
  61. Łączkowski K.Z. Świtalska M. Baranowska-Łączkowska A. Plech T. Paneth A. Misiura K. Wietrzyk J. Czaplińska B. Mrozek-Wilczkiewicz A. Malarz K. Musioł R. Grela I. Thiazole-based nitrogen mustards: Design, synthesis, spectroscopic studies, DFT calculation, molecular docking, and antiproliferative activity against selected human cancer cell lines. J. Mol. Struct. 2016 1119 139 150 10.1016/j.molstruc.2016.04.058
    [Google Scholar]
  62. Elneairy M.A.A. Sanad S.M.H. Mekky A.E.M. One-pot synthesis and antibacterial screening of new (nicotinonitrile-thiazole)-based mono- and bis(schiff bases) linked to arene units. Synth. Commun. 2023 53 3 245 261 10.1080/00397911.2022.2163506
    [Google Scholar]
  63. Mekky A.E.M. Sanad S.M.H. New thiazole-based bis(schiff bases) linked to arene units as potential MRSA inhibitors. Synth. Commun. 2022 52 23 2205 2218 10.1080/00397911.2022.2134800
    [Google Scholar]
  64. Sanad S.M.H. Mekky A.E.M. Potential MRSA inhibitory activity of some new benzofuran-pyrazolo[1,5-a]pyrimidine hybrids attached to arene units via methylene or azo linkage. Synth. Commun. 2024 54 21 1857 1870 10.1080/00397911.2024.2409875
    [Google Scholar]
  65. Elneairy M.A.A. Youssef E.G.N. Ebrahim S.A.A. Mohammad N.E.M. Abd El-Rahman N.M.S. Elhewaty A.S.M. Sanad S.M.H. Mekky A.E.M. MRSA inhibitory activity of some new pyrazolo[1,5-a]pyrimidines linked to arene and/or furan or thiophene units. Chem. Biodivers. 2025 22 1 e202402031 10.1002/cbdv.202402031 39284766
    [Google Scholar]
  66. Mekky A.E.M. Abdelbaath R.A. Abdelbaath R.A. Marie A.E. Arafa M.A. Halim E.E. Sanad S.M.H. New arene and/or heteroarene‐linked 1,3,4‐Oxadiazoles: Synthesis of potential methicillin‐resistant staphylococcus aureus and vancomycin‐resistant enterococcus inhibitors. ChemistrySelect 2024 9 36 e202403359 10.1002/slct.202403359
    [Google Scholar]
  67. Ahmed A.A.M. Mekky A.E.M. Sanad S.M.H. Synthesis of new bis(pyrazolo[1,5- a]pyrimidines) linked to different spacers with potential MurB inhibitory activity utilizing 1 H -pyrazole-3,5-diamines. Synth. Commun. 2025 55 1 19 31 10.1080/00397911.2024.2428653
    [Google Scholar]
  68. Sanad S.M.H. Ahmed A.A.M. Mekky A.E.M. Synthesis, in‐vitro and in‐silico study of novel thiazoles as potent antibacterial agents and MurB inhibitors. Arch. Pharm. 2020 353 4 1900309 10.1002/ardp.201900309 31967349
    [Google Scholar]
  69. Mekky A.E.M. El-Idreesy T.T. Sanad S.M.H. Chloramine trihydrate‐mediated tandem synthesis of new pyrrole and/or arene‐linked mono‐ and bis(1,3,4‐oxadiazole) hybrids as potential bacterial biofilm and MRSA inhibitors. Chem. Biodivers. 2022 19 8 e202200338 10.1002/cbdv.202200338 35818907
    [Google Scholar]
  70. Ahmed A.A.M. Mekky A.E.M. Sanad S.M.H. Effective synthesis of new benzo‐fused macrocyclic and thiamacrocyclic dilactams and related pyrazolo‐fused macrocycles. J. Heterocycl. Chem. 2022 59 2 286 296 10.1002/jhet.4383
    [Google Scholar]
  71. Sanad S.M.H. Mekky A.E.M. El-Idreesy T.T. Potential bacterial biofilm, MRSA, and DHFR inhibitors based on new morpholine-linked chromene-thiazole hybrids: One-pot synthesis and in silico study. J. Mol. Struct. 2022 1248 131476 10.1016/j.molstruc.2021.131476
    [Google Scholar]
  72. Lata S. Kaur R. Singh G. Bhandari D.D. Abbot V. Exploring the antimicrobial potential of novel 2-oxo-2-H-chromene conjugates with guanine, thiazole, and imidazole: Synthesis, characterization, and biological evaluation. Eur. J. Med. Chem. Rep. 2024 12 100179 10.1016/j.ejmcr.2024.100179
    [Google Scholar]
  73. Guan M. Zhu D. Wei J. He Z. Xiong L.T. Zeng Y. Song G. Deng X. Cui Z.N. Design and synthesis of aryl amide derivatives containing thiazole as type III secretion system inhibitors against pseudomonas aeruginosa. J. Agric. Food Chem. 2024 72 31 17210 17218 10.1021/acs.jafc.4c02277 39056370
    [Google Scholar]
  74. Sayed M.T. Elsharabasy S.A. Abdel-Aziem A. Synthesis and antimicrobial activity of new series of thiazoles, pyridines and pyrazoles based on coumarin moiety. Sci. Rep. 2023 13 1 9912 10.1038/s41598‑023‑36705‑0 37336955
    [Google Scholar]
  75. Mohammad H. Reddy P.V.N. Monteleone D. Mayhoub A.S. Cushman M. Seleem M.N. Synthesis and antibacterial evaluation of a novel series of synthetic phenylthiazole compounds against methicillin-resistant Staphylococcus aureus (MRSA). Eur. J. Med. Chem. 2015 94 306 316 10.1016/j.ejmech.2015.03.015 25771109
    [Google Scholar]
  76. Kamal A. Rahim A. Riyaz S. Poornachandra Y. Balakrishna M. Kumar C.G. Hussaini S.M.A. Sridhar B. Machiraju P.K. Regioselective synthesis, antimicrobial evaluation and theoretical studies of 2-styryl quinolines. Org. Biomol. Chem. 2015 13 5 1347 1357 10.1039/C4OB02277G 25465871
    [Google Scholar]
  77. Sanad S.M.H. Mekky A.E.M. Synthesis, in-vitro antibacterial and anticancer screening of novel nicotinonitrile-coumarin hybrids utilizing piperazine citrate. Synth. Commun. 2020 50 10 1468 1485 10.1080/00397911.2020.1743318
    [Google Scholar]
  78. Sanad S.M.H. Mekky A.E.M. Said A.Y. Elneairy M.A.A. Pyridine‐2(1 H)‐thiones: Versatile precursors for one‐pot synthesis of new nicotinonitrile‐thiazole hybrids. J. Heterocycl. Chem. 2021 58 7 1461 1471 10.1002/jhet.4272
    [Google Scholar]
  79. Al-Badri R.H.O. Mekky A.E.M. Sanad S.M.H. Abdelfattah A.M. New thiazole-based Schiff bases and their bis-analogues as potential MRSA and VRE inhibitors: One-pot synthesis, SAR, in vitro screening and in silico study. J. Mol. Struct. 2025 1330 141586 10.1016/j.molstruc.2025.141586
    [Google Scholar]
/content/journals/coc/10.2174/0113852728373744250630064554
Loading
/content/journals/coc/10.2174/0113852728373744250630064554
Loading

Data & Media loading...

Supplements

Supplementary Figs. () in the Supplemental material file present copies of 1H- and 13C-NMR spectra of all new products. Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test