Skip to content
2000
image of Eco-Friendly Synthesis of Acetoguanamine Crown Ethers, Determination of Antioxidant and DNA Damage-Protection Properties

Abstract

Crown ethers are commonly used for metal complexation due to their affinity for cations. These compounds have a hydrophobic outer cavity and a hydrophilic inner cavity. They show an interest in various elemental ions depending on the number, proportions, and diversity of functional groups and donor atoms. The research focuses on synthesizing and characterizing compounds containing different heteroatom-containing groups on the side group, and the investigation of antioxidant and DNA damage-protection properties. Acetoguanamine (2,4-diamino-6-methyl-1,3,5-triazine), a heterocyclic compound that belongs to the triazine class and acts as an intermediate in numerous pharmaceuticals, was synthesized in this study as a crown ether derivative. This was achieved using the S2 mechanism of 2,4-diamino-6-methyl-1,3,5-triazine and poly(ethylene) glycol dihalides. The reaction utilized a basic catalyst (CsCO) and a microwave-assisted synthesis method. The targeted acetoguanamine crown ether derivatives were synthesized using green chemistry's eco-friendly (microwave-assisted synthesis) method in mild conditions, with quite high yields. After purification, the synthesized macrocyclic 2,4-diamino-6-methyl-1,3,5-triazine crown ether derivatives were characterized structurally using Fourier-Transform Infrared Spectroscopy (FTIR), Nuclear Magnetic Resonance (NMR), and tandem mass spectrometry - Liquid Chromatography (LC-MS/MS) methods. The synthesized compounds were investigated for their antioxidant and DNA damage-protective properties. Experimental tests showed that among the compounds, only exhibited a radical scavenging effect (mean 5.62%), and none of the compounds affected the applied DNA plasmid, or demonstrated a DNA protection effect.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728372229250507120528
2025-05-23
2025-09-16
Loading full text...

Full text loading...

References

  1. Merzouki O. Arrousse N. El Barnossi A. Ech-chihbi E. Fernine Y. Iraqi Housseini A. Rais Z. Taleb M. Eco-friendly synthesis, characterization, in-silico ADMET and molecular docking analysis of novel carbazole derivatives as antibacterial and antifungal agents. J. Mol. Struct. 2023 1271 133966 10.1016/j.molstruc.2022.133966
    [Google Scholar]
  2. Canbolat M. Çalışır Ü. Çiçek B. Microwave-assisted synthesis of aromatic thiadiazol crown ethers and determination of complexation properties with metal ions by application of Job′s Plot method to conductometry. ChemistrySelect 2022 7 29 e202200944 10.1002/slct.202200944
    [Google Scholar]
  3. Çalışır Ü. Çiçek B. Doğan M. Microwave-assisted cross-coupling synthesis of aryl functionalized MWCNTs and investigation of hydrogen storage properties. Fuller. Nanotub. Carbon Nanostruct. 2021 29 11 899 906 10.1080/1536383X.2021.1913727
    [Google Scholar]
  4. Sapmaz A. Çalışır Ü. Akkemik E. Çiçek B. Microwave assisted synthesis of benzo-azacrown ethers and in vitro inhibition studies on hCA I–II. Russ. J. Gen. Chem. 2023 93 2 440 448 10.1134/S1070363223020275
    [Google Scholar]
  5. Calisir U. Çiçek B. Comparison of classic and microwave-assisted synthesis of benzo-thio crown ethers, and investigation of their ion pair extractions. J. Mol. Struct. 2017 1148 505 511 10.1016/j.molstruc.2017.07.081
    [Google Scholar]
  6. Gawande M.B. Shelke S.N. Zboril R. Varma R.S. Microwave-assisted chemistry: Synthetic applications for rapid assembly of nanomaterials and organics. Acc. Chem. Res. 2014 47 4 1338 1348 10.1021/ar400309b 24666323
    [Google Scholar]
  7. Henary M. Kananda C. Rotolo L. Savino B. Owens E.A. Cravotto G. Benefits and applications of microwave-assisted synthesis of nitrogen containing heterocycles in medicinal chemistry. RSC Advances 2020 10 24 14170 14197 10.1039/D0RA01378A 35498463
    [Google Scholar]
  8. Taherinia Z. Taherinia Z. Hajjami M. Ghorbani-Choghamarani A. Synthesis of Crown Ethers. Methodologies in Ether Synthesis. Royal Society of Chemistry 2024 153 160 10.1039/9781837675166‑00153
    [Google Scholar]
  9. Murashima T. Uchihara Y. Wakamori N. Uno H. Ogawa T. Ono N. The first preparation of crown ether-annulated porphyrin. Tetrahedron Lett. 1996 37 18 3133 3136 10.1016/0040‑4039(96)00509‑6
    [Google Scholar]
  10. Çakır Ü. Çiçek B. Extraction-ability and -selectivity of tetra-aza-crown ethers for transition metal cations. Trans. Met. Chem. 2004 29 3 263 268 10.1023/B:TMCH.0000020358.69194.82
    [Google Scholar]
  11. Çiçek B. Çalışır Ü. The investigation of complexation properties and hard-soft acid-base relationship between thiacrown ethers and metal ions. Lett. Org. Chem. 2016 13 8 572 577 10.2174/1570178613666160906105300
    [Google Scholar]
  12. Çiçek B. Yıldız A. Synthesis, metal ion complexation and computational studies of thio oxocrown ethers. Molecules 2011 16 10 8670 8683 10.3390/molecules16108670
    [Google Scholar]
  13. Aslan M. Çalışır Ü. Çiçek B. Comparison of microwave-assisted synthesis and steglich thioesterification for the modification of nanotubes. Curr. Org. Chem. 2025 29 2 144 152 10.2174/0113852728319332240806053131
    [Google Scholar]
  14. Zubenko A.D. Egorova B.V. Zamurueva L.S. Kalmykov S.N. Fedorova O.A. Synthesis of benzoaza-15(18)-crown-5(6) ethers and study of their complexes with lead(II). Mendeleev Commun. 2021 31 2 194 196 10.1016/j.mencom.2021.03.016
    [Google Scholar]
  15. Çalışır Ü. Synthesis and characterization of pyridine-pyrrole-modified carbon nanotube derivatives via ylides. Curr. Org. Chem. 2025 29 2 153 163 10.2174/0113852728319336240711055314
    [Google Scholar]
  16. Gellis A. Kovacic H. Boufatah N. Vanelle P. Synthesis and cytotoxicity evaluation of some benzimidazole-4,7-diones as bioreductive anticancer agents. Eur. J. Med. Chem. 2008 43 9 1858 1864 10.1016/j.ejmech.2007.11.020 18222567
    [Google Scholar]
  17. Ziafati A. Eshghi H. Sabzevari O. Microwave-assisted fast and efficient synthesis of some crown ethers. Chin. Chem. Lett. 2009 20 8 924 926 10.1016/j.cclet.2009.03.031
    [Google Scholar]
  18. Ziafati A. Sabzevari O. Heravi M.M. Facile and rapid synthesis of some crown ethers under microwave irradiation. Phosphorus Sulfur Silicon Relat. Elem. 2006 181 4 803 807 10.1080/10426500500271972
    [Google Scholar]
  19. Radwan A.A. Alanazi F.K. Alsarra I.A. Microwave irradiation-assisted synthesis of a novel crown ether crosslinked chitosan as a chelating agent for heavy metal ions (M(+n)). Molecules 2010 15 9 6257 6268 10.3390/molecules15096257 20877221
    [Google Scholar]
  20. Rostami E. Efficient route for the synthesis of new dinaphthosulfoxide aza crowns using ethyleneglycol under microwave (mw) irradiation: Macrocyclization is preferred to oligomerization under mw irradiation. Phosphorus Sulfur Silicon Relat. Elem. 2011 186 9 1853 1866 10.1080/10426507.2010.544270
    [Google Scholar]
  21. Torrejos R. Nisola G. Beltran A. Park M. Patil B. Lee S.P. Seo J. Chung W.J. Microwave-assisted synthesis of dibenzo-crown ethers. Lett. Org. Chem. 2014 11 2 109 115 10.2174/15701786113106660075
    [Google Scholar]
  22. Kumar D. Sharma N. Nair M. Synthesis, spectral and extended spectrum beta-lactamase studies of transition metal tetraaza macrocyclic complexes. J. Biol. Inorg. Chem. 2017 22 4 535 543 10.1007/s00775‑017‑1440‑9 28101682
    [Google Scholar]
  23. Rostami E. Ghaedi M. Zangooei M. Zare A. Synthesis of new aza thia crowns under microwave irradiation. J. Sulfur Chem. 2012 33 3 327 333 10.1080/17415993.2012.674131
    [Google Scholar]
  24. Pedersen C.J. Cyclic polyethers and their complexes with metal salts. J. Am. Chem. Soc. 1967 89 26 7017 7036 10.1021/ja01002a035
    [Google Scholar]
  25. Çiçek B. Çakır Ü. Erk Ç. The determination of crown-cation complexation behavior in dioxane/water mixtures by conductometric studies. Polym. Adv. Technol. 1998 9 12 831 836 10.1002/(SICI)1099‑1581(199812)9:12<831::AID‑PAT841>3.0.CO;2‑7
    [Google Scholar]
  26. Pedersen C.J. Macrocyclic polyethers: Dibenzo-18-crown-6 polyether and dicyclohexyl-18-crown-6 polyether. Organic Synthesis. John Wiley & Sons Hoboken, NJ, USA 2003 52
    [Google Scholar]
  27. Pedersen C.J. Izatt R.M. Christensen J. Synthetic multidentate macrocyclic compounds. Academic Press. 1978 1 51
    [Google Scholar]
  28. Vetrichelvan M. Lai Y.H. Mok K.F. Synthesis, characterization and crystal structures of Cu(II) and Pd(II) complexes of the pentadentate mixed donor macrocycle, [17]aneNO2S2. Inorg. Chim. Acta 2004 357 5 1397 1404 10.1016/j.ica.2003.11.004
    [Google Scholar]
  29. Clyne D.S. The synthesis of 14-membered macrocyclic ethers. Tetrahedron 1999 55 13659 13682 10.1016/S0040‑4020(99)00846‑7
    [Google Scholar]
  30. Boojar M.M.A. Shockravi A. On the cytotoxicity and status of oxidative stress of two novel synthesized tri-aza macrocyclic diamides as studied in the V79 cell lines. Bioorg. Med. Chem. 2007 15 10 3437 3444 10.1016/j.bmc.2007.03.015 17391968
    [Google Scholar]
  31. McIntosh A.J.S. Griffith J. Gräsvik J. Kuzmina O. Hallett J.P. Methods of Synthesis and Purification of Ionic Liquids. Application, Purification, and Recovery of Ionic Liquids. Elsevier Amsterdam 2016 59 99 10.1016/B978‑0‑444‑63713‑0.00002‑X
    [Google Scholar]
  32. Pappalardo S. Parisi M.F. Katritzky A.R. Ramsden C.A. Scriven E.F.V. Ten-membered rings or larger with one or more oxygen atoms. Comprehensive Heterocyclic Chemistry III. Elsevier Oxford 2008 667 749 10.1016/B978‑008044992‑0.01229‑3
    [Google Scholar]
  33. Katsuta S Ito Y Takeda Y Stabilities in nitromethane of alkali metal ion complexes with dibenzo-18-crown-6 and dibenzo-24-crown-8 and their transfer from nitromethane to other polar solvents. Inorg. Chim. Acta 2004 357 2 541 547 10.1016/j.ica.2003.08.011
    [Google Scholar]
  34. Diao K.S. Wang H.J. Qiu Z.M. A DFT study on the metal binding selectivity of 12-crown-4 and its heterocyclic analogs. J. Mol. Struct. THEOCHEM 2009 901 1-3 157 162 10.1016/j.theochem.2009.01.026
    [Google Scholar]
  35. Yu L. Li F. Wu J. Xie J. Li S. Development of the aza-crown ether metal complexes as artificial hydrolase. J. Inorg. Biochem. 2016 154 89 102 10.1016/j.jinorgbio.2015.09.011 26460062
    [Google Scholar]
  36. Çiçek B. Çakır Ü. Azizoglu A. The associations of macrocyclic ethers with cations in 1,4-dioxane/water mixtures; potentiometric Na+ and K+ binding measurements and computational study. J. Incl. Phenom. Macrocycl. Chem. 2012 72 1-2 121 125 10.1007/s10847‑011‑9949‑y
    [Google Scholar]
  37. Çakir Ü. Çiçek B. Erk Ç. The associaton constants of macrocyclic ether-cation interections in dioxane / water mixtures, part II. Molecular Recognition and Inclusion. Springer, Dordrecht, 1998, pp. 275-278 10.1007/978‑94‑011‑5288‑4_39
    [Google Scholar]
  38. Izatt R.M. Pawlak K. Bradshaw J.S. Bruening R.L. Thermodynamic and kinetic data for macrocycle interaction with cations, anions, and neutral molecules. Chem. Rev. 1995 95 7 2529 2586 10.1021/cr00039a010
    [Google Scholar]
  39. Bradshaw J.S. Izatt R.M. Crown ethers: The search for selective ion ligating agents. Acc. Chem. Res. 1997 30 8 338 345 10.1021/ar950211m
    [Google Scholar]
  40. Çalışır Ü. Çiçek B. Determination of crown ether complexation with metal ions by application Job’s Plot method to conductometry. J BAUN Inst Sci Technol. 2019 21 840 854
    [Google Scholar]
  41. Zhu S. Zhu S. Xing F. Anthraquinone-1,8-derived (pseudo-) crown and lariat ethers: Design and applications as fluorescent and chromogenic ion (pair) sensors. Chem. Asian J. 2022 17 17 e202200564 10.1002/asia.202200564 35763343
    [Google Scholar]
  42. Arshad N. Hameed A. Hashim J. Iqbal T. Munir I. Abid Ali S. Sharif M. Ali D. Javed S. M Hafizur R. Natural products embedded crown ethers as potent insulin secretory agents. Pak. J. Pharm. Sci. 2021 34 5(Special) 2003 2008 34862866
    [Google Scholar]
  43. Kondo M. Nakamura K. Krishnan C.G. Takizawa S. Abe T. Sasai H. Photoswitchable chiral phase transfer catalyst. ACS Catal. 2021 11 3 1863 1867 10.1021/acscatal.1c00057
    [Google Scholar]
  44. Akl M.A. Abd El-Aziz M.H. Polyvinyl chloride-based 18-crown-6, dibenzo18-crown-6 and calix-[6]-arene zinc(II)-potentiometric sensors. Arab. J. Chem. 2016 9 S878 S888 10.1016/j.arabjc.2011.09.009
    [Google Scholar]
  45. Esmaelpourfarkhani M. Rounaghi G.H. Arbab-Zavar M.H. Construction of a new aluminum(III) cation selective electrode based on 12-crown-4 as an ionophore. J. Braz. Chem. Soc. 2015 26 5 963 969 10.5935/0103‑5053.20150058
    [Google Scholar]
  46. Khaled E. Kamel M.S. Hassan H.N.A. Novel multi walled carbon nanotubes/crown ether based disposable sensors for determination of lead in water samples. Anal. Chem. Lett. 2015 5 6 329 337 10.1080/22297928.2016.1143393
    [Google Scholar]
  47. Wang J.C. Guo J.T. Gou R.T. Wang M.L. Wang Y.M. Crown ether-based porous organic polymers for the removal of environmental pollutants in water. J. Incl. Phenom. Macrocycl. Chem. 2024 104 1-2 1 6 10.1007/s10847‑023‑01216‑y
    [Google Scholar]
  48. Orbán I. Bakó P. Rapi Z. Carbohydrate-based azacrown ethers in asymmetric syntheses. Chemistry 2021 3 2 550 577 10.3390/chemistry3020039
    [Google Scholar]
  49. Nicoli F. Baroncini M. Silvi S. Groppi J. Credi A. Direct synthetic routes to functionalised crown ethers. Org. Chem. Front. 2021 8 19 5531 5549 10.1039/D1QO00699A 34603737
    [Google Scholar]
  50. Sadovskaya N.Y. Glushko V.N. Blokhina L.I. Belus’ S.K. Retivov V.M. Zhila M.Y. Cherdynceva T.A. Synthesis and studies of antimicrobial activity of azomethine crown ether derivatives and their copper complexes. Russ. Chem. Bull. 2022 71 6 1300 1304 10.1007/s11172‑022‑3534‑y
    [Google Scholar]
  51. Thi T.V.T. Nguyen M.L. Nguyen T.D. Le T.D. Truong H.H. Khrustalev V.N. Le T.A. Synthesis of the first dithiaaza-17-crown-5 ethers containing piperidin-4-one subunit. Chem. Heterocycl. Compd. 2021 57 10 1057 1060 10.1007/s10593‑021‑03022‑1
    [Google Scholar]
  52. Rostami E. Zangooei M. Ghaedi M. Synthesis of new aza thia crowns bearing 2,2-diaminodiphenyl disulfide. Phosphorus Sulfur Silicon Relat. Elem. 2014 189 3 394 399 10.1080/10426507.2013.798791
    [Google Scholar]
  53. Watanabe K. Seki N. Biology and development of dna-targeted drugs, focusing on synthetic lethality, dna repair, and epigenetic modifications for cancer: A review. Int. J. Mol. Sci. 2024 25 2 752 10.3390/ijms25020752 38255825
    [Google Scholar]
  54. Silva J.P. Gomes A.C. Coutinho O.P. Oxidative DNA damage protection and repair by polyphenolic compounds in PC12 cells. Eur. J. Pharmacol. 2008 601 1-3 50 60 10.1016/j.ejphar.2008.10.046 18996367
    [Google Scholar]
  55. Kaur P. Purewal S.S. Sandhu K.S. Kaur M. DNA damage protection: An excellent application of bioactive compounds. Bioresour. Bioprocess. 2019 6 1 2 10.1186/s40643‑019‑0237‑9
    [Google Scholar]
  56. Cheung-Ong K. Giaever G. Nislow C. DNA-damaging agents in cancer chemotherapy: Serendipity and chemical biology. Chem. Biol. 2013 20 5 648 659 10.1016/j.chembiol.2013.04.007 23706631
    [Google Scholar]
  57. Akkemik E. Çalışır Ü. Çiçek B. Effects of some thio-crown ethers on human erythrocyte carbonic anhydrase I-II isozymes activities. J BAUN Inst Sci Technol. 2017 19 192 199
    [Google Scholar]
  58. Akkemik E. Cicek B. Camadan Y. Calisir U. Onbasioglu Z. The determination of the carbonic anhydrases activators in vitro effect of mixed donor crown ethers. J. Biochem. Mol. Toxicol. 2018 32 3 e22032 10.1002/jbt.22032 29327806
    [Google Scholar]
  59. Çalışır Ü. Camadan Y. Çiçek B. Akkemik E. Eyüpoğlu V. Adem Ş. Synthesis, characterizations of aryl-substituted dithiodibenzothioate derivatives, and investigating their anti-Alzheimer’s properties. J. Biomol. Struct. Dyn. 2023 41 5 1828 1845 10.1080/07391102.2021.2024884 35021953
    [Google Scholar]
  60. Nakai K. Tsuruta D. What are reactive oxygen species, free radicals, and oxidative stress in skin diseases? Int. J. Mol. Sci. 2021 22 19 10799 10.3390/ijms221910799 34639139
    [Google Scholar]
  61. Gülçin I. Kireçci E. Akkemik E. Antioxidant, antibacterial, and anticandidal activities of an aquatic plant: Duckweed (Lemna minor L. Lemnaceae). Turk. J. Biol. 2010 34 175 188
    [Google Scholar]
  62. Gulcin İ. Alwasel S.H. DPPH radical scavenging assay. Processes 2023 11 8 2248 10.3390/pr11082248
    [Google Scholar]
  63. Baliyan S. Mukherjee R. Priyadarshini A. Vibhuti A. Gupta A. Pandey R.P. Chang C.M. Determination of antioxidants by DPPH radical scavenging activity and quantitative phytochemical analysis of ficus religiosa. Molecules 2022 27 4 1326 10.3390/molecules27041326 35209118
    [Google Scholar]
  64. Škrovánková S. Mišurcová L. Machů L. Henry J. Antioxidant activity and protecting health effects of common medicinal plants. Advances in Food and Nutrition Research Academic Press Cambridge, Massachusetts 2012 67 75 139 10.1016/B978‑0‑12‑394598‑3.00003‑4
    [Google Scholar]
  65. Quy Huong D. Nam P.C. Quang D.T. Ngo S.T. Duong T. Tam N.M. Evaluation of free radical scavenging ability of triazole-3-Thiol: A combination of experimental and theoretical approaches. ACS Omega 2024 9 22 24071 24081 10.1021/acsomega.4c02931 38854538
    [Google Scholar]
  66. Iglesias J. Medina I. Pazos M. Watson R.R. Preedy V.R. Zibadi S. Galloylation and polymerization: Role of structure to antioxidant activity of polyphenols in lipid systems. Polyphenols in Human Health and Disease. Academic Press San Diego 2014 323 338 10.1016/B978‑0‑12‑398456‑2.00025‑6
    [Google Scholar]
  67. Xiao Y. Ren Q. Wu L. The pharmacokinetic property and pharmacological activity of acteoside: A review. Biomed. Pharmacother. 2022 153 113296 10.1016/j.biopha.2022.113296 35724511
    [Google Scholar]
  68. Topal M. Gulcin İ. Evaluation of the in vitro antioxidant, antidiabetic and anticholinergic properties of rosmarinic acid from rosemary (Rosmarinus officinalis L.). Biocatal. Agric. Biotechnol. 2022 43 102417 10.1016/j.bcab.2022.102417
    [Google Scholar]
  69. Yılmaz Ö. Boyacıoğlu M. Investigation of antioxidant activity by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity method of some synthetic antioxidant. J Res Vet Med. 2020 39 67 72 10.30782/jrvm.795808
    [Google Scholar]
  70. Barontini M. Bernini R. Carastro I. Gentili P. Romani A. Synthesis and DPPH radical scavenging activity of novel compounds obtained from tyrosol and cinnamic acid derivatives. New J. Chem. 2014 38 2 809 816 10.1039/C3NJ01180A
    [Google Scholar]
  71. Gupta A.K. Kalpana S. Malik J.K. Synthesis and in vitro antioxidant activity of new 3-substituted-2-oxindole derivatives. Indian J. Pharm. Sci. 2012 74 5 481 486 10.4103/0250‑474X.108445 23716882
    [Google Scholar]
  72. Gülçin I. Antioxidant activity of caffeic acid (3,4-dihydroxycinnamic acid). Toxicology 2006 217 2-3 213 220 10.1016/j.tox.2005.09.011 16243424
    [Google Scholar]
  73. Priya Gogoi H. Kumar Verma A. Gogoi M. Goswami N. Barman P. Design, synthesis, and characterization of M(II)-Schiff base complexes containing 3,5-di-tert-butyl salicylaldehyde: DNA binding/cleavage, DPPH radical scavenging activity, cytotoxic activity, and catalytic activity investigation. Inorg. Chem. Commun. 2024 165 112462 10.1016/j.inoche.2024.112462
    [Google Scholar]
  74. Gülçin İ. Antioxidant and antiradical activities of l-carnitine. Life Sci. 2006 78 8 803 811 10.1016/j.lfs.2005.05.103 16253281
    [Google Scholar]
  75. Ullah F. Khan T.A. Iltaf J. Anwar S. Khan M.F.A. Khan M.R. Ullah S. Fayyaz ur Rehman M. Mustaqeem M. Kotwica-Mojzych K. Mojzych M. Heterocyclic crown ethers with potential biological and pharmacological properties: From synthesis to applications. Appl. Sci. 2022 12 3 1102 10.3390/app12031102
    [Google Scholar]
  76. Çiçek B. Ergün A. Gençer N. Synthesis and evaluation in vitro effects of some macrocyclic thiacrown ethers on erythrocyte carbonic anhydrase I and II. Asian J. Chem. 2012 24 8 3729
    [Google Scholar]
  77. Şahin Gül D. Ogutcu H. Hayvalı Z. Investigation of photophysical behaviours and antimicrobial activity of novel benzo-15-crown-5 substituted coumarin and chromone derivatives. J. Mol. Struct. 2020 1204 127569 10.1016/j.molstruc.2019.127569
    [Google Scholar]
  78. Du Y. Rao P. Li Y. Qiu J. Qiu W. Tang H. Potter M.A. Toxicological responses of the earthworm Eisenia fetida to 18-crown-6 under laboratory conditions. Bull. Environ. Contam. Toxicol. 2014 93 4 452 455 10.1007/s00128‑014‑1345‑z 25100182
    [Google Scholar]
  79. Yokoyama T. Mizuguchi M. Crown ethers as transthyretin amyloidogenesis inhibitors. J. Med. Chem. 2019 62 4 2076 2082 10.1021/acs.jmedchem.8b01700 30688456
    [Google Scholar]
  80. Li N. Chen F. Shen J. Zhang H. Wang T. Ye R. Li T. Loh T.P. Yang Y.Y. Zeng H. Buckyball-based spherical display of crown ethers for de novo custom design of ion transport selectivity. J. Am. Chem. Soc. 2020 142 50 21082 21090 10.1021/jacs.0c09655 33274928
    [Google Scholar]
  81. Varma R.S. Solvent-free organic syntheses. using supported reagents and microwave irradiation. Green Chem. 1999 1 43 55 10.1039/A808223E
    [Google Scholar]
  82. Paquette A.R. Boddy C.N. Macrocyclization strategies for the total synthesis of cyclic depsipeptides. Org. Biomol. Chem. 2023 21 40 8043 8053 10.1039/D3OB01229H 37750186
    [Google Scholar]
  83. Rosales-Hurtado M. Duvauchelle V. Bénimélis D. Ogawa-Okada M. Yamamoto N. Meffre P. Szurmant H. Benfodda Z. Microwave-assisted synthesis of biodegradable and antibacterial thiophene, furan and thiazole derivatives. Environ. Chem. Lett. 2023 21 1 47 53 10.1007/s10311‑022‑01522‑w
    [Google Scholar]
  84. Eletmany M.R. Barqi M.M. Al-Ghorbani M. Advancements in green chemistry : Microwave-assisted synthesis of poly- heterocyclic compounds in aqueous media. Int. J. Curr. Res. Sci. Eng. Technol. 2024 7 1 16 26 10.30967/IJCRSET/Mohamed‑R‑Eletmany/127
    [Google Scholar]
  85. Gao Y. Liu Y. Zou D. Microwave-assisted synthesis and environmental remediation: A review. Environ. Chem. Lett. 2023 21 4 2399 2416 10.1007/s10311‑023‑01599‑x
    [Google Scholar]
  86. Shalaby M.A. Fahim A.M. Rizk S.A. Microwave-assisted synthesis, antioxidant activity, docking simulation, and DFT analysis of different heterocyclic compounds. Sci. Rep. 2023 13 1 4999 10.1038/s41598‑023‑31995‑w 36973332
    [Google Scholar]
  87. Kanagathara N. Begam K.A. Marchewka M.K. Structural and vibrational analysis of 2, 4-diamino-6-methyl-1, 3, 5-triazin-1-ium-hydrogen oxalate. Materials Letters: X 2022 15 100163 10.1016/j.mlblux.2022.100163
    [Google Scholar]
  88. Lü J.M. Lin P.H. Yao Q. Chen C. Chemical and molecular mechanisms of antioxidants: Experimental approaches and model systems. J. Cell. Mol. Med. 2010 14 4 840 860 10.1111/j.1582‑4934.2009.00897.x 19754673
    [Google Scholar]
  89. Marino A. Battaglini M. Moles N. Ciofani G. Natural antioxidant compounds as potential pharmaceutical tools against neurodegenerative diseases. ACS Omega 2022 7 30 25974 25990 10.1021/acsomega.2c03291 35936442
    [Google Scholar]
  90. Munteanu I.G. Apetrei C. Analytical methods used in determining antioxidant activity: A review. Int. J. Mol. Sci. 2021 22 7 3380 10.3390/ijms22073380 33806141
    [Google Scholar]
  91. Özdemir O. Vinegar postbiotic solutions obtained from five red fruits processed using traditional methods exhibit different biochemical properties and antimicrobial and antioxidant effects. Food Sci. Nutr. 2024 12 12 10136 10147 10.1002/fsn3.4459 39723044
    [Google Scholar]
  92. Tegin İ. Hallaç B. Sabancı N. Sadik B. Fidan M. Yabalak E. A broad assessment of Eremurus spectabilis M. Bieb: Chemical and elemental composition, total phenolic and antimicrobial activity analysis, and quantum chemical calculations of radical scavenging potential. Int. J. Environ. Health Res. 2024 34 4 2124 2139 10.1080/09603123.2023.2214100 37199334
    [Google Scholar]
  93. Ghaffar N. Perveen A. Solvent polarity effects on extraction yield, phenolic content, and antioxidant properties of Malvaceae family seeds: A comparative study. New Zeal J Bot 2024 101 11 101454 10.1080/0028825X.2024.2392705
    [Google Scholar]
  94. Tegin İ. Yabalak E. Sadik B. Fidan M. Evaluation of chemical content and radical scavenging activity of allium vineale L. Extract and its elemental analysis. Rev. Roum. Chim. 2019 64 8 673 679 10.33224/rrch/2019.64.8.4
    [Google Scholar]
  95. Kebbi S. Noman L. Demirtas I. Bensouici C. Adem S. Benayache S. Benayache F. Seghiri R. Gok M. In vitro antioxidant and anticholinesterase activities of senecio massaicus essential oil and its molecular docking studies as a potential inhibitor of Covid-19 and alzheimer’s diseases. J. Biol. Act. Prod. Nat. 2021 11 4 380 394 10.1080/22311866.2021.1955006
    [Google Scholar]
  96. Djermane N. Gali L. Arhab R. Gherraf N. Bensouici C. Erenler R. Gok M. Abdessamed A. Chemical composition and in vitro evaluation of antioxidant, antimicrobial, and enzyme inhibitory activities of Erucaria uncata and Thymeleae hirsuta. Biocatal. Agric. Biotechnol. 2020 29 101834 10.1016/j.bcab.2020.101834
    [Google Scholar]
  97. Benguedouar K. Betina S.B. Erenler R. Genç N. Gok M. Sebti M. Madi N. Mekdade L. Gali L. Barkat M. Evaluation of the antioxidant properties and total phenolic content of a dairy product (yogurt) supplemented with Thymus willdenowii essential oil from Algeria. J. Food Meas. Charact. 2022 16 5 3568 3577 10.1007/s11694‑022‑01455‑6
    [Google Scholar]
  98. Ahmad M.S. Hawaiz F.E. Novel chalcone-based crown ethers: Synthesis, characterization, antioxidant activity, biological evaluations, and wastewater remediation. RSC Advances 2024 14 4 2369 2379 10.1039/D3RA08133H 38213971
    [Google Scholar]
  99. Liu J. Zhang T. Lu T. Qu L. Zhou H. Zhang Q. Ji L. DNA-binding and cleavage studies of macrocyclic copper(II) complexes. J. Inorg. Biochem. 2002 91 1 269 276 10.1016/S0162‑0134(02)00441‑5 12121785
    [Google Scholar]
  100. He X.Q. Lin Q.Y. Hu R.D. Lu X.H. Synthesis, characterization and DNA-binding studies on La(III) and Ce(III) complexes containing ligand of N-phenyl-2-pyridinecarboxamide. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2007 68 1 184 190 10.1016/j.saa.2006.11.012 17267278
    [Google Scholar]
  101. Akkemik E. Fidan M. Balaban M. Inal B. “ICP-OES and LC-ESI-MS/MS analyses, enzyme inhibition and DNA protection potential of Pelargonium Quercetorum agnew ”. Stud. Univ. Babes-Bolyai Chem. 2022 67 4 197 213 10.24193/subbchem.2022.4.13
    [Google Scholar]
  102. Li F. Feng F. Wu J. Xie J. Li S. DNA binding and cleavage properties of the Ce (III) complex of a diaza-crown ether. Prog. React. Kinet. Mech. 2016 41 1 39 47 10.3184/146867816X14490554565537
    [Google Scholar]
  103. Li S. Dai M. Zhang C. Jiang B. Xu J. Zhou D. Gu Z. DNA cleavage and condensation activities of mono- and binuclear hybrid complexes and regulation by graphene oxide. Molecules 2016 21 7 920 10.3390/molecules21070920 27428945
    [Google Scholar]
  104. Villaño D. Fernández-Pachón M.S. Moyá M.L. Troncoso A.M. García-Parrilla M.C. Radical scavenging ability of polyphenolic compounds towards DPPH free radical. Talanta 2007 71 1 230 235 10.1016/j.talanta.2006.03.050 19071293
    [Google Scholar]
  105. Yardan S. Çalışır Ü. Çiçek B. Mollaoğlu M Çiftçi H Synthesis And Characterization Of Some Triazine-Aza Crown Ethers. Proceedings of the 5. International Mediterranean Scientific Research Congress Mersin, Türkiye, January 13-14, 2024, pp. 895-900
    [Google Scholar]
/content/journals/coc/10.2174/0113852728372229250507120528
Loading
/content/journals/coc/10.2174/0113852728372229250507120528
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test