Skip to content
2000
image of Triazole Hybrids and their Parasitic Inhibition Activities: A Mini Review

Abstract

Many parasitic diseases elicit significant immune responses, although these responses can sometimes be excessive or dysregulated, contributing to immunopathology. Moreover, the emergence of parasite clones and gene mutations has led to clinical resistance to widely used antiparasitic drugs, resulting in treatment failures and reduced drug efficacy. Consequently, there is an urgent need for new and alternative antiprotozoal therapies, including the enhancement of existing drug structures. Triazole-based compounds, known for their excellent pharmacological profiles, have shown promise in treating a variety of parasitic infections. The combination of triazoles with other nitrogen/oxygen/sulfur-based heterocyclic compounds presents a promising strategy for the effective clinical management of parasitic diseases. This review highlights recent advancements in the development of triazole hybrids and their structure-activity relationships, providing valuable insights for the design of more potent antiparasitic drugs.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728371498250604114748
2025-06-27
2025-09-14
Loading full text...

Full text loading...

References

  1. Carlson C.J. Dallas T.A. Alexander L.W. Phelan A.L. Phillips A.J. What would it take to describe the global diversity of parasites? Proc. Biol. Sci. 2020 287 1939 20201841 10.1098/rspb.2020.1841 33203333
    [Google Scholar]
  2. Momčilović S. Cantacessi C. Arsić-Arsenijević V. Otranto D. Tasić-Otašević S. Rapid diagnosis of parasitic diseases: Current scenario and future needs. Clin. Microbiol. Infect. 2019 25 3 290 309 10.1016/j.cmi.2018.04.028 29730224
    [Google Scholar]
  3. Mesfin A. Gelaye W. Alemu G. Intestinal protozoa infections and associated factors among diarrheal under-five children in Borena district, central Ethiopia. Parasite Epidemiol. Control 2025 28 e00408 10.1016/j.parepi.2025.e00408 40008242
    [Google Scholar]
  4. Milner D.A. Malaria Pathogenesis. Cold Spring Harb Perspect Med. 2018 8 1 a025569 10.1101/cshperspect.a025569
    [Google Scholar]
  5. Burza S. Croft S.L. Boelaert M. Leishmaniasis. Lancet 2018 392 10151 951 970 10.1016/S0140‑6736(18)31204‑2 30126638
    [Google Scholar]
  6. Verjee M.A. Schistosomiasis: Still a cause of significant morbidity and mortality. Res. Rep. Trop. Med. 2020 10 153 163 10.2147/RRTM.S204345 32099508
    [Google Scholar]
  7. Venturelli A. Tagliazucchi L. Lima C. Venuti F. Malpezzi G. Magoulas G.E. Santarem N. Calogeropoulou T. Cordeiro-da-Silva A. Costi M.P. Current treatments to control african trypanosomiasis and one health perspective. Microorganisms 2022 10 7 1298 10.3390/microorganisms10071298 35889018
    [Google Scholar]
  8. Fletcher S.M. Stark D. Harkness J. Ellis J. Enteric protozoa in the developed world: A public health perspective. Clin. Microbiol. Rev. 2012 25 3 420 449 10.1128/CMR.05038‑11 22763633
    [Google Scholar]
  9. Giangaspero A. Gasser R.B. Human cyclosporiasis. Lancet Infect. Dis. 2019 19 7 e226 e236 10.1016/S1473‑3099(18)30789‑8 30885589
    [Google Scholar]
  10. World malaria report 2021. Geneva: World Health Organization 2021 Licence: CC BY-NC-SA 3.0 IGO. https://www.who.int/publications/i/item/9789240040496
    [Google Scholar]
  11. Plowe C.V. Malaria chemoprevention and drug resistance: A review of the literature and policy implications. Malar. J. 2022 21 1 104 10.1186/s12936‑022‑04115‑8 35331231
    [Google Scholar]
  12. Zuma N.H. Aucamp J. Janse van Rensburg H.D. N’Da D.D. Synthesis and in vitro antileishmanial activity of alkylene-linked nitrofurantoin-triazole hybrids. Eur. J. Med. Chem. 2023 246 115012 10.1016/j.ejmech.2022.115012 36516584
    [Google Scholar]
  13. Dinc R. Leishmania vaccines: The current situation with its promising aspect for the future. Korean J. Parasitol. 2022 60 6 379 391 10.3347/kjp.2022.60.6.379 36588414
    [Google Scholar]
  14. Murungi J.N. Karanja S. Wanjau P. A deterministic analysis of the effectiveness of non-clinical approaches in the control of transimission of schistosomiasis: case study of Mwea irrigation scheme, Kenya. European J. Mathem. Statistic. 2021 2 6 40 49 10.24018/ejmath.2021.2.6.70
    [Google Scholar]
  15. Bisangamo C.K. Epidemiology and Control of Schistosomiasis. IntechOpen 2022 10.5772/intechopen.105170
    [Google Scholar]
  16. Dabo A. Badawi H.M. Bary B. Doumbo O.K. Urinary schistosomiasis among preschool-aged children in Sahelian rural communities in Mali. Parasit. Vectors 2011 4 1 21 10.1186/1756‑3305‑4‑21 21338486
    [Google Scholar]
  17. Findlay G.M. Stevenson A.C. Investigations in the chemotherapy of malaria in west Africa. II. Malaria suppression: Quinine and mepacrine. Ann. Trop. Med. Parasitol. 1944 38 3-4 168 187 10.1080/00034983.1944.11685199
    [Google Scholar]
  18. Jianfang Z. A Detailed Chronological Record of Project 523 and the Discovery and Development of Qinghaosu (Artemisinin). Strategic Book Publishing 2013
    [Google Scholar]
  19. Nwaka S. Hudson A. Innovative lead discovery for tropical diseases: The role of product development partnerships. Nat. Rev. Drug Discov. 2006 5 12 939 948 10.1038/nrd2144 17080030
    [Google Scholar]
  20. Hasan G.M. Garg N. Dogra E. Surolia R. Ghosh P.C. Inhibition of the growth of Plasmodium falciparum in culture by stearylamine-phosphatidylcholine liposomes. J. Parasitol. Res. 2011 2011 1 9 10.1155/2011/120462 21772979
    [Google Scholar]
  21. Antila H. Buslaev P. Favela-Rosales F. Ferreira T.M. Gushchin I. Javanainen M. Kav B. Madsen J.J. Melcr J. Miettinen M.S. Määttä J. Nencini R. Ollila O.H.S. Piggot T.J. Headgroup structure and cation binding in phosphatidylserine lipid bilayers. J. Phys. Chem. B 2019 123 43 9066 9079 10.1021/acs.jpcb.9b06091 31574222
    [Google Scholar]
  22. Cubides J.R. Camargo-Ayala P.A. Niño C.H. Garzón-Ospina D. Ortega-Ortegón A. Ospina-Cantillo E. Orduz-Durán M.F. Patarroyo M.E. Patarroyo M.A. Simultaneous detection of Plasmodium vivax dhfr, dhps, mdr1 and crt-o resistance-associated mutations in the Colombian Amazonian region. Malar. J. 2018 17 1 130 10.1186/s12936‑018‑2286‑5 29580244
    [Google Scholar]
  23. Xia M. Santoso M. Moussa Z. Judeh Z.M.A. A Concise synthesis of pyrrole-based drug candidates from α-Hydroxyketones, 3-Oxobutanenitrile, and Anilines. Molecules 2023 28 3 1265 10.3390/molecules28031265 36770934
    [Google Scholar]
  24. Norman N.J. Bao S.T. Curts L. Hui T. Zheng S.L. Shou T. Zeghibe A. Burdick I. Fuehrer H. Huang A. Highly Selective N -alkylation of pyrazoles: Crystal structure evidence for attractive interactions. J. Org. Chem. 2022 87 15 10018 10025 10.1021/acs.joc.2c00980 35877958
    [Google Scholar]
  25. Yang X. Sun H. Maddili S.K. Li S. Yang R.G. Zhou C.H. Dihydropyrimidinone imidazoles as unique structural antibacterial agents for drug-resistant gram-negative pathogens. Eur. J. Med. Chem. 2022 232 114188 10.1016/j.ejmech.2022.114188 35168152
    [Google Scholar]
  26. Dai X.J. Xue L.P. Ji S.K. Zhou Y. Gao Y. Zheng Y.C. Liu H.M. Liu H.M. Triazole-fused pyrimidines in target-based anticancer drug discovery. Eur. J. Med. Chem. 2023 249 115101 10.1016/j.ejmech.2023.115101 36724635
    [Google Scholar]
  27. Kulabaş N. Tatar E. Bingöl Özakpınar Ö. Özsavcı D. Pannecouque C. De Clercq E. Küçükgüzel İ. Synthesis and antiproliferative evaluation of novel 2-(4H-1,2,4-triazole-3-ylthio)acetamide derivatives as inducers of apoptosis in cancer cells. Eur. J. Med. Chem. 2016 121 58 70 10.1016/j.ejmech.2016.05.017 27214512
    [Google Scholar]
  28. Deswal Y. Asija S. Kumar D. Jindal D.K. Chandan G. Panwar V. Saroya S. Kumar N. Transition metal complexes of triazole-based bioactive ligands: Synthesis, spectral characterization, antimicrobial, anticancer and molecular docking studies. Res. Chem. Intermed. 2022 48 2 703 729 10.1007/s11164‑021‑04621‑5
    [Google Scholar]
  29. El-Sayed W.A. Alminderej F.M. Mounier M.M. Nossier E.S. Saleh S.M. Kassem A.F. Novel 1,2,3-triazole-coumarin hybrid glycosides and their tetrazolyl analogues: Design, anticancer evaluation and molecular docking targeting EGFR, VEGFR-2 and CDK-2. Molecules 2022 27 7 2047 10.3390/molecules27072047 35408446
    [Google Scholar]
  30. Koparir P. Parlak A.E. Karatepe A. Omar R.A. Elucidation of potential anticancer, antioxidant and antimicrobial properties of some new triazole compounds bearing pyridine-4-yl moiety and cyclobutane ring. Arab. J. Chem. 2022 15 7 103957 10.1016/j.arabjc.2022.103957
    [Google Scholar]
  31. Nidhar M. Khanam S. Sonker P. Gupta P. Mahapatra A. Patil S. Yadav B.K. Singh R.K. Kumar Tewari A. Click inspired novel pyrazole-triazole-persulfonimide & pyrazole-triazole-aryl derivatives; Design, synthesis, DPP-4 inhibitor with potential anti-diabetic agents. Bioorg. Chem. 2022 120 105586 10.1016/j.bioorg.2021.105586 35051706
    [Google Scholar]
  32. da Silva E.F. Antunes Fernandes K.H. Diedrich D. Gotardi J. Freire Franco M.S. Tomich de Paula da Silva C.H. Duarte de Souza A.P. Baggio Gnoatto S.C. New triazole-substituted triterpene derivatives exhibiting anti-RSV activity: Synthesis, biological evaluation, and molecular modeling. Beilstein J. Org. Chem. 2022 18 1524 1531 10.3762/bjoc.18.161 36447520
    [Google Scholar]
  33. de Macedo-Silva S. Souza W. Rodrigues J. Sterol biosynthesis pathway as an alternative for the anti-protozoan parasite chemotherapy. Curr. Med. Chem. 2015 22 18 2186 2198 10.2174/0929867322666150319120337 25787966
    [Google Scholar]
  34. Tapaninen T. Olkkola A.M. Tornio A. Neuvonen M. Elonen E. Neuvonen P.J. Niemi M. Backman J.T. itraconazole increases ibrutinib exposure 10-fold and reduces interindividual variation: A potentially beneficial drug-drug interaction. Clin. Transl. Sci. 2020 13 2 345 351 10.1111/cts.12716 31664782
    [Google Scholar]
  35. Ravindar L. Hasbullah S.A. Rakesh K.P. Hassan N.I. Triazole hybrid compounds: A new frontier in malaria treatment. Eur. J. Med. Chem. 2023 259 115694 10.1016/j.ejmech.2023.115694 37556947
    [Google Scholar]
  36. Abdul Rahman S.M. Bhatti J.S. Thareja S. Monga V. Current development of 1,2,3-triazole derived potential antimalarial scaffolds: Structure- activity relationship (SAR) and bioactive compounds. Eur. J. Med. Chem. 2023 259 115699 10.1016/j.ejmech.2023.115699 37542987
    [Google Scholar]
  37. Li D. He C. Wang M. Liu H. Liu R. Xu L. Toxicity of ribavirin to Spodoptera litura by inhibiting the juvenile hormone. J. Agric. Food Chem. 2022 70 10 3117 3126 10.1021/acs.jafc.1c06172 35229607
    [Google Scholar]
  38. Abdelsalam M.M. Bedair M.A. Hassan A.M. Heakal B.H. Younis A. Elbialy Z.I. Badawy M.A. Fawzy H.E.D. Fareed S.A. Green synthesis, electrochemical, and DFT studies on the corrosion inhibition of steel by some novel triazole Schiff base derivatives in hydrochloric acid solution. Arab. J. Chem. 2022 15 1 103491 10.1016/j.arabjc.2021.103491
    [Google Scholar]
  39. Wedian F. Mhaidat I. Braik N.A. Al-Mazaideh G.M. A corrosion inhibitor for aluminum by novel synthesized triazole compounds in basic medium. International J. Corrosion. Scale. Inhibition. 2022 11 1 364 381 10.17675/2305‑6894‑2022‑11‑1‑22
    [Google Scholar]
  40. Pertino M.W. F de la Torre A. Schmeda-Hirschmann G. Vega C. Rolón M. Coronel C. Rojas de Arias A. Leal López K. Carranza-Rosales P. Viveros Valdez E. Synthesis, trypanocidal and anti-leishmania activity of new triazole-lapachol and nor-lapachol hybrids. Bioorg. Chem. 2020 103 104122 10.1016/j.bioorg.2020.104122 32745754
    [Google Scholar]
  41. Zuma N.H. Aucamp J. Viljoen M. N’Da D.D. Synthesis, in vitro antileishmanial efficacy and hit/lead identification of nitrofurantoin-triazole hybrids. ChemMedChem 2022 17 10 e202200023 10.1002/cmdc.202200023 35388649
    [Google Scholar]
  42. Martinez M.N. Amidon G.L. A mechanistic approach to understanding the factors affecting drug absorption: A review of fundamentals. J. Clin. Pharmacol. 2002 42 6 620 643 10.1177/00970002042006005 12043951
    [Google Scholar]
  43. Boechat N. Ferreira M.L.G. Pinheiro L.C.S. Jesus A.M.L. Leite M.M.M. Júnior C.C.S. Aguiar A.C.C. de Andrade I.M. Krettli A.U. New compounds hybrids 1h-1,2,3-triazole-quinoline against Plasmodium falciparum. Chem. Biol. Drug Des. 2014 84 3 325 332 10.1111/cbdd.12321 24803084
    [Google Scholar]
  44. Manohar S. Khan S.I. Rawat D.S. Synthesis of 4‐aminoquinoline‐1,2,3‐triazole and 4‐aminoquinoline‐1,2,3‐triazole‐1,3,5‐triazine hybrids as potential antimalarial agents. Chem. Biol. Drug Des. 2011 78 1 124 136 10.1111/j.1747‑0285.2011.01115.x 21457474
    [Google Scholar]
  45. Singh A. Kalamuddin M. Mohmmed A. Malhotra P. Hoda N. Quinoline-triazole hybrids inhibit falcipain-2 and arrest the development of Plasmodium falciparum at the trophozoite stage. RSC Advances 2019 9 67 39410 39421 10.1039/C9RA06571G 35540629
    [Google Scholar]
  46. Glanzmann N. Antinarelli L.M.R. da Costa Nunes I.K. Pereira H.M.G. Coelho E.A.F. Coimbra E.S. da Silva A.D. Synthesis and biological activity of novel 4-aminoquinoline/1,2,3-triazole hybrids against Leishmania amazonensis. Biomed. Pharmacother. 2021 141 111857 10.1016/j.biopha.2021.111857 34323702
    [Google Scholar]
  47. Wadi I. Prasad D. Batra N. Srivastava K. Anvikar A.R. Valecha N. Nath M. Targeting asexual and sexual blood stages of the human malaria parasite P. falciparum with 7-chloroquinoline-based 1,2,3-triazoles. ChemMedChem 2019 14 4 484 493 10.1002/cmdc.201800728 30609264
    [Google Scholar]
  48. Adigun R.A. Malan F.P. Balogun M.O. October N. Design, synthesis, and in silico-in vitro antimalarial evaluation of 1,2,3-triazole-linked dihydropyrimidinone quinoline hybrids. Struct. Chem. 2023 34 6 2065 2082 10.1007/s11224‑023‑02142‑y
    [Google Scholar]
  49. Horn C.M. Aucamp J. Smit F.J. Seldon R. Jordaan A. Warner D.F. N’Da D.D. Synthesis and in vitro antimycobacterial and antileishmanial activities of hydroquinone-triazole hybrids. Med. Chem. Res. 2020 29 8 1387 1399 10.1007/s00044‑020‑02553‑0
    [Google Scholar]
  50. Cassamale T.B. Costa E.C. Carvalho D.B. Cassemiro N.S. Tomazela C.C. Marques M.C.S. Ojeda M. Matos M.F.C. Albuquerque S. Arruda C.C.P. Baroni A.C.M. Synthesis and antitrypanosomatid activity of 1,4-Diaryl-1,2,3-triazole analogues of neolignans veraguensin, grandisin and machilin G. J. Braz. Chem. Soc. 2016 27 1217 1228 10.5935/0103‑5053.20160017
    [Google Scholar]
  51. Cardozo Pinto de Arruda C. de Jesus Hardoim D. Silva Rizk Y. da Silva Freitas de Souza C. Zaverucha do Valle T. Bento Carvalho D. Nosomi Taniwaki N. de Morais Baroni A.C. da Silva Calabrese K. A triazole hybrid of neolignans as a potential antileishmanial agent by triggering mitochondrial dysfunction. Molecules 2020 25 1 37 10.3390/molecules25010037 33374738
    [Google Scholar]
  52. Raj R. Singh P. Haberkern N.T. Faucher R.M. Patel N. Land K.M. Kumar V. Synthesis of 1H-1,2,3-triazole linked β-lactam–isatin bi-functional hybrids and preliminary analysis of in vitro activity against the protozoal parasite Trichomonas vaginalis. Eur. J. Med. Chem. 2013 63 897 906 10.1016/j.ejmech.2013.03.019 23631874
    [Google Scholar]
  53. Lee W.C. Cheong F.W. Amir A. Lai M.Y. Tan J.H. Phang W.K. Shahari S. Lau Y.L. Plasmodium knowlesi: The game changer for malaria eradication. Malar. J. 2022 21 1 140 10.1186/s12936‑022‑04131‑8 35505339
    [Google Scholar]
  54. Rezali N.S. Zahrin N.A. Ali A.H. Ling N.Y. Agustar H.K. Ling L.Y. Antimalarial assessment of certain 1,2,4-triazoles and benzoquinolones against Plasmodium knowlesi A1H1. J. Sci. Mathem. Lett. 2023 11 1 43 50 10.37134/jsml.vol11.1.6.2023
    [Google Scholar]
  55. Mondal B. Gupta V.K. Hansda B. Bhoumik A. Mondal T. Majumder H.K. Edwards-Gayle C.J.C. Hamley I.W. Jaisankar P. Banerjee A. Amino acid containing amphiphilic hydrogelators with antibacterial and antiparasitic activities. Soft Matter 2022 18 37 7201 7216 10.1039/D2SM00562J 36098333
    [Google Scholar]
  56. Maji K. Abbasi M. Podder D. Datta R. Haldar D. Potential antileishmanial activity of a triazole-based hybrid peptide against Leishmania major. ChemistrySelect 2018 3 36 10220 10225 10.1002/slct.201802002
    [Google Scholar]
  57. Andrews K.T. Fisher G.M. Sumanadasa S.D.M. Skinner-Adams T. Moeker J. Lopez M. Poulsen S.A. Antimalarial activity of compounds comprising a primary benzene sulfonamide fragment. Bioorg. Med. Chem. Lett. 2013 23 22 6114 6117 10.1016/j.bmcl.2013.09.015 24084158
    [Google Scholar]
  58. Ekoh O.C. Okoro U. Ugwu D. Ali R. Okafor S. Ugwuja D. Attah S. Novel dipeptides bearing sulfonamide as antimalarial and antitrypanosomal agents: Synthesis and molecular docking. Med. Chem. 2022 18 3 394 405 10.2174/1573406417666210604101201 34097595
    [Google Scholar]
  59. Kumar G. Tanwar O. Kumar J. Akhter M. Sharma S. Pillai C.R. Alam M.M. Zama M.S. Pyrazole-pyrazoline as promising novel antimalarial agents: A mechanistic study. Eur. J. Med. Chem. 2018 149 139 147 10.1016/j.ejmech.2018.01.082 29499486
    [Google Scholar]
  60. Yang Y. Hu D. Wang S. Wang Z. Zu G. Song B. First discovery of novel cytosine derivatives containing a sulfonamide moiety as potential antiviral agents. J. Agric. Food Chem. 2022 70 20 6026 6036 10.1021/acs.jafc.2c00922 35575698
    [Google Scholar]
  61. Devi K. Awasthi P. Isoleucine with secondary sulfonamide functionality as anticancer, antibacterial and antifungal agents. J. Biomol. Struct. Dyn. 2022 40 15 7052 7069 10.1080/07391102.2021.1893818 33704017
    [Google Scholar]
  62. Boechat N. Pinheiro L.C.S. Santos-Filho O.A. Silva I.C. Design and synthesis of new N-(5-trifluoromethyl)-1H-1,2,4-triazol-3-yl benzenesulfonamides as possible antimalarial prototypes. Molecules 2011 16 9 8083 8097 10.3390/molecules16098083 21934646
    [Google Scholar]
  63. Pathak A. Mårtensson A. Gawariker S. Sharma A. Diwan V. Purohit M. Ursing J. Stable high frequencies of sulfadoxine–pyrimethamine resistance associated mutations and absence of K13 mutations in Plasmodium falciparum 3 and 4 years after the introduction of artesunate plus sulfadoxine–pyrimethamine in Ujjain, Madhya Pradesh, India. Malar. J. 2020 19 1 290 10.1186/s12936‑020‑03274‑w 32795288
    [Google Scholar]
  64. Batra N. Rajendran V. Wadi I. Lathwal A. Dutta R.K. Ghosh P.C. Gupta R.D. Nath M. Synthesis, characterization, and antiplasmodial efficacy of sulfonamide‐appended [1,2,3]‐triazoles. J. Heterocycl. Chem. 2020 57 4 1625 1636 10.1002/jhet.3888
    [Google Scholar]
  65. Batra N. Rajendran V. Agarwal D. Wadi I. Ghosh P.C. Gupta R.D. Nath M. Synthesis and antimalarial evaluation of [1,2,3]‐triazole‐tethered sulfonamide‐berberine hybrids. ChemistrySelect 2018 3 34 9790 9793 10.1002/slct.201801905
    [Google Scholar]
  66. Karpina V.R. Kovalenko S.S. Kovalenko S.M. Drushlyak O.G. Bunyatyan N.D. Georgiyants V.A. Ivanov V.V. Langer T. Maes L. A novel series of [1, 2, 4] triazolo [4, 3-a] pyridine sulfonamides as potential antimalarial agents: in silico studies, synthesis and in vitro evaluation. Molecules 2020 25 19 4485 10.3390/molecules25194485 33007887
    [Google Scholar]
  67. Rubab L. Afroz S. Ahmad S. Hussain S. Nawaz I. Irfan A. Batool F. Kotwica-Mojzych K. Mojzych M. An update on synthesis of coumarin sulfonamides as enzyme inhibitors and anticancer agents. Molecules 2022 27 5 1604 10.3390/molecules27051604 35268704
    [Google Scholar]
  68. Pan Y. Liu T. Wang X. Sun J. Research progress of coumarins and their derivatives in the treatment of diabetes. J. Enzyme Inhib. Med. Chem. 2022 37 1 616 628 10.1080/14756366.2021.2024526 35067136
    [Google Scholar]
  69. Lei L. Xue Y. Liu Z. Peng S. He Y. Zhang Y. Fang R. Wang J. Luo Z. Yao G. Zhang J. Zhang G. Song H. Zhang Y. Coumarin derivatives from Ainsliaea fragrans and their anticoagulant activity. Sci. Rep. 2015 5 1 13544 10.1038/srep13544 26315062
    [Google Scholar]
  70. Mbaba M. Dingle L.M.K. Zulu A.I. Laming D. Swart T. de la Mare J.A. Hoppe H.C. Edkins A.L. Khanye S.D. Coumarin-annulated ferrocenyl 1, 3-oxazine derivatives possessing in vitro antimalarial and antitrypanosomal potency. Molecules 2021 26 5 1333 10.3390/molecules26051333 33801371
    [Google Scholar]
  71. Patil S.M. Martiz R.M. Satish A.M. Shbeer A.M. Ageel M. Al-Ghorbani M. Ranganatha L. V Parameswaran S. Ramu R. Discovery of novel coumarin derivatives as potential dual inhibitors against α-glucosidase and α-amylase for the management of post-prandial hyperglycemia via molecular modelling approaches. Molecules 2022 27 12 3888 10.3390/molecules27123888 35745030
    [Google Scholar]
  72. Yadav N. Agarwal D. Kumar S. Dixit A.K. Gupta R.D. Awasthi S.K. In vitro antiplasmodial efficacy of synthetic coumarin-triazole analogs. Eur. J. Med. Chem. 2018 145 735 745 10.1016/j.ejmech.2018.01.017 29366931
    [Google Scholar]
  73. Kaushik C.P. Chahal M. Synthesis, antimalarial and antioxidant activity of coumarin appended 1,4-disubstituted 1,2,3-triazoles. Monatsh. Chem. 2021 152 8 1001 1012 10.1007/s00706‑021‑02821‑8
    [Google Scholar]
  74. Balabadra S. Kotni M. Manga V. Allanki A.D. Prasad R. Sijwali P.S. Synthesis and evaluation of naphthyl bearing 1,2,3-triazole analogs as antiplasmodial agents, cytotoxicity and docking studies. Bioorg. Med. Chem. 2017 25 1 221 232 10.1016/j.bmc.2016.10.029 27816268
    [Google Scholar]
  75. Oramas-Royo S. López-Rojas P. Amesty Á. Gutiérrez D. Flores N. Martín-Rodríguez P. Fernández-Pérez L. Estévez-Braun A. Synthesis and antiplasmodial activity of 1,2,3-triazole-naphthoquinone conjugates. Molecules 2019 24 21 3917 10.3390/molecules24213917 31671684
    [Google Scholar]
/content/journals/coc/10.2174/0113852728371498250604114748
Loading
/content/journals/coc/10.2174/0113852728371498250604114748
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test