Skip to content
2000
Volume 30, Issue 4
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

Many parasitic diseases elicit significant immune responses, although these responses can sometimes be excessive or dysregulated, contributing to immunopathology. Moreover, the emergence of parasite clones and gene mutations has led to clinical resistance to widely used antiparasitic drugs, resulting in treatment failures and reduced drug efficacy. Consequently, there is an urgent need for new and alternative antiprotozoal therapies, including the enhancement of existing drug structures. Triazole-based compounds, known for their excellent pharmacological profiles, have shown promise in treating a variety of parasitic infections. The combination of triazoles with other nitrogen/oxygen/sulfur-based heterocyclic compounds presents a promising strategy for the effective clinical management of parasitic diseases. This review highlights recent advancements in the development of triazole hybrids and their structure-activity relationships, providing valuable insights for the design of more potent antiparasitic drugs.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728371498250604114748
2025-06-27
2026-01-07
Loading full text...

Full text loading...

References

  1. CarlsonC.J. DallasT.A. AlexanderL.W. PhelanA.L. PhillipsA.J. What would it take to describe the global diversity of parasites?Proc Biol. Sci.202028719392020184110.1098/rspb.2020.184133203333
    [Google Scholar]
  2. MomčilovićS. CantacessiC. Arsić-ArsenijevićV. OtrantoD. Tasić-OtaševićS. Rapid diagnosis of parasitic diseases: Current scenario and future needs.Clin. Microbiol. Infect.201925329030910.1016/j.cmi.2018.04.02829730224
    [Google Scholar]
  3. MesfinA. GelayeW. AlemuG. Intestinal protozoa infections and associated factors among diarrheal under-five children in Borena district, central Ethiopia.Parasite Epidemiol. Control202528e0040810.1016/j.parepi.2025.e0040840008242
    [Google Scholar]
  4. MilnerD.A. Malaria Pathogenesis.Cold Spring Harb. Perspect. Med.201881a02556910.1101/cshperspect.a025569
    [Google Scholar]
  5. BurzaS. CroftS.L. BoelaertM. Leishmaniasis.Lancet20183921015195197010.1016/S0140‑6736(18)31204‑230126638
    [Google Scholar]
  6. VerjeeM.A. Schistosomiasis: Still a cause of significant morbidity and mortality.Res. Rep. Trop. Med.20191015316310.2147/RRTM.S20434532099508
    [Google Scholar]
  7. VenturelliA. TagliazucchiL. LimaC. VenutiF. MalpezziG. MagoulasG.E. SantaremN. CalogeropoulouT. Cordeiro-da-SilvaA. CostiM.P. Current treatments to control african trypanosomiasis and one health perspective.Microorganisms2022107129810.3390/microorganisms1007129835889018
    [Google Scholar]
  8. FletcherS.M. StarkD. HarknessJ. EllisJ. Enteric protozoa in the developed world: A public health perspective.Clin. Microbiol. Rev.201225342044910.1128/CMR.05038‑1122763633
    [Google Scholar]
  9. GiangasperoA. GasserR.B. Human cyclosporiasis.Lancet Infect. Dis.2019197e226e23610.1016/S1473‑3099(18)30789‑830885589
    [Google Scholar]
  10. World malaria report 2021. Geneva: World Health Organization; 2021. Licence: CC BY-NC-SA 3.0 IGO.https://www.who.int/publications/i/item/9789240040496
  11. PloweC.V. Malaria chemoprevention and drug resistance: A review of the literature and policy implications.Malar. J.202221110410.1186/s12936‑022‑04115‑835331231
    [Google Scholar]
  12. ZumaN.H. AucampJ. Janse van RensburgH.D. N’DaD.D. Synthesis and in vitro antileishmanial activity of alkylene-linked nitrofurantoin-triazole hybrids.Eur. J. Med. Chem.202324611501210.1016/j.ejmech.2022.11501236516584
    [Google Scholar]
  13. DincR. Leishmania vaccines: The current situation with its promising aspect for the future.Korean J. Parasitol.202260637939110.3347/kjp.2022.60.6.37936588414
    [Google Scholar]
  14. MurungiJ.N. KaranjaS. WanjauP. A deterministic analysis of the effectiveness of non-clinical approaches in the control of transimission of schistosomiasis: Case study of Mwea irrigation scheme, Kenya.European J. Mathem. Statistic202126404910.24018/ejmath.2021.2.6.70
    [Google Scholar]
  15. BisangamoC.K. Epidemiology and Control. of Schistosomiasis.IntechOpen202210.5772/intechopen.105170
    [Google Scholar]
  16. DaboA. BadawiH.M. BaryB. DoumboO.K. Urinary schistosomiasis among preschool-aged children in Sahelian rural communities in Mali.Parasit. Vectors2011412110.1186/1756‑3305‑4‑2121338486
    [Google Scholar]
  17. FindlayG.M. StevensonA.C. Investigations in the chemotherapy of malaria in west Africa. II. Malaria suppression: Quinine and mepacrine.Ann. Trop. Med. Parasitol.1944383-416818710.1080/00034983.1944.11685199
    [Google Scholar]
  18. JianfangZ. A Detailed Chronological Record of Project 523 and the Discovery and Development of Qinghaosu (Artemisinin).Strategic Book Publishing2013
    [Google Scholar]
  19. NwakaS. HudsonA. Innovative lead discovery for tropical diseases: The role of product development partnerships.Nat. Rev. Drug Discov.200651293994810.1038/nrd214417080030
    [Google Scholar]
  20. HasanG.M. GargN. DograE. SuroliaR. GhoshP.C. Inhibition of the growth of Plasmodium falciparum in culture by stearylamine-phosphatidylcholine liposomes.J. Parasitol. Res.201120111910.1155/2011/12046221772979
    [Google Scholar]
  21. AntilaH. BuslaevP. Favela-RosalesF. FerreiraT.M. GushchinI. JavanainenM. KavB. MadsenJ.J. MelcrJ. MiettinenM.S. MäättäJ. NenciniR. OllilaO.H.S. PiggotT.J. Headgroup structure and cation binding in phosphatidylserine lipid bilayers.J. Phys. Chem. B2019123439066907910.1021/acs.jpcb.9b0609131574222
    [Google Scholar]
  22. CubidesJ.R. Camargo-AyalaP.A. NiñoC.H. Garzón-OspinaD. Ortega-OrtegónA. Ospina-CantilloE. Orduz-DuránM.F. PatarroyoM.E. PatarroyoM.A. Simultaneous detection of Plasmodium vivax dhfr, dhps, mdr1 and crt-o resistance-associated mutations in the Colombian Amazonian region.Malar. J.201817113010.1186/s12936‑018‑2286‑529580244
    [Google Scholar]
  23. XiaM. SantosoM. MoussaZ. JudehZ.M.A. A Concise synthesis of pyrrole-based drug candidates from α-Hydroxyketones, 3-Oxobutanenitrile, and Anilines.Molecules2023283126510.3390/molecules2803126536770934
    [Google Scholar]
  24. NormanN.J. BaoS.T. CurtsL. HuiT. ZhengS.L. ShouT. ZeghibeA. BurdickI. FuehrerH. HuangA. Highly Selective N -alkylation of pyrazoles: Crystal structure evidence for attractive interactions.J. Org. Chem.20228715100181002510.1021/acs.joc.2c0098035877958
    [Google Scholar]
  25. YangX. SunH. MaddiliS.K. LiS. YangR.G. ZhouC.H. Dihydropyrimidinone imidazoles as unique structural antibacterial agents for drug-resistant gram-negative pathogens.Eur. J. Med. Chem.202223211418810.1016/j.ejmech.2022.11418835168152
    [Google Scholar]
  26. DaiX.J. XueL.P. JiS.K. ZhouY. GaoY. ZhengY.C. LiuH.M. LiuH.M. Triazole-fused pyrimidines in target-based anticancer drug discovery.Eur. J. Med. Chem.202324911510110.1016/j.ejmech.2023.11510136724635
    [Google Scholar]
  27. KulabaşN. TatarE. Bingöl ÖzakpınarÖ. ÖzsavcıD. PannecouqueC. De ClercqE. Küçükgüzelİ. Synthesis and antiproliferative evaluation of novel 2-(4H-1,2,4-triazole-3-ylthio)acetamide derivatives as inducers of apoptosis in cancer cells.Eur. J. Med. Chem.2016121587010.1016/j.ejmech.2016.05.01727214512
    [Google Scholar]
  28. DeswalY. AsijaS. KumarD. JindalD.K. ChandanG. PanwarV. SaroyaS. KumarN. Transition metal complexes of triazole-based bioactive ligands: Synthesis, spectral characterization, antimicrobial, anticancer and molecular docking studies.Res. Chem. Intermed.202248270372910.1007/s11164‑021‑04621‑5
    [Google Scholar]
  29. El-SayedW.A. AlminderejF.M. MounierM.M. NossierE.S. SalehS.M. KassemA.F. Novel 1,2,3-triazole-coumarin hybrid glycosides and their tetrazolyl analogues: Design, anticancer evaluation and molecular docking targeting EGFR, VEGFR-2 and CDK-2.Molecules2022277204710.3390/molecules2707204735408446
    [Google Scholar]
  30. KoparirP. ParlakA.E. KaratepeA. OmarR.A. Elucidation of potential anticancer, antioxidant and antimicrobial properties of some new triazole compounds bearing pyridine-4-yl moiety and cyclobutane ring.Arab. J. Chem.202215710395710.1016/j.arabjc.2022.103957
    [Google Scholar]
  31. NidharM. KhanamS. SonkerP. GuptaP. MahapatraA. PatilS. YadavB.K. SinghR.K. Kumar TewariA. Click inspired novel pyrazole-triazole-persulfonimide & pyrazole-triazole-aryl derivatives; Design, synthesis, DPP-4 inhibitor with potential anti-diabetic agents.Bioorg. Chem.202212010558610.1016/j.bioorg.2021.10558635051706
    [Google Scholar]
  32. da SilvaE.F. Antunes FernandesK.H. DiedrichD. GotardiJ. Freire FrancoM.S. Tomich de Paula da SilvaC.H. Duarte de SouzaA.P. Baggio GnoattoS.C. New triazole-substituted triterpene derivatives exhibiting anti-RSV activity: Synthesis, biological evaluation, and molecular modeling.Beilstein J. Org. Chem.2022181524153110.3762/bjoc.18.16136447520
    [Google Scholar]
  33. de Macedo-SilvaS. SouzaW. RodriguesJ. Sterol biosynthesis pathway as an alternative for the anti-protozoan parasite chemotherapy.Curr. Med. Chem.201522182186219810.2174/092986732266615031912033725787966
    [Google Scholar]
  34. TapaninenT. OlkkolaA.M. TornioA. NeuvonenM. ElonenE. NeuvonenP.J. NiemiM. BackmanJ.T. itraconazole increases ibrutinib exposure 10-fold and reduces interindividual variation: A potentially beneficial drug-drug interaction.Clin. Transl. Sci.202013234535110.1111/cts.1271631664782
    [Google Scholar]
  35. RavindarL. HasbullahS.A. RakeshK.P. HassanN.I. Triazole hybrid compounds: A new frontier in malaria treatment.Eur. J. Med. Chem.202325911569410.1016/j.ejmech.2023.11569437556947
    [Google Scholar]
  36. Abdul RahmanS.M. BhattiJ.S. TharejaS. MongaV. Current development of 1,2,3-triazole derived potential antimalarial scaffolds: Structure- activity relationship (SAR) and bioactive compounds.Eur. J. Med. Chem.202325911569910.1016/j.ejmech.2023.11569937542987
    [Google Scholar]
  37. LiD. HeC. WangM. LiuH. LiuR. XuL. Toxicity of ribavirin to Spodoptera litura by inhibiting the juvenile hormone.J. Agric. Food Chem.202270103117312610.1021/acs.jafc.1c0617235229607
    [Google Scholar]
  38. AbdelsalamM.M. BedairM.A. HassanA.M. HeakalB.H. YounisA. ElbialyZ.I. BadawyM.A. FawzyH.E.D. FareedS.A. Green synthesis, electrochemical, and DFT studies on the corrosion inhibition of steel by some novel triazole Schiff base derivatives in hydrochloric acid solution.Arab. J. Chem.202215110349110.1016/j.arabjc.2021.103491
    [Google Scholar]
  39. WedianF. MhaidatI. BraikN.A. Al-MazaidehG.M. A corrosion inhibitor for aluminum by novel synthesized triazole compounds in basic medium. International J.Corrosion Scale Inhibition202211136438110.17675/2305‑6894‑2022‑11‑1‑22
    [Google Scholar]
  40. PertinoM.W. F de la TorreA. Schmeda-HirschmannG. VegaC. RolónM. CoronelC. Rojas de AriasA. Leal LópezK. Carranza-RosalesP. Viveros ValdezE. Synthesis, trypanocidal and anti-leishmania activity of new triazole-lapachol and nor-lapachol hybrids.Bioorg. Chem.202010310412210.1016/j.bioorg.2020.10412232745754
    [Google Scholar]
  41. ZumaN.H. AucampJ. ViljoenM. N’DaD.D. Synthesis, in vitro antileishmanial efficacy and hit/lead identification of nitrofurantoin-triazole hybrids.ChemMedChem20221710e20220002310.1002/cmdc.20220002335388649
    [Google Scholar]
  42. MartinezM.N. AmidonG.L. A mechanistic approach to understanding the factors affecting drug absorption: A review of fundamentals.J. Clin. Pharmacol.200242662064310.1177/0097000204200600512043951
    [Google Scholar]
  43. BoechatN. FerreiraM.L.G. PinheiroL.C.S. JesusA.M.L. LeiteM.M.M. JúniorC.C.S. AguiarA.C.C. de AndradeI.M. KrettliA.U. New compounds hybrids 1h-1,2,3-triazole-quinoline against Plasmodium falciparum.Chem. Biol. Drug Des.201484332533210.1111/cbdd.1232124803084
    [Google Scholar]
  44. ManoharS. KhanS.I. RawatD.S. Synthesis of 4‐aminoquinoline‐1,2,3‐triazole and 4‐aminoquinoline‐1,2,3‐triazole‐1,3,5‐triazine hybrids as potential antimalarial agents.Chem. Biol. Drug Des.201178112413610.1111/j.1747‑0285.2011.01115.x21457474
    [Google Scholar]
  45. SinghA. KalamuddinM. MohmmedA. MalhotraP. HodaN. Quinoline-triazole hybrids inhibit falcipain-2 and arrest the development of Plasmodium falciparum at the trophozoite stage.RSC Advances2019967394103942110.1039/C9RA06571G35540629
    [Google Scholar]
  46. GlanzmannN. AntinarelliL.M.R. da Costa NunesI.K. PereiraH.M.G. CoelhoE.A.F. CoimbraE.S. da SilvaA.D. Synthesis and biological activity of novel 4-aminoquinoline/1,2,3-triazole hybrids against Leishmania amazonensis.Biomed. Pharmacother.202114111185710.1016/j.biopha.2021.11185734323702
    [Google Scholar]
  47. WadiI. PrasadD. BatraN. SrivastavaK. AnvikarA.R. ValechaN. NathM. Targeting asexual and sexual blood stages of the human malaria parasite P. falciparum with 7-chloroquinoline-based 1,2,3-triazoles.ChemMedChem201914448449310.1002/cmdc.20180072830609264
    [Google Scholar]
  48. AdigunR.A. MalanF.P. BalogunM.O. OctoberN. Design, synthesis, and in silico-in vitro antimalarial evaluation of 1,2,3-triazole-linked dihydropyrimidinone quinoline hybrids.Struct. Chem.20233462065208210.1007/s11224‑023‑02142‑y
    [Google Scholar]
  49. HornC.M. AucampJ. SmitF.J. SeldonR. JordaanA. WarnerD.F. N’DaD.D. Synthesis and in vitro antimycobacterial and antileishmanial activities of hydroquinone-triazole hybrids.Med. Chem. Res.20202981387139910.1007/s00044‑020‑02553‑0
    [Google Scholar]
  50. CassamaleT.B. CostaE.C. CarvalhoD.B. CassemiroN.S. TomazelaC.C. MarquesM.C.S. OjedaM. MatosM.F.C. AlbuquerqueS. ArrudaC.C.P. BaroniA.C.M. Synthesis and antitrypanosomatid activity of 1,4-Diaryl-1,2,3-triazole analogues of neolignans veraguensin, grandisin and machilin G.J. Braz. Chem. Soc.2016271217122810.5935/0103‑5053.20160017
    [Google Scholar]
  51. Cardozo Pinto de ArrudaC. de Jesus HardoimD. Silva RizkY. da Silva Freitas de SouzaC. Zaverucha do ValleT. Bento CarvalhoD. Nosomi TaniwakiN. de Morais BaroniA.C. da Silva CalabreseK. A triazole hybrid of neolignans as a potential antileishmanial agent by triggering mitochondrial dysfunction.Molecules20202513710.3390/molecules2501003733374738
    [Google Scholar]
  52. RajR. SinghP. HaberkernN.T. FaucherR.M. PatelN. LandK.M. KumarV. Synthesis of 1H-1,2,3-triazole linked β-lactam-isatin bi-functional hybrids and preliminary analysis of in vitro activity against the protozoal parasite Trichomonas vaginalis.Eur. J. Med. Chem.20136389790610.1016/j.ejmech.2013.03.01923631874
    [Google Scholar]
  53. LeeW.C. CheongF.W. AmirA. LaiM.Y. TanJ.H. PhangW.K. ShahariS. LauY.L. Plasmodium knowlesi: The game changer for malaria eradication.Malar. J.202221114010.1186/s12936‑022‑04131‑835505339
    [Google Scholar]
  54. RezaliN.S. ZahrinN.A. AliA.H. LingN.Y. AgustarH.K. LingL.Y. Antimalarial assessment of certain 1,2,4-triazoles and benzoquinolones against Plasmodium knowlesi A1H1.J. Sci. Mathem. Lett.2023111435010.37134/jsml.vol11.1.6.2023
    [Google Scholar]
  55. MondalB. GuptaV.K. HansdaB. BhoumikA. MondalT. MajumderH.K. Edwards-GayleC.J.C. HamleyI.W. JaisankarP. BanerjeeA. Amino acid containing amphiphilic hydrogelators with antibacterial and antiparasitic activities.Soft Matter202218377201721610.1039/D2SM00562J36098333
    [Google Scholar]
  56. MajiK. AbbasiM. PodderD. DattaR. HaldarD. Potential antileishmanial activity of a triazole-based hybrid peptide against Leishmania major.ChemistrySelect2018336102201022510.1002/slct.201802002
    [Google Scholar]
  57. AndrewsK.T. FisherG.M. SumanadasaS.D.M. Skinner-AdamsT. MoekerJ. LopezM. PoulsenS.A. Antimalarial activity of compounds comprising a primary benzene sulfonamide fragment.Bioorg. Med. Chem. Lett.201323226114611710.1016/j.bmcl.2013.09.01524084158
    [Google Scholar]
  58. EkohO.C. OkoroU. UgwuD. AliR. OkaforS. UgwujaD. AttahS. Novel dipeptides bearing sulfonamide as antimalarial and antitrypanosomal agents: Synthesis and molecular docking.Med. Chem.202218339440510.2174/157340641766621060410120134097595
    [Google Scholar]
  59. KumarG. TanwarO. KumarJ. AkhterM. SharmaS. PillaiC.R. AlamM.M. ZamaM.S. Pyrazole-pyrazoline as promising novel antimalarial agents: A mechanistic study.Eur. J. Med. Chem.201814913914710.1016/j.ejmech.2018.01.08229499486
    [Google Scholar]
  60. YangY. HuD. WangS. WangZ. ZuG. SongB. First discovery of novel cytosine derivatives containing a sulfonamide moiety as potential antiviral agents.J. Agric. Food Chem.202270206026603610.1021/acs.jafc.2c0092235575698
    [Google Scholar]
  61. DeviK. AwasthiP. Isoleucine with secondary sulfonamide functionality as anticancer, antibacterial and antifungal agents.J. Biomol. Struct. Dyn.202240157052706910.1080/07391102.2021.189381833704017
    [Google Scholar]
  62. BoechatN. PinheiroL.C.S. Santos-FilhoO.A. SilvaI.C. Design and synthesis of new N-(5-trifluoromethyl)-1H-1,2,4-triazol-3-yl benzenesulfonamides as possible antimalarial prototypes.Molecules20111698083809710.3390/molecules1609808321934646
    [Google Scholar]
  63. PathakA. MårtenssonA. GawarikerS. SharmaA. DiwanV. PurohitM. UrsingJ. Stable high frequencies of sulfadoxine-pyrimethamine resistance associated mutations and absence of K13 mutations in Plasmodium falciparum 3 and 4 years after the introduction of artesunate plus sulfadoxine-pyrimethamine in Ujjain, Madhya Pradesh, India.Malar. J.202019129010.1186/s12936‑020‑03274‑w32795288
    [Google Scholar]
  64. BatraN. RajendranV. WadiI. LathwalA. DuttaR.K. GhoshP.C. GuptaR.D. NathM. Synthesis, characterization, and antiplasmodial efficacy of sulfonamide‐appended [1,2,3]‐triazoles.J. Heterocycl. Chem.20205741625163610.1002/jhet.3888
    [Google Scholar]
  65. BatraN. RajendranV. AgarwalD. WadiI. GhoshP.C. GuptaR.D. NathM. Synthesis and antimalarial evaluation of [1,2,3]‐triazole‐tethered sulfonamide‐berberine hybrids.ChemistrySelect20183349790979310.1002/slct.201801905
    [Google Scholar]
  66. KarpinaV.R. KovalenkoS.S. KovalenkoS.M. DrushlyakO.G. BunyatyanN.D. GeorgiyantsV.A. IvanovV.V. LangerT. MaesL. A novel series of [1, 2, 4] triazolo [4, 3-a] pyridine sulfonamides as potential antimalarial agents: In silico studies, synthesis and in vitro evaluation.Molecules20202519448510.3390/molecules2519448533007887
    [Google Scholar]
  67. RubabL. AfrozS. AhmadS. HussainS. NawazI. IrfanA. BatoolF. Kotwica-MojzychK. MojzychM. An update on synthesis of coumarin sulfonamides as enzyme inhibitors and anticancer agents.Molecules2022275160410.3390/molecules2705160435268704
    [Google Scholar]
  68. PanY. LiuT. WangX. SunJ. Research progress of coumarins and their derivatives in the treatment of diabetes.J. Enzyme Inhib. Med. Chem.202237161662810.1080/14756366.2021.202452635067136
    [Google Scholar]
  69. LeiL. XueY. LiuZ. PengS. HeY. ZhangY. FangR. WangJ. LuoZ. YaoG. ZhangJ. ZhangG. SongH. ZhangY. Coumarin derivatives from Ainsliaea fragrans and their anticoagulant activity.Sci. Rep.2015511354410.1038/srep1354426315062
    [Google Scholar]
  70. MbabaM. DingleL.M.K. ZuluA.I. LamingD. SwartT. de la MareJ.A. HoppeH.C. EdkinsA.L. KhanyeS.D. Coumarin-annulated ferrocenyl 1, 3-oxazine derivatives possessing in vitro antimalarial and antitrypanosomal potency.Molecules2021265133310.3390/molecules2605133333801371
    [Google Scholar]
  71. PatilS.M. MartizR.M. SatishA.M. ShbeerA.M. AgeelM. Al-GhorbaniM. RanganathaL. ParameswaranS. RamuR. Discovery of novel coumarin derivatives as potential dual inhibitors against α-glucosidase and α-amylase for the management of post-prandial hyperglycemia via molecular modelling approaches.Molecules20222712388810.3390/molecules2712388835745030
    [Google Scholar]
  72. YadavN. AgarwalD. KumarS. DixitA.K. GuptaR.D. AwasthiS.K. In vitro antiplasmodial efficacy of synthetic coumarin-triazole analogs.Eur. J. Med. Chem.201814573574510.1016/j.ejmech.2018.01.01729366931
    [Google Scholar]
  73. KaushikC.P. ChahalM. Synthesis, antimalarial and antioxidant activity of coumarin appended 1,4-disubstituted 1,2,3-triazoles.Monatsh. Chem.202115281001101210.1007/s00706‑021‑02821‑8
    [Google Scholar]
  74. BalabadraS. KotniM. MangaV. AllankiA.D. PrasadR. SijwaliP.S. Synthesis and evaluation of naphthyl bearing 1,2,3-triazole analogs as antiplasmodial agents, cytotoxicity and docking studies.Bioorg. Med. Chem.201725122123210.1016/j.bmc.2016.10.02927816268
    [Google Scholar]
  75. Oramas-RoyoS. López-RojasP. AmestyÁ. GutiérrezD. FloresN. Martín-RodríguezP. Fernández-PérezL. Estévez-BraunA. Synthesis and antiplasmodial activity of 1,2,3-triazole-naphthoquinone conjugates.Molecules20192421391710.3390/molecules2421391731671684
    [Google Scholar]
/content/journals/coc/10.2174/0113852728371498250604114748
Loading
/content/journals/coc/10.2174/0113852728371498250604114748
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test