Skip to content
2000
image of Recent Expansions in Anti-Microbial Profile of Quinoline Analogues: A Review

Abstract

The alarming rise in life-threatening infections caused by Gram-positive and Gram-negative bacteria has become a significant global health concern, urging the scientific community to explore new therapeutic solutions. Among heterocyclic compounds, the quinoline nucleus has emerged as a versatile scaffold with diverse pharmacological properties. Naturally occurring quinoline-based compounds provide a foundation for designing novel semi-synthetic and synthetic derivatives with broad-spectrum antibacterial activity. Quinoline-fused derivatives have shown potent anticancer effects by targeting critical enzymes and proteins, including topoisomerase I, telomerase, farnesyl transferase, Src tyrosine kinase, and protein kinase CK-II. Additionally, these compounds exhibit antitubercular, anticonvulsant, analgesic, and anti-inflammatory activities. Their potential as cardiovascular agents, acting as calcium-channel blockers and cAMP phosphodiesterase III inhibitors, further highlights their pharmacological significance. The fusion of quinoline with other heterocyclic systems such as indoles, pyridines, triazoles, imidazoles, and pyrazoles presents a promising strategy for drug discovery. Such combinations leverage the individual activities of each moiety, producing synergistic effects and enhancing therapeutic potential. These advances underscore the need for continued exploration of quinoline derivatives to identify novel lead compounds with improved efficacy and broadened activity spectra. This paradigm not only offers a pathway to address pressing antimicrobial resistance but also opens new opportunities for synthetic chemistry and the development of multifunctional therapeutic agents.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728367743250520191343
2025-06-05
2025-11-06
Loading full text...

Full text loading...

References

  1. Al-Mulla A. A review: Biological importance of heterocyclic compounds. Pharma Chem. 2017 9 13 141 147
    [Google Scholar]
  2. Seelam N. Shrivastava S.P. Prasanthi S. Synthesis and antimicrobial activity of some novel fused heterocyclic moieties. Org. Commun. 2013 6 2 78 85
    [Google Scholar]
  3. Marella A. Tanwar O.P. Saha R. Ali M.R. Srivastava S. Akhter M. Shaquiquzzaman M. Alam M.M. Quinoline: A versatile heterocyclic. Saudi Pharm. J. 2013 21 1 1 12 10.1016/j.jsps.2012.03.002 23960814
    [Google Scholar]
  4. Kumar S. Bawa S. Gupta H. Biological activities of quinoline derivatives. Mini Rev. Med. Chem. 2009 9 14 1648 1654 10.2174/138955709791012247 20088783
    [Google Scholar]
  5. Caprio V. Guyen B. Opoku-Boahen Y. Mann J. Gowan S.M. Kelland L.M. Read M.A. Neidle S. A novel inhibitor of human telomerase derived from 10H-indolo[3,2-b]quinoline. Bioorg. Med. Chem. Lett. 2000 10 18 2063 2066 10.1016/S0960‑894X(00)00378‑4 10999471
    [Google Scholar]
  6. Liu B. Li F. Zhou T. Tang X.Q. Hu G.W. Quinoline derivatives with potential activity against multidrug-resistant tuberculosis. J. Heterocycl. Chem. 2018 55 8 1863 1873 10.1002/jhet.3241
    [Google Scholar]
  7. Vinoth N. Kalaiarasi C. Kumaradhas P. Vadivel P. Lalitha A. Synthesis and antibacterial activity of new N-substituted hexahydroquinolinone derivatives and X-ray crystallographic studies. ChemistrySelect 2020 5 9 2696 2700 10.1002/slct.201904565
    [Google Scholar]
  8. Miri R. Javidnia K. Mirkhani H. Hemmateeneja B. Sepeher Z. Zalpour M. Synthesis, QSAR and calcium channel modulator activity of new hexahydroquinoline derivatives containing nitroimidazol. Chem. Biol. Drug Des. 2007 70 4 329 336 10.1111/j.1747‑0285.2007.00565.x 17937778
    [Google Scholar]
  9. El-Gazzar A.R.B.A. El-Enany M.M. Mahmoud M.N. Synthesis, analgesic, anti-inflammatory, and antimicrobial activity of some novel pyrimido[4,5-b]quinolin-4-ones. Bioorg. Med. Chem. 2008 16 6 3261 3273 10.1016/j.bmc.2007.12.012 18158248
    [Google Scholar]
  10. Diaconu D. Antoci V. Mangalagiu V. Amariucai-Mantu D. Mangalagiu I.I. Quinoline–imidazole/benzimidazole derivatives as dual-/multi-targeting hybrids inhibitors with anticancer and antimicrobial activity. Sci. Rep. 2022 12 1 16988 10.1038/s41598‑022‑21435‑6
    [Google Scholar]
  11. El-Shershaby M.H. El-Gamal K.M. Bayoumi A.H. El-Adl K. Ahmed H.E.A. Abulkhair H.S. Synthesis, antimicrobial evaluation, DNA gyrase inhibition, and in silico pharmacokinetic studies of novel quinoline derivatives. Arch. Pharm. (Weinheim) 2021 354 2 2000277 10.1002/ardp.202000277 33078877
    [Google Scholar]
  12. Bouzian Y. Karrouchi K. Sert Y. Lai C.H. Mahi L. Ahabchane N.H. Talbaoui A. Mague J.T. Essassi E.M. Synthesis, spectroscopic characterization, crystal structure, DFT, molecular docking and in vitro antibacterial potential of novel quinoline derivatives. J. Mol. Struct. 2020 1209 127940 10.1016/j.molstruc.2020.127940
    [Google Scholar]
  13. Ali I.A.I. El-Sakka S.S.A. Soliman M.H.A. Mohamed O.E.A. In silico, in vitro and docking applications for some novel complexes derived from new quinoline derivatives. J. Mol. Struct. 2019 1196 8 32 10.1016/j.molstruc.2019.06.053
    [Google Scholar]
  14. Kumar N. Khanna A. Kaur K. Kaur H. Sharma A. Bedi P.M.S. Quinoline derivatives volunteering against antimicrobial resistance: Rational approaches, design strategies, structure activity relationship and mechanistic insights. Mol. Divers. 2023 27 4 1905 1934 10.1007/s11030‑022‑10537‑y 36197551
    [Google Scholar]
  15. Nafie M.S. Mahgoub S. Amer A.M. Antimicrobial and antiproliferative activities of novel synthesized 6‐(quinolin‐2‐ylthio) pyridine derivatives with molecular docking study as multi‐targeted JAK2/STAT3 inhibitors. Chem. Biol. Drug Des. 2021 97 3 553 564 10.1111/cbdd.13791 32920942
    [Google Scholar]
  16. Thakare P.P. Shinde A.D. Chavan A.P. Nyayanit N.V. Bobade V.D. Mhaske P.C. Synthesis and biological evaluation of new 1,2,3-triazolyl-pyrazolyl-quinoline derivatives as potential antimicrobial agents. ChemistrySelect 2020 5 15 4722 4727 10.1002/slct.201904455
    [Google Scholar]
  17. Sun N. Du R.L. Zheng Y.Y. Huang B.H. Guo Q. Zhang R.F. Wong K.Y. Lu Y.J. Antibacterial activity of N -methylbenzofuro[3,2- b]quinoline and N -methylbenzoindolo[3,2- b]-quinoline derivatives and study of their mode of action. Eur. J. Med. Chem. 2017 135 1 11 10.1016/j.ejmech.2017.04.018 28426995
    [Google Scholar]
  18. El-Gokha A.A. Boshta N.M. Abo Hussein M.K. El Sayed I.E.T. Synthesis and structure-activity relationships of novel neocryptolepine derivatives. Chem. Res. Chin. Univ. 2017 33 3 373 377 10.1007/s40242‑017‑6502‑6
    [Google Scholar]
  19. Uppar V. Chandrashekharappa S. Shivamallu C. P, S.; Kollur, S.P.; Ortega-Castro, J.; Frau, J.; Flores-Holguín, N.; Basarikatti, A.I.; Chougala, M.; Mohan M, M.; Banuprakash, G.; Jayadev; Venugopala, K.N.; Nandeshwarappa, B.P.; Veerapur, R.; Al-Kheraif, A.A.; Elgorban, A.M.; Syed, A.; Mudnakudu-Nagaraju, K.K.; Padmashali, B.; Glossman-Mitnik, D. Investigation of antifungal properties of synthetic dimethyl-4-bromo-1-(substituted benzoyl) pyrrolo[1,2-a]quinoline-2,3-dicarboxylates analogues: Molecular docking studies and conceptual DFT-based chemical reactivity descriptors and pharmacokinetics evaluation. Molecules 2021 26 9 2722 10.3390/molecules26092722 34066433
    [Google Scholar]
  20. Desai N.C. Patel B.Y. Dave B.P. Synthesis and antimicrobial activity of novel quinoline derivatives bearing pyrazoline and pyridine analogues. Med. Chem. Res. 2017 26 1 109 119 10.1007/s00044‑016‑1732‑6
    [Google Scholar]
  21. Nakamoto K. Tsukada I. Tanaka K. Matsukura M. Haneda T. Inoue S. Murai N. Abe S. Ueda N. Miyazaki M. Watanabe N. Asada M. Yoshimatsu K. Hata K. Synthesis and evaluation of novel antifungal agents-quinoline and pyridine amide derivatives. Bioorg. Med. Chem. Lett. 2010 20 15 4624 4626 10.1016/j.bmcl.2010.06.005 20573507
    [Google Scholar]
  22. Musiol R. Jampilek J. Buchta V. Silva L. Niedbala H. Podeszwa B. Palka A. Majerz-Maniecka K. Oleksyn B. Polanski J. Antifungal properties of new series of quinoline derivatives. Bioorg. Med. Chem. 2006 14 10 3592 3598 10.1016/j.bmc.2006.01.016 16458522
    [Google Scholar]
  23. Liu C.X. Zhao X. Wang L. Yang Z.C. Quinoline derivatives as potential anti-tubercular agents: Synthesis, molecular docking and mechanism of action. Microb. Pathog. 2022 165 105507 10.1016/j.micpath.2022.105507 35354076
    [Google Scholar]
  24. Abdelrahman M.A. Almahli H. Al-Warhi T. Majrashi T.A. Abdel-Aziz M.M. Eldehna W.M. Said M.A. Development of novel isatin-tethered quinolines as anti-tubercular agents against multi- and extensively drug-resistant Mycobacterium tuberculosis. Molecules 2022 27 24 8807 10.3390/molecules27248807 36557937
    [Google Scholar]
  25. Venugopala K.N. Uppar V. Chandrashekharappa S. Abdallah H.H. Pillay M. Deb P.K. Morsy M.A. Aldhubiab B.E. Attimarad M. Nair A.B. Sreeharsha N. Tratrat C. Yousef Jaber A. Venugopala R. Mailavaram R.P. Al-Jaidi B.A. Kandeel M. Haroun M. Padmashali B. Cytotoxicity and antimycobacterial properties of pyrrolo[1,2-a]quinoline derivatives: Molecular target identification and molecular docking studies. Antibiotics (Basel) 2020 9 5 233 10.3390/antibiotics9050233 32392709
    [Google Scholar]
  26. Makafe G.G. Hussain M. Surineni G. Tan Y. Wong N.K. Julius M. Liu L. Gift C. Jiang H. Tang Y. Liu J. Tan S. Yu Z. Liu Z. Lu Z. Fang C. Zhou Y. Zhang J. Zhu Q. Liu J. Zhang T. Quinoline derivatives kill Mycobacterium tuberculosis by activating glutamate kinase. Cell Chem. Biol. 2019 26 8 1187 1194.e5 10.1016/j.chembiol.2019.05.003 31204286
    [Google Scholar]
  27. Mathew B. Ross L. Reynolds R.C. A novel quinoline derivative that inhibits mycobacterial FtsZ. Tuberculosis (Edinb.) 2013 93 4 398 400 10.1016/j.tube.2013.04.002 23647650
    [Google Scholar]
  28. Abbiati G. Arcadi A. Chiarini M. Marinelli F. Pietropaolo E. Rossi E. An alternative one-pot gold-catalyzed approach to the assembly of 11H-indolo[3,2-c]quinolines. Org. Biomol. Chem. 2012 10 38 7801 7808 10.1039/c2ob26380g 22911041
    [Google Scholar]
  29. Liou Y.C. Lin Y.A. Wang K. Yang J.C. Jang Y.J. Lin W. Wu Y.C. Synthesis of novel spiro-tetrahydroquinoline derivatives and evaluation of their pharmacological effects on wound healing. Int. J. Mol. Sci. 2021 22 12 6251 10.3390/ijms22126251 34200731
    [Google Scholar]
  30. Kumar S. Ritika, A brief review of the biological potential of indole derivatives. Future J. Pharm. Sci. 2020 6 1 121 10.1186/s43094‑020‑00141‑y
    [Google Scholar]
  31. Salem M.A. Ragab A. Askar A.A. El-Khalafawy A. Makhlouf A.H. One-pot synthesis and molecular docking of some new spiropyranindol-2-one derivatives as immunomodulatory agents and in vitro antimicrobial potential with DNA gyrase inhibitor. Eur. J. Med. Chem. 2020 188 111977 10.1016/j.ejmech.2019.111977 31927313
    [Google Scholar]
  32. Ammar Y.A. El-Hafez S.M.A.A. Hessein S.A. Ali A.M. Askar A.A. Ragab A. One-pot strategy for thiazole tethered 7-ethoxy quinoline hybrids: Synthesis and potential antimicrobial agents as dihydrofolate reductase (DHFR) inhibitors with molecular docking study. J. Mol. Struct. 2021 1242 130748 10.1016/j.molstruc.2021.130748
    [Google Scholar]
  33. Gul M. Turk Celikoglu E. Idil O. Tas G. Pelit E. Synthesis, antimicrobial activity and molecular docking studies of spiroquinoline-indoline-dione and spiropyrazolo-indoline-dione derivatives. Sci. Rep. 2023 13 1 1676 10.1038/s41598‑023‑27777‑z 36717728
    [Google Scholar]
  34. Ali S. Wisal A. Tahir M.N. Abdullah; Ali, A.; Hameed, S.; Ahmed, M.N. One-pot synthesis, crystal structure and antimicrobial activity of 6-benzyl-11-(p-tolyl)-6H-indolo[2,3-b]quinoline. J. Mol. Struct. 2020 1210 128035 10.1016/j.molstruc.2020.128035
    [Google Scholar]
  35. Tseng C.H. Tung C.W. Wu C.H. Tzeng C.C. Chen Y.H. Hwang T.L. Chen Y.L. Discovery of indeno[1,2-c]quinoline derivatives as potent dual antituberculosis and anti-inflammatory agents. Molecules 2017 22 6 1001 10.3390/molecules22061001 28621733
    [Google Scholar]
  36. Aydın A. Ökten S. Erkan S. Bulut M. Özcan E. Tutar A. Eren T. In-vitro anticancer and antibacterial activities of brominated indeno[1,2-b]quinoline amines supported with molecular docking and MCDM. ChemistrySelect 2021 6 13 3286 3295 10.1002/slct.202004753
    [Google Scholar]
  37. Kaufman T. Méndez M. Bracca A. Isolation, synthesis, and biological activity of quindoline, a valuable indoloquinoline natural product and useful key intermediate. Synthesis 2018 50 7 1417 1429 10.1055/s‑0036‑1591947
    [Google Scholar]
  38. Yadav J. Kaushik C.P. Quinoline-1,2,3-triazole hybrids: Design, synthesis, antimalarial and antimicrobial evaluation. J. Mol. Struct. 2024 1316 138882 10.1016/j.molstruc.2024.138882
    [Google Scholar]
  39. Bracca A.B.J. Heredia D.A. Larghi E.L. Kaufman T.S. Neocryptolepine (cryprotackieine), a unique bioactive natural product: Isolation, synthesis, and profile of its biological activity. Eur. J. Org. Chem. 2014 2014 36 7979 8003 10.1002/ejoc.201402910
    [Google Scholar]
  40. Godlewska J. Luniewski W. Zagrodzki B. Kaczmarek L. Bielawska-Pohl A. Dus D. Anticancer activity of indoloquinoline derivatives. Anticancer Res. 2005 25 2857 2868 [PMID: 16080538
    [Google Scholar]
  41. Cimanga K. De Bruyne T. Pieters L. Totte J. Kambu L.T. Vanden Berghe D. Antimicrobial activity of plant-derived indoloquinolines. Phytomedicine 1998 5 209 214 10.1016/S0944‑7113(98)80030‑5 23195843
    [Google Scholar]
  42. Kaczmarek L. Peczynska-Czoch W. Osiadacz J. Mordarski M. Sokalski W.A. Boratynski J. Antitumor activity of indoloquinoline derivatives. Bioorg. Med. Chem. 1999 7 2457 2464 10.1016/S0968‑0896(99)00200‑X 10632055
    [Google Scholar]
  43. Agalave S.G. Maujan S.R. Pore V.S. Click chemistry: 1,2,3-triazoles as pharmacophores. Chem. Asian J. 2011 6 10 2696 2718 10.1002/asia.201100432 21954075
    [Google Scholar]
  44. Meldal M. Tornøe C.W. Cu-catalyzed azide-alkyne cycloaddition. Chem. Rev. 2008 108 8 2952 3015 10.1021/cr0783479 18698735
    [Google Scholar]
  45. Giffin M.J. Heaslet H. Brik A. Lin Y.C. Cauvi G. Wong C.H. McRee D.E. Elder J.H. Stout C.D. Torbett B.E. A copper(I)-catalyzed 1,2,3-triazole azide-alkyne click compound is a potent inhibitor of a multidrug-resistant HIV-1 protease variant. J. Med. Chem. 2008 51 20 6263 6270 10.1021/jm800149m 18823110
    [Google Scholar]
  46. Silva Júnior E.N. Moura M.A.B.F. Pinto A.V. Pinto M.C.F.R. Souza M.C.B.V. Araújo A.J. Pessoa C. Costa-Lotufo L.V. Montenegro R.C. Moraes M.O. Ferreira V.F. Goulart M.O.F. Cytotoxic, trypanocidal activities and physicochemical parameters of nor-2-lapachone-based 1,2,3-triazoles. J. Braz. Chem. Soc. 2009 20 4 635 643 10.1590/S0103‑50532009000400007
    [Google Scholar]
  47. Kamal A. Shankaraiah N. Devaiah V. Laxma Reddy K. Juvekar A. Sen S. Kurian N. Zingde S. Synthesis of 1,2,3-triazole-linked pyrrolobenzodiazepine conjugates employing ‘click’ chemistry: DNA-binding affinity and anticancer activity. Bioorg. Med. Chem. Lett. 2008 18 4 1468 1473 10.1016/j.bmcl.2007.12.063 18207392
    [Google Scholar]
  48. Gallardo H. Conte G. Bryk F. Lourenço M.C.S. Costa M.S. Ferreira V.F. Synthesis and evaluation of 1-alkyl-4-phenyl-[1,2,3]-triazole derivatives as antimycobacterial agent. J. Braz. Chem. Soc. 2007 18 6 1285 1291 10.1590/S0103‑50532007000600027
    [Google Scholar]
  49. Boechat N. Ferreira V.F. Ferreira S.B. Ferreira M.L.G. da Silva F.C. Bastos M.M. Costa M.S. Lourenço M.C.S. Pinto A.C. Krettli A.U. Aguiar A.C. Teixeira B.M. da Silva N.V. Martins P.R.C. Bezerra F.A.F.M. Camilo A.L.S. da Silva G.P. Costa C.C.P. Novel 1,2,3-triazole derivatives for use against Mycobacterium tuberculosis H37Rv (ATCC 27294) strain. J. Med. Chem. 2011 54 17 5988 5999 10.1021/jm2003624 21776985
    [Google Scholar]
  50. Pore V.S. Aher N.G. Kumar M. Shukla P.K. Design and synthesis of fluconazole/bile acid conjugate using click reaction. Tetrahedron 2006 62 48 11178 11186 10.1016/j.tet.2006.09.021
    [Google Scholar]
  51. Aher N.G. Pore V.S. Mishra N.N. Kumar A. Shukla P.K. Sharma A. Bhat M.K. Synthesis and antifungal activity of 1,2,3-triazole containing fluconazole analogues. Bioorg. Med. Chem. Lett. 2009 19 3 759 763 10.1016/j.bmcl.2008.12.026 19110424
    [Google Scholar]
  52. Guantai E.M. Ncokazi K. Egan T.J. Gut J. Rosenthal P.J. Smith P.J. Chibale K. Design, synthesis and in vitro antimalarial evaluation of triazole-linked chalcone and dienone hybrid compounds. Bioorg. Med. Chem. 2010 18 23 8243 8256 10.1016/j.bmc.2010.10.009 21044845
    [Google Scholar]
  53. Carvalho I. Andrade P. Campo V.L. Guedes P.M.M. Sesti-Costa R. Silva J.S. Schenkman S. Dedola S. Hill L. Rejzek M. Nepogodiev S.A. Field R.A. ‘Click chemistry’ synthesis of a library of 1,2,3-triazole-substituted galactose derivatives and their evaluation against Trypanosoma cruzi and its cell surface trans-sialidase. Bioorg. Med. Chem. 2010 18 7 2412 2427 10.1016/j.bmc.2010.02.053 20335038
    [Google Scholar]
  54. da Silva E.N. Jr Menna-Barreto R.F.S. Pinto M.C.F.R. Silva R.S.F. Teixeira D.V. de Souza M.C.B.V. De Simone C.A. De Castro S.L. Ferreira V.F. Pinto A.V. Naphthoquinoidal [1,2,3]-triazole, a new structural moiety active against Trypanosoma cruzi. Eur. J. Med. Chem. 2008 43 8 1774 1780 10.1016/j.ejmech.2007.10.015 18045742
    [Google Scholar]
  55. Awolade P. Cele N. Kerru N. Singh P. Synthesis, antimicrobial evaluation, and in silico studies of quinoline—1H-1,2,3-triazole molecular hybrids. Mol. Divers. 2021 25 4 2201 2218 10.1007/s11030‑020‑10112‑3 32507981
    [Google Scholar]
  56. Keivanloo A. Fakharian M. Sepehri S. 1,2,3-Triazoles based 3-substituted 2-thioquinoxalines: Synthesis, anti-bacterial activities, and molecular docking studies. J. Mol. Struct. 2020 1202 127262 10.1016/j.molstruc.2019.127262
    [Google Scholar]
  57. Babu H.R. Ravinder M. Narsimha S. Microwave-assisted one pot synthesis of fused [1,2,3]triazolo-pyrano[3,2-h]quinolines and their biological evaluation. Asian J. Pharm. Pharmacol. 2019 5 6 1202 1210 10.31024/ajpp.2019.5.6.17
    [Google Scholar]
  58. Upadhyay A. Kushwaha P. Gupta S. Dodda R.P. Ramalingam K. Kant R. Goyal N. Sashidhara K.V. Synthesis and evaluation of novel triazolyl quinoline derivatives as potential antileishmanial agents. Eur. J. Med. Chem. 2018 154 172 181 10.1016/j.ejmech.2018.05.014 29793211
    [Google Scholar]
  59. D’Souza V.T. Nayak J. D’Mello D.E. Dayananda P. Synthesis and characterization of biologically important quinoline incorporated triazole derivatives. J. Mol. Struct. 2020 1229 129503 10.1016/j.molstruc.2020.129503
    [Google Scholar]
  60. Vishnuvardhan M. Pradeep M. Gangadhar T. An efficient microwave assisted synthesis and antimicrobial activity of novel p‐Tolyloxyquinoline‐Triazole hybrid derivatives. Chemical Data Collections 2021 31 100612 10.1016/j.cdc.2020.100612
    [Google Scholar]
  61. Gangneux J.P. Dullin M. Sulahian A. Garin Y.J.F. Derouin F. Experimental evaluation of second-line oral treatments of visceral leishmaniasis caused by Leishmania infantum. Antimicrob. Agents Chemother. 1999 43 1 172 174 10.1128/AAC.43.1.172 9869587
    [Google Scholar]
  62. Rossi R. Ciofalo M. An updated review on the synthesis and antibacterial activity of molecular hybrids and conjugates bearing imidazole moiety. Molecules 2020 25 21 5133 10.3390/molecules25215133 33158247
    [Google Scholar]
  63. Ang C.W. Jarrad A.M. Cooper M.A. Blaskovich M.A.T. Nitroimidazoles: Molecular fireworks that combat a broad spectrum of infectious diseases. J. Med. Chem. 2017 60 18 7636 7657 10.1021/acs.jmedchem.7b00143 28463485
    [Google Scholar]
  64. Anderson R.J. Groundwater P.W. Todd A. Worsley A.J. Antibacterial Agents. Chemistry, Mode of Action, Mechanisms of Resistance and Clinical Applications. Chichester, UK Wiley 2012 85 101 10.1002/9781118325421.ch4
    [Google Scholar]
  65. Leiros H.K.S. Kozielski-Stuhrmann S. Kapp U. Terradot L. Leonard G.A. McSweeney S.M. Structural basis of 5-nitroimidazole antibiotic resistance: The crystal structure of NimA from Deinococcus radiodurans. J. Biol. Chem. 2004 279 53 55840 55849 10.1074/jbc.M408044200 15492014
    [Google Scholar]
  66. David A. Thomas L. Foye’s principle of medicinal chemistry. 5th ed Chichester International Student Edition 2002 819
    [Google Scholar]
  67. Pawar R.A. Kohak A.L. Gogte V.G. methyl-3-formylquinoline. Indian J. Chem. 1976 14B 375
    [Google Scholar]
  68. Parab R.H. Dixit B.C. Synthesis, characterization and antimicrobial activity of imidazole derivatives based on 2-chloro-7-methyl-3-formylquinoline. E-J. Chem. 2012 9 3 1188 1195 10.1155/2012/164235
    [Google Scholar]
  69. Abdel-Meguid S.S. Metcalf B.W. Carr T.J. Demarsh P. DesJarlais R.L. Fisher S. Green D.W. Ivanoff L. Lambert D.M. Murthy K.H. An orally bioavailable HIV-1 protease inhibitor containing an imidazole-derived peptide bond replacement: Crystallographic and pharmacokinetic analysis. Biochemistry 1994 33 39 11671 11677 10.1021/bi00205a001 7918383
    [Google Scholar]
  70. Laufer S.A. Zimmermann W. Ruff K.J. Tetrasubstituted imidazole inhibitors of cytokine release: Probing substituents in the N-1 position. J. Med. Chem. 2004 47 25 6311 6325 10.1021/jm0496584 15566301
    [Google Scholar]
  71. Narasimhan B. Sharma D. Kumar P. Biological importance of imidazole nucleus in the new millennium. Med. Chem. Res. 2011 20 8 1119 1140
    [Google Scholar]
  72. Desai N.C. Maheta A.S. Rajpara K.M. Joshi V.V. Vaghani H.V. Satodiya H.M. Green synthesis of novel quinoline based imidazole derivatives and evaluation of their antimicrobial activity. J. Saudi Chem. Soc. 2014 18 6 963 971 10.1016/j.jscs.2011.11.021
    [Google Scholar]
  73. Vodela S. Chakravarthula V. Synthesis, characterization, and antimicrobial activity of some novel quinoline-based imidazoles. J. Drug Deliv. Ther. 2016 6 5 6 10 10.22270/jddt.v6i5.1278
    [Google Scholar]
  74. Effendi N. Mishiroc K. Takaradad T. Yamadad D. Nishiie R. Shibaf K. Design, synthesis, and biological evaluation of radioiodinated benzo[d]imidazole-quinoline derivatives for PDGFRβ imaging. Bioorg. Med. Chem. 2019 27 383 393 10.1016/j.bmc.2018.12.016 30563725
    [Google Scholar]
  75. Kondaparla S. Manhas A. Dola V.R. Srivastava K. Puri S.K. Katti S.B. Design, synthesis and antiplasmodial activity of novel imidazole derivatives based on 7-chloro-4-aminoquinoline. Bioorg. Chem. 2018 80 204 211 10.1016/j.bioorg.2018.06.012 29940342
    [Google Scholar]
  76. Mungra D.C. Kathrotiya H.G. Ladani N.K. Patel M.P. Patel R.G. Molecular iodine catalyzed synthesis of tetrazolo[1,5-a]-quinoline based imidazoles as a new class of antimicrobial and antituberculosis agents. Chin. Chem. Lett. 2012 23 12 1367 1370 10.1016/j.cclet.2012.11.007
    [Google Scholar]
  77. Shobhashana P.G. Prasad P. Kalola A.G. Patel M.P. Synthesis of imidazole derivatives bearing quinoline nucleus catalyzed by CAN and their antimicrobial, antitubercular, and molecular docking studies. Res. J. Life Sci. Bioinform. Pharm. Chem. Sci. 2018 4 3 175 10.26479/2018.0403.15
    [Google Scholar]
  78. Xiao Z. Lei F. Chen X. Wang X. Cao L. Ye K. Design, synthesis, and antitumor evaluation of quinoline-imidazole derivatives. Arch. Pharm. Chem. Life Sci. 2018 351 6 e1700407 10.1002/ardp.201700407
    [Google Scholar]
  79. Aly A.A. Sayed S.M. Abdelhafez E.S.M.N. Abdelhafez S.M.N. Abdelzaher W.Y. Raslan M.A. Ahmed A.E. Thabet K. El-Reedy A.A.M. Brown A.B. Bräse S. New quinoline-2-one/pyrazole derivatives; design, synthesis, molecular docking, anti-apoptotic evaluation, and caspase-3 inhibition assay. Bioorg. Chem. 2020 94 103348 10.1016/j.bioorg.2019.103348 31699387
    [Google Scholar]
  80. Abu-Hashem A.A. Al-Hussain S.A. Design, synthesis, antimicrobial activity, and molecular docking of novel thiazoles, pyrazoles, 1,3-thiazepinones, and 1,2,4-triazolopyrimidines derived from quinoline-pyrido[2,3-d]pyrimidinones. Pharmaceuticals (Basel) 2024 17 12 1632 10.3390/ph17121632 39770474
    [Google Scholar]
  81. Goel T. Jain N. Bansode D. Review on pyrazole hybrids as antimicrobial agents. Curr. Top. Med. Chem. 2024 21 4 320 332
    [Google Scholar]
  82. El Shehry M.F. Ghorab M.M. Abbas S.Y. Fayed E.A. Shedid S.A. Chandrakantha Y.A. T3P-mediated synthesis of some new quinoline-substituted pyrazole derivatives and their antibacterial studies. Pharma Chem. 2012 4 4 1723 1729
    [Google Scholar]
  83. Ramírez-Prada J. Robledo S.M. Vélez I.D. Crespo M.P. Quiroga J. Abonia R. Montoya A. Svetaz L. Zacchino S. Insuasty B. Synthesis of novel quinoline–based 4,5–dihydro–1 H –pyrazoles as potential anticancer, antifungal, antibacterial and antiprotozoal agents. Eur. J. Med. Chem. 2017 131 237 254 10.1016/j.ejmech.2017.03.016 28329730
    [Google Scholar]
  84. Sangani C.B. Makawana J.A. Zhang X. Teraiya S.B. Lin L. Zhu H.L. Design, synthesis and molecular modeling of pyrazole–quinoline–pyridine hybrids as a new class of antimicrobial and anticancer agents. Eur. J. Med. Chem. 2014 76 549 557 10.1016/j.ejmech.2014.01.018 24607998
    [Google Scholar]
  85. Shivakumar B. Madawali I.M. Hugar S. Kalyane N.V. Synthesis and evaluation of 2-chloro-3-[3-(6-methyl-1H-benzimidazol-2-yl)-4,5-dihydro-1H-pyrazol-5-yl] quinolines as potent antimicrobial agents. Am. J. Pharm. Heal. Res. 2018 6 12 33 43 10.46624/ajphr.2018.v6.i12.004
    [Google Scholar]
  86. Pandya K.M. Patel A.H. Desai P.S. Development of antimicrobial, antimalarial, and antitubercular compounds based on a quinoline-pyrazole clubbed scaffold derived via Doebner reaction. Chem. Afri. 2020 3 89 98 10.1007/s42250‑019‑00096‑5
    [Google Scholar]
  87. Sai Pavan Kumar C.N. Srihari E. Ravinder M. Kumar K.P. Murthy U.S.N. Rao V.J. DBU promoted facile synthesis of new thieno[2,3‐b]pyridine/quinoline derivatives and their antimicrobial evaluation. J. Heterocycl. Chem. 2013 50 E131
    [Google Scholar]
  88. Kanani M.B. Patel M.P. Synthesis and in vitro antimicrobial evaluation of novel 2-amino-6-(phenylthio)-4-(2-(phenylthio)quinolin-3-yl)pyridine-3,5-dicarbonitriles. Med. Chem. Res. 2013 22 6 2912 2920 10.1007/s00044‑012‑0292‑7
    [Google Scholar]
  89. Makawana J.A. Patel M.P. Patel R.G. Synthesis and in vitro antimicrobial evaluation of penta-substituted pyridine derivatives bearing the quinoline nucleus. Med. Chem. Res. 2012 21 5 616 623 10.1007/s00044‑011‑9568‑6
    [Google Scholar]
  90. Li Y-S. Chen Y-L. Wang C. Tzeng C-C. Synthesis and anti-proliferative evaluation of certain pyrido [3,2-g] quinoline derivatives. Bioorg. Med. Chem. 2006 14 7370 7376
    [Google Scholar]
  91. Mittal R.K. Aggarwal M. Khatana K. Purohit P. Quinoline: Synthesis to application. Med. Chem. 2022 19 1 31 46 [PMID: 35240965
    [Google Scholar]
  92. Biswas T. Mittal R.K. Sharma V. Kanupriya; Mishra, I. Kanupriya, Mishra I. Nitrogen-fused heterocycles: Empowering anticancer drug discovery. Med. Chem. 2024 20 4 369 384 10.2174/0115734064278334231211054053 38192143
    [Google Scholar]
  93. Ilakiyalakshmi M. Arumugam Napoleon A. Review on recent development of quinoline for anticancer activities. Arab. J. Chem. 2022 15 11 104168 10.1016/j.arabjc.2022.104168
    [Google Scholar]
  94. Yadav P. Shah K. Quinolines, a perpetual, multipurpose scaffold in medicinal chemistry. Bioorg. Chem. 2021 109 104639 10.1016/j.bioorg.2021.104639 33618829
    [Google Scholar]
  95. Dhameliya T.M. Kathuria D. Patel T.M. Dave B.P. Chaudhari A.Z. Vekariya D.D. A quinquennial review on recent advancements and developments in search of anti-malarial agents. Curr. Top. Med. Chem. 2023 23 9 753 790 10.2174/1568026623666230427115241 37102486
    [Google Scholar]
  96. Pinheiro C.S. L.; M Feitosa, L.; O Gandi, M.; F Silveira, F.; Boechat, N. The development of novel compounds against malaria: Quinolines, triazolpyridines, pyrazolopyridines and pyrazolopyrimidines. Molecules 2019 24 22 4095 10.3390/molecules24224095 31766184
    [Google Scholar]
  97. Owais M. Kumar A. Hasan S.M. Singh K. Azad I. Hussain A. Suvaiv; Akil, M. Quinoline derivatives as promising scaffolds for antitubercular activity: A comprehensive review. Mini Rev. Med. Chem. 2024 24 13 1238 1251 10.2174/0113895575281039231218112953 38185891
    [Google Scholar]
  98. Hu S. Chen J. Cao J.X. Zhang S.S. Gu S.X. Chen F.E. Quinolines and isoquinolines as HIV-1 inhibitors: Chemical structures, action targets, and biological activities. Bioorg. Chem. 2023 136 106549 10.1016/j.bioorg.2023.106549 37119785
    [Google Scholar]
  99. Yadav V. Reang J. Sharma V. Majeed J. Sharma P.C. Sharma K. Giri N. Kumar A. Tonk R.K. Quinoline‐derivatives as privileged scaffolds for medicinal and pharmaceutical chemists: A comprehensive review. Chem. Biol. Drug Des. 2022 100 3 389 418 10.1111/cbdd.14099 35712793
    [Google Scholar]
  100. Mukherjee S. Pal M. Medicinal chemistry of quinolines as emerging anti-inflammatory agents: An overview. Curr. Med. Chem. 2013 20 35 4386 4410 10.2174/09298673113209990170 23862618
    [Google Scholar]
/content/journals/coc/10.2174/0113852728367743250520191343
Loading
/content/journals/coc/10.2174/0113852728367743250520191343
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: indole ; anti-proliferative ; Imidazoles ; pyridine ; pyrazoles ; pharmacophore ; triazole
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test