Skip to content
2000
Volume 30, Issue 4
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

The alarming rise in life-threatening infections caused by Gram-positive and Gram-negative bacteria has become a significant global health concern, urging the scientific community to explore new therapeutic solutions. Among heterocyclic compounds, the quinoline nucleus has emerged as a versatile scaffold with diverse pharmacological properties. Naturally occurring quinoline-based compounds provide a foundation for designing novel semi-synthetic and synthetic derivatives with broad-spectrum antibacterial activity. Quinoline-fused derivatives have shown potent anticancer effects by targeting critical enzymes and proteins, including topoisomerase I, telomerase, farnesyl transferase, Src tyrosine kinase, and protein kinase CK-II. Additionally, these compounds exhibit antitubercular, anticonvulsant, analgesic, and anti-inflammatory activities. Their potential as cardiovascular agents, acting as calcium-channel blockers and cAMP phosphodiesterase III inhibitors, further highlights their pharmacological significance. The fusion of quinoline with other heterocyclic systems such as indoles, pyridines, triazoles, imidazoles, and pyrazoles presents a promising strategy for drug discovery. Such combinations leverage the individual activities of each moiety, producing synergistic effects and enhancing therapeutic potential. These advances underscore the need for continued exploration of quinoline derivatives to identify novel lead compounds with improved efficacy and broadened activity spectra. This paradigm not only offers a pathway to address pressing antimicrobial resistance but also opens new opportunities for synthetic chemistry and the development of multifunctional therapeutic agents.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728367743250520191343
2025-06-05
2026-01-31
Loading full text...

Full text loading...

References

  1. Al-MullaA. A review: Biological importance of heterocyclic compounds.Pharma Chem.2017913141147
    [Google Scholar]
  2. SeelamN. ShrivastavaS.P. PrasanthiS. Synthesis and antimicrobial activity of some novel fused heterocyclic moieties.Org. Commun.2013627885
    [Google Scholar]
  3. MarellaA. TanwarO.P. SahaR. AliM.R. SrivastavaS. AkhterM. ShaquiquzzamanM. AlamM.M. Quinoline: A versatile heterocyclic.Saudi Pharm. J.201321111210.1016/j.jsps.2012.03.00223960814
    [Google Scholar]
  4. KumarS. BawaS. GuptaH. Biological activities of quinoline derivatives.Mini Rev. Med. Chem.20099141648165410.2174/13895570979101224720088783
    [Google Scholar]
  5. CaprioV. GuyenB. Opoku-BoahenY. MannJ. GowanS.M. KellandL.M. ReadM.A. NeidleS. A novel inhibitor of human telomerase derived from 10H-indolo[3,2-b]quinoline.Bioorg. Med. Chem. Lett.200010182063206610.1016/S0960‑894X(00)00378‑410999471
    [Google Scholar]
  6. LiuB. LiF. ZhouT. TangX.Q. HuG.W. Quinoline derivatives with potential activity against multidrug-resistant tuberculosis.J. Heterocycl. Chem.20185581863187310.1002/jhet.3241
    [Google Scholar]
  7. VinothN. KalaiarasiC. KumaradhasP. VadivelP. LalithaA. Synthesis and antibacterial activity of new N-substituted hexahydroquinolinone derivatives and X-ray crystallographic studies.ChemistrySelect2020592696270010.1002/slct.201904565
    [Google Scholar]
  8. MiriR. JavidniaK. MirkhaniH. HemmateenejaB. SepeherZ. ZalpourM. Synthesis, QSAR and calcium channel modulator activity of new hexahydroquinoline derivatives containing nitroimidazol.Chem. Biol. Drug Des.200770432933610.1111/j.1747‑0285.2007.00565.x17937778
    [Google Scholar]
  9. El-GazzarA.R.B.A. El-EnanyM.M. MahmoudM.N. Synthesis, analgesic, anti-inflammatory, and antimicrobial activity of some novel pyrimido[4,5-b]quinolin-4-ones.Bioorg. Med. Chem.20081663261327310.1016/j.bmc.2007.12.01218158248
    [Google Scholar]
  10. DiaconuD. AntociV. MangalagiuV. Amariucai-MantuD. MangalagiuI.I. Quinoline–imidazole/benzimidazole derivatives as dual-/multi-targeting hybrids inhibitors with anticancer and antimicrobial activity.Sci. Rep.20221211698810.1038/s41598‑022‑21435‑6
    [Google Scholar]
  11. El-ShershabyM.H. El-GamalK.M. BayoumiA.H. El-AdlK. AhmedH.E.A. AbulkhairH.S. Synthesis, antimicrobial evaluation, DNA gyrase inhibition, and in silico pharmacokinetic studies of novel quinoline derivatives.Arch. Pharm. (Weinheim)20213542200027710.1002/ardp.20200027733078877
    [Google Scholar]
  12. BouzianY. KarrouchiK. SertY. LaiC.H. MahiL. AhabchaneN.H. TalbaouiA. MagueJ.T. EssassiE.M. Synthesis, spectroscopic characterization, crystal structure, DFT, molecular docking and in vitro antibacterial potential of novel quinoline derivatives.J. Mol. Struct.2020120912794010.1016/j.molstruc.2020.127940
    [Google Scholar]
  13. AliI.A.I. El-SakkaS.S.A. SolimanM.H.A. MohamedO.E.A. In silico, in vitro and docking applications for some novel complexes derived from new quinoline derivatives.J. Mol. Struct.2019119683210.1016/j.molstruc.2019.06.053
    [Google Scholar]
  14. KumarN. KhannaA. KaurK. KaurH. SharmaA. BediP.M.S. Quinoline derivatives volunteering against antimicrobial resistance: Rational approaches, design strategies, structure activity relationship and mechanistic insights.Mol. Divers.20232741905193410.1007/s11030‑022‑10537‑y36197551
    [Google Scholar]
  15. NafieM.S. MahgoubS. AmerA.M. Antimicrobial and antiproliferative activities of novel synthesized 6‐(quinolin‐2‐ylthio) pyridine derivatives with molecular docking study as multi‐targeted JAK2/STAT3 inhibitors.Chem. Biol. Drug Des.202197355356410.1111/cbdd.1379132920942
    [Google Scholar]
  16. ThakareP.P. ShindeA.D. ChavanA.P. NyayanitN.V. BobadeV.D. MhaskeP.C. Synthesis and biological evaluation of new 1,2,3-triazolyl-pyrazolyl-quinoline derivatives as potential antimicrobial agents.ChemistrySelect20205154722472710.1002/slct.201904455
    [Google Scholar]
  17. SunN. DuR.L. ZhengY.Y. HuangB.H. GuoQ. ZhangR.F. WongK.Y. LuY.J. Antibacterial activity of N -methylbenzofuro[3,2- b]quinoline and N -methylbenzoindolo[3,2- b]-quinoline derivatives and study of their mode of action.Eur. J. Med. Chem.201713511110.1016/j.ejmech.2017.04.01828426995
    [Google Scholar]
  18. El-GokhaA.A. BoshtaN.M. Abo HusseinM.K. El SayedI.E.T. Synthesis and structure-activity relationships of novel neocryptolepine derivatives.Chem. Res. Chin. Univ.201733337337710.1007/s40242‑017‑6502‑6
    [Google Scholar]
  19. UpparV. ChandrashekharappaS. ShivamalluC. PS. KollurS.P. Ortega-CastroJ. FrauJ. Flores-HolguínN. BasarikattiA.I. ChougalaM. Mohan MM. BanuprakashG. Jayadev VenugopalaK.N. NandeshwarappaB.P. VeerapurR. Al-KheraifA.A. ElgorbanA.M. SyedA. Mudnakudu-NagarajuK.K. PadmashaliB. Glossman-MitnikD. Investigation of antifungal properties of synthetic dimethyl-4-bromo-1-(substituted benzoyl) pyrrolo[1,2-a]quinoline-2,3-dicarboxylates analogues: Molecular docking studies and conceptual DFT-based chemical reactivity descriptors and pharmacokinetics evaluation.Molecules2021269272210.3390/molecules2609272234066433
    [Google Scholar]
  20. DesaiN.C. PatelB.Y. DaveB.P. Synthesis and antimicrobial activity of novel quinoline derivatives bearing pyrazoline and pyridine analogues.Med. Chem. Res.201726110911910.1007/s00044‑016‑1732‑6
    [Google Scholar]
  21. NakamotoK. TsukadaI. TanakaK. MatsukuraM. HanedaT. InoueS. MuraiN. AbeS. UedaN. MiyazakiM. WatanabeN. AsadaM. YoshimatsuK. HataK. Synthesis and evaluation of novel antifungal agents-quinoline and pyridine amide derivatives.Bioorg. Med. Chem. Lett.201020154624462610.1016/j.bmcl.2010.06.00520573507
    [Google Scholar]
  22. MusiolR. JampilekJ. BuchtaV. SilvaL. NiedbalaH. PodeszwaB. PalkaA. Majerz-ManieckaK. OleksynB. PolanskiJ. Antifungal properties of new series of quinoline derivatives.Bioorg. Med. Chem.200614103592359810.1016/j.bmc.2006.01.01616458522
    [Google Scholar]
  23. LiuC.X. ZhaoX. WangL. YangZ.C. Quinoline derivatives as potential anti-tubercular agents: Synthesis, molecular docking and mechanism of action.Microb. Pathog.202216510550710.1016/j.micpath.2022.10550735354076
    [Google Scholar]
  24. AbdelrahmanM.A. AlmahliH. Al-WarhiT. MajrashiT.A. Abdel-AzizM.M. EldehnaW.M. SaidM.A. Development of novel isatin-tethered quinolines as anti-tubercular agents against multi- and extensively drug-resistant Mycobacterium tuberculosis.Molecules20222724880710.3390/molecules2724880736557937
    [Google Scholar]
  25. VenugopalaK.N. UpparV. ChandrashekharappaS. AbdallahH.H. PillayM. DebP.K. MorsyM.A. AldhubiabB.E. AttimaradM. NairA.B. SreeharshaN. TratratC. Yousef JaberA. VenugopalaR. MailavaramR.P. Al-JaidiB.A. KandeelM. HarounM. PadmashaliB. Cytotoxicity and antimycobacterial properties of pyrrolo[1,2-a]quinoline derivatives: Molecular target identification and molecular docking studies.Antibiotics (Basel)20209523310.3390/antibiotics905023332392709
    [Google Scholar]
  26. MakafeG.G. HussainM. SurineniG. TanY. WongN.K. JuliusM. LiuL. GiftC. JiangH. TangY. LiuJ. TanS. YuZ. LiuZ. LuZ. FangC. ZhouY. ZhangJ. ZhuQ. LiuJ. ZhangT. Quinoline derivatives kill Mycobacterium tuberculosis by activating glutamate kinase.Cell Chem. Biol.201926811871194.e510.1016/j.chembiol.2019.05.00331204286
    [Google Scholar]
  27. MathewB. RossL. ReynoldsR.C. A novel quinoline derivative that inhibits mycobacterial FtsZ.Tuberculosis (Edinb.)201393439840010.1016/j.tube.2013.04.00223647650
    [Google Scholar]
  28. AbbiatiG. ArcadiA. ChiariniM. MarinelliF. PietropaoloE. RossiE. An alternative one-pot gold-catalyzed approach to the assembly of 11H-indolo[3,2-c]quinolines.Org. Biomol. Chem.201210387801780810.1039/c2ob26380g22911041
    [Google Scholar]
  29. LiouY.C. LinY.A. WangK. YangJ.C. JangY.J. LinW. WuY.C. Synthesis of novel spiro-tetrahydroquinoline derivatives and evaluation of their pharmacological effects on wound healing.Int. J. Mol. Sci.20212212625110.3390/ijms2212625134200731
    [Google Scholar]
  30. KumarS. Ritika, A brief review of the biological potential of indole derivatives.Future J. Pharm. Sci.20206112110.1186/s43094‑020‑00141‑y
    [Google Scholar]
  31. SalemM.A. RagabA. AskarA.A. El-KhalafawyA. MakhloufA.H. One-pot synthesis and molecular docking of some new spiropyranindol-2-one derivatives as immunomodulatory agents and in vitro antimicrobial potential with DNA gyrase inhibitor.Eur. J. Med. Chem.202018811197710.1016/j.ejmech.2019.11197731927313
    [Google Scholar]
  32. AmmarY.A. El-HafezS.M.A.A. HesseinS.A. AliA.M. AskarA.A. RagabA. One-pot strategy for thiazole tethered 7-ethoxy quinoline hybrids: Synthesis and potential antimicrobial agents as dihydrofolate reductase (DHFR) inhibitors with molecular docking study.J. Mol. Struct.2021124213074810.1016/j.molstruc.2021.130748
    [Google Scholar]
  33. GulM. Turk CelikogluE. IdilO. TasG. PelitE. Synthesis, antimicrobial activity and molecular docking studies of spiroquinoline-indoline-dione and spiropyrazolo-indoline-dione derivatives.Sci. Rep.2023131167610.1038/s41598‑023‑27777‑z36717728
    [Google Scholar]
  34. AliS. WisalA. TahirM.N. Abdullah AliA. HameedS. AhmedM.N. One-pot synthesis, crystal structure and antimicrobial activity of 6-benzyl-11-(p-tolyl)-6H-indolo[2,3-b]quinoline.J. Mol. Struct.2020121012803510.1016/j.molstruc.2020.128035
    [Google Scholar]
  35. TsengC.H. TungC.W. WuC.H. TzengC.C. ChenY.H. HwangT.L. ChenY.L. Discovery of indeno[1,2-c]quinoline derivatives as potent dual antituberculosis and anti-inflammatory agents.Molecules2017226100110.3390/molecules2206100128621733
    [Google Scholar]
  36. AydınA. ÖktenS. ErkanS. BulutM. ÖzcanE. TutarA. ErenT. In-vitro anticancer and antibacterial activities of brominated indeno[1,2-b]quinoline amines supported with molecular docking and MCDM.ChemistrySelect20216133286329510.1002/slct.202004753
    [Google Scholar]
  37. KaufmanT. MéndezM. BraccaA. Isolation, synthesis, and biological activity of quindoline, a valuable indoloquinoline natural product and useful key intermediate.Synthesis20185071417142910.1055/s‑0036‑1591947
    [Google Scholar]
  38. YadavJ. KaushikC.P. Quinoline-1,2,3-triazole hybrids: Design, synthesis, antimalarial and antimicrobial evaluation.J. Mol. Struct.2024131613888210.1016/j.molstruc.2024.138882
    [Google Scholar]
  39. BraccaA.B.J. HerediaD.A. LarghiE.L. KaufmanT.S. Neocryptolepine (cryprotackieine), a unique bioactive natural product: Isolation, synthesis, and profile of its biological activity.Eur. J. Org. Chem.20142014367979800310.1002/ejoc.201402910
    [Google Scholar]
  40. GodlewskaJ. LuniewskiW. ZagrodzkiB. KaczmarekL. Bielawska-PohlA. DusD. Anticancer activity of indoloquinoline derivatives.Anticancer Res.2005252857286816080538
    [Google Scholar]
  41. CimangaK. De BruyneT. PietersL. TotteJ. KambuL.T. Vanden BergheD. Antimicrobial activity of plant-derived indoloquinolines.Phytomedicine1998520921410.1016/S0944‑7113(98)80030‑523195843
    [Google Scholar]
  42. KaczmarekL. Peczynska-CzochW. OsiadaczJ. MordarskiM. SokalskiW.A. BoratynskiJ. Antitumor activity of indoloquinoline derivatives.Bioorg. Med. Chem.199972457246410.1016/S0968‑0896(99)00200‑X10632055
    [Google Scholar]
  43. AgalaveS.G. MaujanS.R. PoreV.S. Click chemistry: 1,2,3-triazoles as pharmacophores.Chem. Asian J.20116102696271810.1002/asia.20110043221954075
    [Google Scholar]
  44. MeldalM. TornøeC.W. Cu-catalyzed azide-alkyne cycloaddition.Chem. Rev.200810882952301510.1021/cr078347918698735
    [Google Scholar]
  45. GiffinM.J. HeasletH. BrikA. LinY.C. CauviG. WongC.H. McReeD.E. ElderJ.H. StoutC.D. TorbettB.E. A copper(I)-catalyzed 1,2,3-triazole azide-alkyne click compound is a potent inhibitor of a multidrug-resistant HIV-1 protease variant.J. Med. Chem.200851206263627010.1021/jm800149m18823110
    [Google Scholar]
  46. Silva JúniorE.N. MouraM.A.B.F. PintoA.V. PintoM.C.F.R. SouzaM.C.B.V. AraújoA.J. PessoaC. Costa-LotufoL.V. MontenegroR.C. MoraesM.O. FerreiraV.F. GoulartM.O.F. Cytotoxic, trypanocidal activities and physicochemical parameters of nor-2-lapachone-based 1,2,3-triazoles.J. Braz. Chem. Soc.200920463564310.1590/S0103‑50532009000400007
    [Google Scholar]
  47. KamalA. ShankaraiahN. DevaiahV. Laxma ReddyK. JuvekarA. SenS. KurianN. ZingdeS. Synthesis of 1,2,3-triazole-linked pyrrolobenzodiazepine conjugates employing ‘click’ chemistry: DNA-binding affinity and anticancer activity.Bioorg. Med. Chem. Lett.20081841468147310.1016/j.bmcl.2007.12.06318207392
    [Google Scholar]
  48. GallardoH. ConteG. BrykF. LourençoM.C.S. CostaM.S. FerreiraV.F. Synthesis and evaluation of 1-alkyl-4-phenyl-[1,2,3]-triazole derivatives as antimycobacterial agent.J. Braz. Chem. Soc.20071861285129110.1590/S0103‑50532007000600027
    [Google Scholar]
  49. BoechatN. FerreiraV.F. FerreiraS.B. FerreiraM.L.G. da SilvaF.C. BastosM.M. CostaM.S. LourençoM.C.S. PintoA.C. KrettliA.U. AguiarA.C. TeixeiraB.M. da SilvaN.V. MartinsP.R.C. BezerraF.A.F.M. CamiloA.L.S. da SilvaG.P. CostaC.C.P. Novel 1,2,3-triazole derivatives for use against Mycobacterium tuberculosis H37Rv (ATCC 27294) strain.J. Med. Chem.201154175988599910.1021/jm200362421776985
    [Google Scholar]
  50. PoreV.S. AherN.G. KumarM. ShuklaP.K. Design and synthesis of fluconazole/bile acid conjugate using click reaction.Tetrahedron20066248111781118610.1016/j.tet.2006.09.021
    [Google Scholar]
  51. AherN.G. PoreV.S. MishraN.N. KumarA. ShuklaP.K. SharmaA. BhatM.K. Synthesis and antifungal activity of 1,2,3-triazole containing fluconazole analogues.Bioorg. Med. Chem. Lett.200919375976310.1016/j.bmcl.2008.12.02619110424
    [Google Scholar]
  52. GuantaiE.M. NcokaziK. EganT.J. GutJ. RosenthalP.J. SmithP.J. ChibaleK. Design, synthesis and in vitro antimalarial evaluation of triazole-linked chalcone and dienone hybrid compounds.Bioorg. Med. Chem.201018238243825610.1016/j.bmc.2010.10.00921044845
    [Google Scholar]
  53. CarvalhoI. AndradeP. CampoV.L. GuedesP.M.M. Sesti-CostaR. SilvaJ.S. SchenkmanS. DedolaS. HillL. RejzekM. NepogodievS.A. FieldR.A. ‘Click chemistry’ synthesis of a library of 1,2,3-triazole-substituted galactose derivatives and their evaluation against Trypanosoma cruzi and its cell surface trans-sialidase.Bioorg. Med. Chem.20101872412242710.1016/j.bmc.2010.02.05320335038
    [Google Scholar]
  54. da SilvaE.N.Jr Menna-BarretoR.F.S. PintoM.C.F.R. SilvaR.S.F. TeixeiraD.V. de SouzaM.C.B.V. De SimoneC.A. De CastroS.L. FerreiraV.F. PintoA.V. Naphthoquinoidal [1,2,3]-triazole, a new structural moiety active against Trypanosoma cruzi.Eur. J. Med. Chem.20084381774178010.1016/j.ejmech.2007.10.01518045742
    [Google Scholar]
  55. AwoladeP. CeleN. KerruN. SinghP. Synthesis, antimicrobial evaluation, and in silico studies of quinoline—1H-1,2,3-triazole molecular hybrids.Mol. Divers.20212542201221810.1007/s11030‑020‑10112‑332507981
    [Google Scholar]
  56. KeivanlooA. FakharianM. SepehriS. 1,2,3-Triazoles based 3-substituted 2-thioquinoxalines: Synthesis, anti-bacterial activities, and molecular docking studies.J. Mol. Struct.2020120212726210.1016/j.molstruc.2019.127262
    [Google Scholar]
  57. BabuH.R. RavinderM. NarsimhaS. Microwave-assisted one pot synthesis of fused [1,2,3]triazolo-pyrano[3,2-h]quinolines and their biological evaluation.Asian J. Pharm. Pharmacol.2019561202121010.31024/ajpp.2019.5.6.17
    [Google Scholar]
  58. UpadhyayA. KushwahaP. GuptaS. DoddaR.P. RamalingamK. KantR. GoyalN. SashidharaK.V. Synthesis and evaluation of novel triazolyl quinoline derivatives as potential antileishmanial agents.Eur. J. Med. Chem.201815417218110.1016/j.ejmech.2018.05.01429793211
    [Google Scholar]
  59. D’SouzaV.T. NayakJ. D’MelloD.E. DayanandaP. Synthesis and characterization of biologically important quinoline incorporated triazole derivatives.J. Mol. Struct.2020122912950310.1016/j.molstruc.2020.129503
    [Google Scholar]
  60. VishnuvardhanM. PradeepM. GangadharT. An efficient microwave assisted synthesis and antimicrobial activity of novel p‐Tolyloxyquinoline‐Triazole hybrid derivatives.Chemical Data Collections20213110061210.1016/j.cdc.2020.100612
    [Google Scholar]
  61. GangneuxJ.P. DullinM. SulahianA. GarinY.J.F. DerouinF. Experimental evaluation of second-line oral treatments of visceral leishmaniasis caused by Leishmania infantum.Antimicrob. Agents Chemother.199943117217410.1128/AAC.43.1.1729869587
    [Google Scholar]
  62. RossiR. CiofaloM. An updated review on the synthesis and antibacterial activity of molecular hybrids and conjugates bearing imidazole moiety.Molecules20202521513310.3390/molecules2521513333158247
    [Google Scholar]
  63. AngC.W. JarradA.M. CooperM.A. BlaskovichM.A.T. Nitroimidazoles: Molecular fireworks that combat a broad spectrum of infectious diseases.J. Med. Chem.201760187636765710.1021/acs.jmedchem.7b0014328463485
    [Google Scholar]
  64. AndersonR.J. GroundwaterP.W. ToddA. WorsleyA.J. Antibacterial Agents. Chemistry, Mode of Action, Mechanisms of Resistance and Clinical Applications.Chichester, UKWiley20128510110.1002/9781118325421.ch4
    [Google Scholar]
  65. LeirosH.K.S. Kozielski-StuhrmannS. KappU. TerradotL. LeonardG.A. McSweeneyS.M. Structural basis of 5-nitroimidazole antibiotic resistance: The crystal structure of NimA from Deinococcus radiodurans.J. Biol. Chem.200427953558405584910.1074/jbc.M40804420015492014
    [Google Scholar]
  66. DavidA. ThomasL. Foye’s principle of medicinal chemistry.5th Ed.ChichesterInternational Student Edition2002819
    [Google Scholar]
  67. PawarR.A. KohakA.L. GogteV.G. methyl-3-formylquinoline.Indian J. Chem.197614B375
    [Google Scholar]
  68. ParabR.H. DixitB.C. Synthesis, characterization and antimicrobial activity of imidazole derivatives based on 2-chloro-7-methyl-3-formylquinoline.E-J. Chem.2012931188119510.1155/2012/164235
    [Google Scholar]
  69. Abdel-MeguidS.S. MetcalfB.W. CarrT.J. DemarshP. DesJarlaisR.L. FisherS. GreenD.W. IvanoffL. LambertD.M. MurthyK.H. An orally bioavailable HIV-1 protease inhibitor containing an imidazole-derived peptide bond replacement: Crystallographic and pharmacokinetic analysis.Biochemistry19943339116711167710.1021/bi00205a0017918383
    [Google Scholar]
  70. LauferS.A. ZimmermannW. RuffK.J. Tetrasubstituted imidazole inhibitors of cytokine release: Probing substituents in the N-1 position.J. Med. Chem.200447256311632510.1021/jm049658415566301
    [Google Scholar]
  71. NarasimhanB. SharmaD. KumarP. Biological importance of imidazole nucleus in the new millennium.Med. Chem. Res.201120811191140
    [Google Scholar]
  72. DesaiN.C. MahetaA.S. RajparaK.M. JoshiV.V. VaghaniH.V. SatodiyaH.M. Green synthesis of novel quinoline based imidazole derivatives and evaluation of their antimicrobial activity.J. Saudi Chem. Soc.201418696397110.1016/j.jscs.2011.11.021
    [Google Scholar]
  73. VodelaS. ChakravarthulaV. Synthesis, characterization, and antimicrobial activity of some novel quinoline-based imidazoles.J. Drug Deliv. Ther.20166561010.22270/jddt.v6i5.1278
    [Google Scholar]
  74. EffendiN. MishirocK. TakaradadT. YamadadD. NishiieR. ShibafK. Design, synthesis, and biological evaluation of radioiodinated benzo[d]imidazole-quinoline derivatives for PDGFRβ imaging.Bioorg. Med. Chem.20192738339310.1016/j.bmc.2018.12.01630563725
    [Google Scholar]
  75. KondaparlaS. ManhasA. DolaV.R. SrivastavaK. PuriS.K. KattiS.B. Design, synthesis and antiplasmodial activity of novel imidazole derivatives based on 7-chloro-4-aminoquinoline.Bioorg. Chem.20188020421110.1016/j.bioorg.2018.06.01229940342
    [Google Scholar]
  76. MungraD.C. KathrotiyaH.G. LadaniN.K. PatelM.P. PatelR.G. Molecular iodine catalyzed synthesis of tetrazolo[1,5-a]-quinoline based imidazoles as a new class of antimicrobial and antituberculosis agents.Chin. Chem. Lett.201223121367137010.1016/j.cclet.2012.11.007
    [Google Scholar]
  77. ShobhashanaP.G. PrasadP. KalolaA.G. PatelM.P. Synthesis of imidazole derivatives bearing quinoline nucleus catalyzed by CAN and their antimicrobial, antitubercular, and molecular docking studies.Res. J. Life Sci. Bioinfor. Pharma. Chem. Sci.20184317510.26479/2018.0403.15
    [Google Scholar]
  78. XiaoZ. LeiF. ChenX. WangX. CaoL. YeK. Design, synthesis, and antitumor evaluation of quinoline-imidazole derivatives. Arch. Pharm. Chem.Life Sci.20183516e170040710.1002/ardp.201700407
    [Google Scholar]
  79. AlyA.A. SayedS.M. AbdelhafezE.S.M.N. AbdelhafezS.M.N. AbdelzaherW.Y. RaslanM.A. AhmedA.E. ThabetK. El-ReedyA.A.M. BrownA.B. BräseS. New quinoline-2-one/pyrazole derivatives; design, synthesis, molecular docking, anti-apoptotic evaluation, and caspase-3 inhibition assay.Bioorg. Chem.20209410334810.1016/j.bioorg.2019.10334831699387
    [Google Scholar]
  80. Abu-HashemA.A. Al-HussainS.A. Design, synthesis, antimicrobial activity, and molecular docking of novel thiazoles, pyrazoles, 1,3-thiazepinones, and 1,2,4-triazolopyrimidines derived from quinoline-pyrido[2,3-d]pyrimidinones.Pharmaceuticals (Basel)20241712163210.3390/ph1712163239770474
    [Google Scholar]
  81. GoelT. JainN. BansodeD. Review on pyrazole hybrids as antimicrobial agents.Curr. Top. Med. Chem.2024214320332
    [Google Scholar]
  82. El ShehryM.F. GhorabM.M. AbbasS.Y. FayedE.A. ShedidS.A. ChandrakanthaY.A. T3P-mediated synthesis of some new quinoline-substituted pyrazole derivatives and their antibacterial studies.Pharma Chem.20124417231729
    [Google Scholar]
  83. Ramírez-PradaJ. RobledoS.M. VélezI.D. CrespoM.P. QuirogaJ. AboniaR. MontoyaA. SvetazL. ZacchinoS. InsuastyB. Synthesis of novel quinoline–based 4,5–dihydro–1 H –pyrazoles as potential anticancer, antifungal, antibacterial and antiprotozoal agents.Eur. J. Med. Chem.201713123725410.1016/j.ejmech.2017.03.01628329730
    [Google Scholar]
  84. SanganiC.B. MakawanaJ.A. ZhangX. TeraiyaS.B. LinL. ZhuH.L. Design, synthesis and molecular modeling of pyrazole–quinoline–pyridine hybrids as a new class of antimicrobial and anticancer agents.Eur. J. Med. Chem.20147654955710.1016/j.ejmech.2014.01.01824607998
    [Google Scholar]
  85. ShivakumarB. MadawaliI.M. HugarS. KalyaneN.V. Synthesis and evaluation of 2-chloro-3-[3-(6-methyl-1H-benzimidazol-2-yl)-4,5-dihydro-1H-pyrazol-5-yl] quinolines as potent antimicrobial agents.Am. J. Pharm. Heal. Res.2018612334310.46624/ajphr.2018.v6.i12.004
    [Google Scholar]
  86. PandyaK.M. PatelA.H. DesaiP.S. Development of antimicrobial, antimalarial, and antitubercular compounds based on a quinoline-pyrazole clubbed scaffold derived via Doebner reaction.Chem. Afri.20203899810.1007/s42250‑019‑00096‑5
    [Google Scholar]
  87. Sai Pavan KumarC.N. SrihariE. RavinderM. KumarK.P. MurthyU.S.N. RaoV.J. DBU promoted facile synthesis of new thieno[2,3‐b]pyridine/quinoline derivatives and their antimicrobial evaluation.J. Heterocycl. Chem.201350E131
    [Google Scholar]
  88. KananiM.B. PatelM.P. Synthesis and in vitro antimicrobial evaluation of novel 2-amino-6-(phenylthio)-4-(2-(phenylthio)quinolin-3-yl)pyridine-3,5-dicarbonitriles.Med. Chem. Res.20132262912292010.1007/s00044‑012‑0292‑7
    [Google Scholar]
  89. MakawanaJ.A. PatelM.P. PatelR.G. Synthesis and in vitro antimicrobial evaluation of penta-substituted pyridine derivatives bearing the quinoline nucleus.Med. Chem. Res.201221561662310.1007/s00044‑011‑9568‑6
    [Google Scholar]
  90. LiY-S. ChenY-L. WangC. TzengC-C. Synthesis and anti-proliferative evaluation of certain pyrido [3,2-g] quinoline derivatives.Bioorg. Med. Chem.20061473707376
    [Google Scholar]
  91. MittalR.K. AggarwalM. KhatanaK. PurohitP. Quinoline: Synthesis to application.Med. Chem.2022191314635240965
    [Google Scholar]
  92. BiswasT. MittalR.K. SharmaV. Kanupriya MishraI. Kanupriya, Mishra I. Nitrogen-fused heterocycles: Empowering anticancer drug discovery.Med. Chem.202420436938410.2174/011573406427833423121105405338192143
    [Google Scholar]
  93. IlakiyalakshmiM. Arumugam NapoleonA. Review on recent development of quinoline for anticancer activities.Arab. J. Chem.2022151110416810.1016/j.arabjc.2022.104168
    [Google Scholar]
  94. YadavP. ShahK. Quinolines, a perpetual, multipurpose scaffold in medicinal chemistry.Bioorg. Chem.202110910463910.1016/j.bioorg.2021.10463933618829
    [Google Scholar]
  95. DhameliyaT.M. KathuriaD. PatelT.M. DaveB.P. ChaudhariA.Z. VekariyaD.D. A quinquennial review on recent advancements and developments in search of anti-malarial agents.Curr. Top. Med. Chem.202323975379010.2174/156802662366623042711524137102486
    [Google Scholar]
  96. C S PinheiroL. M FeitosaL. O GandiM. F SilveiraF. BoechatN. The development of novel compounds against malaria: Quinolines, triazolpyridines, pyrazolopyridines and pyrazolopyrimidines.Molecules20192422409510.3390/molecules2422409531766184
    [Google Scholar]
  97. OwaisM. KumarA. HasanS.M. SinghK. AzadI. HussainA. Suvaiv AkilM. Quinoline derivatives as promising scaffolds for antitubercular activity: A comprehensive review.Mini Rev. Med. Chem.202424131238125110.2174/011389557528103923121811295338185891
    [Google Scholar]
  98. HuS. ChenJ. CaoJ.X. ZhangS.S. GuS.X. ChenF.E. Quinolines and isoquinolines as HIV-1 inhibitors: Chemical structures, action targets, and biological activities.Bioorg. Chem.202313610654910.1016/j.bioorg.2023.10654937119785
    [Google Scholar]
  99. YadavV. ReangJ. SharmaV. MajeedJ. SharmaP.C. SharmaK. GiriN. KumarA. TonkR.K. Quinoline‐derivatives as privileged scaffolds for medicinal and pharmaceutical chemists: A comprehensive review.Chem. Biol. Drug Des.2022100338941810.1111/cbdd.1409935712793
    [Google Scholar]
  100. MukherjeeS. PalM. Medicinal chemistry of quinolines as emerging anti-inflammatory agents: An overview.Curr. Med. Chem.201320354386441010.2174/0929867311320999017023862618
    [Google Scholar]
/content/journals/coc/10.2174/0113852728367743250520191343
Loading
/content/journals/coc/10.2174/0113852728367743250520191343
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): anti-proliferative; Imidazoles; indole; pharmacophore; pyrazoles; pyridine; triazole
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test