Skip to content
2000
image of Exploring Synthesis and Functionalization of Imidazo[1,2˗a]pyridines: A Promising Heterocyclic Framework

Abstract

A well-known heterocyclic scaffold, imidazopyridine, is recognized for its important role in the development of therapeutic drugs. This is because imidazopyridine possesses a wide range of biological characteristics. The aim of this study is to provide a comprehensive outline of various synthetic techniques (2018˗2024) employed in the synthesis of Imidazo[1,2˗a] pyridine derivatives, highlighting both traditional and modern methodologies. The review article includes approaches like one-pot and microwave˗assisted synthesis in addition to traditional multistep synthesis. The review also looks at green chemistry strategies, emphasizing environmentally friendly techniques that reduce the usage of dangerous solvents and reagents. It includes forty different synthetic strategies, with respect to “green” methods, “one˗pot” reactions, “microwave˗assisted” methods, and “cyclization˗based” strategies. This review aims to assist researchers in selecting the most effective strategies for the efficient synthesis of imidazopyridine derivatives, thereby promoting their broader application in medicinal chemistry and related fields.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728367154250617095504
2025-07-08
2025-11-05
Loading full text...

Full text loading...

References

  1. Kurteva V. Recent progress in metal-free direct synthesis of imidazo[1,2-a] pyridines. ACS Omega 2021 6 51 35173 35185 10.1021/acsomega.1c03476 34984250
    [Google Scholar]
  2. Katritzky A.R. Xu Y.J. Tu H. Regiospecific synthesis of 3-substituted imidazo[1,2-a]pyridines, Imidazo[1,2-a]pyrimidines, and Imidazo[1,2-c]pyrimidine. J. Org. Chem. 2003 68 12 4935 4937 10.1021/jo026797p 12790603
    [Google Scholar]
  3. Nandikolla A. Srinivasarao S. Karan Kumar B. Murugesan S. Aggarwal H. Major L.L. Smith T.K. Chandra Sekhar K.V.G. Synthesis, study of antileishmanial and antitrypanosomal activity of imidazo pyridine fused triazole analogues. RSC Advances 2020 10 63 38328 38343 10.1039/D0RA07881F 35517538
    [Google Scholar]
  4. Konwar D. Bora U. Recent developments in transition‐metal‐catalyzed regioselective functionalization of Imidazo[1, 2‐a]pyridine. ChemistrySelect 2021 6 11 2716 2744 10.1002/slct.202100144
    [Google Scholar]
  5. Selvam P. De S. Paira P. Kumar S.K.A. Kumar R.S. Moorthy A. Ghosh A. Kuo Y.C. Banerjee S. Jenifer S.K. In vitro studies on the selective cytotoxic effect of luminescent Ru(II)- p -cymene complexes of imidazo-pyridine and imidazo quinoline ligands. Dalton Trans. 2022 51 45 17263 17276 10.1039/D2DT02237K 36317406
    [Google Scholar]
  6. Sanapalli B.K.R. Ashames A. Sigalapalli D.K. Shaik A.B. Bhandare R.R. Yele V. Synthetic imidazopyridine-based derivatives as potential inhibitors against multi-drug resistant bacterial infections: A review. Antibiotics 2022 11 12 1680 10.3390/antibiotics11121680 36551338
    [Google Scholar]
  7. Kwong H.C. Chidan Kumar C.S. Mah S.H. Mah Y.L. Chia T.S. Quah C.K. Lim G.K. Chandraju S. Crystal correlation of heterocyclic imidazo[1,2-a]pyridine analogues and their anticholinesterase potential evaluation. Sci. Rep. 2019 9 1 926 10.1038/s41598‑018‑37486‑7 30700752
    [Google Scholar]
  8. Changunda C.R.K. Venkatesh B.C. Mokone W.K. Rousseau A.L. Brady D. Fernandes M.A. Bode M.L. Efficient one-pot synthesis of functionalised imidazo[1,2-a]pyridines and unexpected synthesis of novel tetracyclic derivatives by nucleophilic aromatic substitution. RSC Advances 2020 10 14 8104 8114 10.1039/C9RA10447J 35497852
    [Google Scholar]
  9. Kanthecha D.A. Bhatt B.S. Patel M.N. Synthesis, characterization and biological activities of imidazo[1,2-a]pyridine based gold(III) metal complexes. Heliyon 2019 5 6 e01968 10.1016/j.heliyon.2019.e01968 31294115
    [Google Scholar]
  10. Al-Lami N. Salom K.J. Synthesis and biological activity evaluation of new Imidazo and Bis Imidazo (1, 2-a) pyridine derivatives. J. Glob. Pharma Technol. 2018 10 11 Suppl. 603 611
    [Google Scholar]
  11. Ma C-H. Chen M. Feng Z-W. Zhang Y. Wang J. Jiang Y-Q. Yu B. Functionalization of imidazo[1,2-a]pyridines via radical reactions. New J. Chem. 2021 45 21 9302 9314 10.1039/D1NJ00704A
    [Google Scholar]
  12. Majewski M.W. Tiwari R. Miller P.A. Cho S. Franzblau S.G. Miller M.J. Design, syntheses, and anti-tuberculosis activities of conjugates of piperazino-1,3-benzothiazin-4-ones (pBTZs) with 2,7-dimethylimidazo [1,2-a]pyridine-3-carboxylic acids and 7-phenylacetyl cephalosporins. Bioorg. Med. Chem. Lett. 2016 26 8 2068 2071 10.1016/j.bmcl.2016.02.076 26951749
    [Google Scholar]
  13. Hranjec M. Kralj M. Piantanida I. Sedić M. Šuman L. Pavelić K. Karminski-Zamola G. Novel cyano- and amidino-substituted derivatives of styryl-2-benzimidazoles and benzimidazo[1,2-a]quinolines. Synthesis, photochemical synthesis, DNA binding, and antitumor evaluation, part 3. J. Med. Chem. 2007 50 23 5696 5711 10.1021/jm070876h 17935309
    [Google Scholar]
  14. Ravi C. Adimurthy S. Synthesis of Imidazo[1,2‐a]pyridines: C‐H functionalization in the direction of C‐S bond formation. Chem. Rec. 2017 17 10 1019 1038 10.1002/tcr.201600146 28318093
    [Google Scholar]
  15. Volkova Y. Gevorgyan V. Synthesis of functionalyzed imidazo[1,2-a]pyridines via domino A3-coupling/cycloisomerization approach. Chem. Heterocycl. Compd. 2017 53 4 409 412 10.1007/s10593‑017‑2066‑0
    [Google Scholar]
  16. Reen G.K. Kumar A. Sharma P. Recent advances on the transition-metal-catalyzed synthesis of imidazopyridines: An updated coverage. Beilstein J. Org. Chem. 2019 15 1612 1704 10.3762/bjoc.15.165 31435443
    [Google Scholar]
  17. Bagdi A.K. Hajra A. Visible light promoted C-H functionalization of imidazoheterocycles. Org. Biomol. Chem. 2020 18 14 2611 2631 10.1039/D0OB00246A 32215443
    [Google Scholar]
  18. Ghosh D. Ghosh S. Hajra A. Electrochemical functionalization of imidazopyridine and indazole: An overview. Adv. Synth. Catal. 2021 363 22 5047 5071 10.1002/adsc.202100981
    [Google Scholar]
  19. Samanta S. Kumar S. Aratikatla E.K. Ghorpade S.R. Singh V. Recent developments of imidazo[1,2-a]pyridine analogues as antituberculosis agents. RSC Med. Chem. 2023 14 4 644 657 10.1039/D3MD00019B 37122538
    [Google Scholar]
  20. Kundu D. Kundu S.K. Majee A. Hajra A. A facile synthesis of 2,2,4‐Trisubstituted‐1,2‐Dihydroquinolines catalyzed by zinc triflate under solvent‐free conditions. J. Chin. Chem. Soc. (Taipei) 2008 55 5 1186 1190 10.1002/jccs.200800175
    [Google Scholar]
  21. Attanasi O.A. Bianchi L. Campisi L.A. Crescentini L.D. Favi G. Mantellini F. A novel solvent-free approach to imidazole containing nitrogen-bridgehead heterocycles. Org. Lett. 2013 15 14 3646 3649 10.1021/ol4015267 23805986
    [Google Scholar]
  22. Ismail M.A. Brun R. Wenzler T. Tanious F.A. Wilson W.D. Boykin D.W. Novel dicationic imidazo[1,2-a]pyridines and 5,6,7,8-tetrahydro-imidazo[1,2-a]pyridines as antiprotozoal agents. J. Med. Chem. 2004 47 14 3658 3664 10.1021/jm0400092 15214792
    [Google Scholar]
  23. Kushch S.O. Goryaeva M.V. Surnina E.A. Burgart Y.V. Ezhikova M.A. Kodess M.I. Slepukhin P.A. Saloutin V.I. Multicomponent domino reactions for the synthesis of variable hydrogenated Imidazo[1,2‐ a]pyridines. Asian J. Org. Chem. 2022 11 2 e202100709 10.1002/ajoc.202100709
    [Google Scholar]
  24. Wang J. Wu H. Song G. Yang D. Huang J. Yao X. Qin H. Chen Z. Xu Z. Xu C. A novel imidazopyridine derivative exerts anticancer activity by inducing mitochondrial pathway‐mediated apoptosis. BioMed Res. Int. 2020 2020 1 4929053 10.1155/2020/4929053 32908894
    [Google Scholar]
  25. Enguehard-Gueiffier C. Gueiffier A. Recent progress in the pharmacology of imidazo[1,2-a]pyridines. Mini Rev. Med. Chem. 2007 7 9 888 899 10.2174/138955707781662645 17897079
    [Google Scholar]
  26. Rawal T. Butani S. Combating tuberculosis infection: A forbidding challenge. Indian J. Pharm. Sci. 2016 78 1 8 16 10.4103/0250‑474X.180243 27168676
    [Google Scholar]
  27. García-González M.C. Hernández-Vázquez E. Gordillo-Cruz R.E. Miranda L.D. Ugi-derived dehydroalanines as a pivotal template in the diversity oriented synthesis of aza-polyheterocycles. Chem. Commun. (Camb.) 2015 51 58 11669 11672 10.1039/C5CC02927A 26102372
    [Google Scholar]
  28. Kerru N. Gummidi L. Maddila S. Gangu K.K. Jonnalagadda S.B. A review on recent advances in nitrogen-containing molecules and their biological applications. Molecules 2020 25 8 1909 10.3390/molecules25081909 32326131
    [Google Scholar]
  29. Mishra S. Monir K. Mitra S. Hajra A. FeCl3/ZnI2-catalyzed synthesis of benzo[d]imidazo[2,1-b]thiazole through aerobic oxidative cyclization between 2-aminobenzothiazole and ketone. Org. Lett. 2014 16 23 6084 6087 10.1021/ol5028893 25393913
    [Google Scholar]
  30. Rawat R. Verma S.M. Advancements in chemical methodologies for the synthesis of 3-aroylimidazo[1,2-a]pyridines: An update of the decade. Synth. Commun. 2020 50 23 3507 3534 10.1080/00397911.2020.1803915
    [Google Scholar]
  31. Neogi S. Kumar Ghosh A. Mandal S. Ghosh D. Ghosh S. Hajra A. Three-component carbosilylation of alkenes by merging iron and visible-light photocatalysis. Org. Lett. 2021 23 16 6510 6514 10.1021/acs.orglett.1c02322 34379426
    [Google Scholar]
  32. Sonawane R.S. Shirsat M. Patil S.R. Hundiwale J.C. atil, A.V.P. Design and synthesis of novel Imidazopyridine analogues and evaluation as H+/K+-ATPase antagonist. Asian J. Chem. 2020 32 11 2685 2692 10.14233/ajchem.2020.22697
    [Google Scholar]
  33. Almirante L. Polo L. Mugnaini A. Provinciali E. Rugarli P. Biancotti A. Gamba A. Murmann W. Derivatives of Imidazole. I. synthesis and reactions of Imidazo[1,2-α]pyridines with analgesic, antiinflammatory, antipyretic, and anticonvulsant activity. J. Med. Chem. 1965 8 3 305 312 10.1021/jm00327a007 14329509
    [Google Scholar]
  34. Biftu T. Feng D. Fisher M. Liang G.B. Qian X. Scribner A. Dennis R. Lee S. Liberator P.A. Brown C. Gurnett A. Leavitt P.S. Thompson D. Mathew J. Misura A. Samaras S. Tamas T. Sina J.F. McNulty K.A. McKnight C.G. Schmatz D.M. Wyvratt M. Synthesis and SAR studies of very potent imidazopyridine antiprotozoal agents. Bioorg. Med. Chem. Lett. 2006 16 9 2479 2483 10.1016/j.bmcl.2006.01.092 16464591
    [Google Scholar]
  35. Zhou S. Chen G. Huang G. Design, synthesis and biological evaluation of imidazo[1,2‐a]pyridine analogues or derivatives as anti‐helmintic drug. Chem. Biol. Drug Des. 2019 93 4 503 510 10.1111/cbdd.13441 30427117
    [Google Scholar]
  36. Ulloora S. Adhikari A.V. Shabaraya R. Synthesis and antiepileptic studies of new imidazo[1,2-a]pyridine derivatives. Chin. Chem. Lett. 2013 24 9 853 856 10.1016/j.cclet.2013.05.030
    [Google Scholar]
  37. Kaplancikli Z.A. Turan-Zitouni G. Özdemr A. Revial G. Synthesis and anticandidal activity of some imidazopyridine derivatives. J. Enzyme Inhib. Med. Chem. 2008 23 6 866 870 10.1080/14756360701811114 18608774
    [Google Scholar]
  38. Lacerda R.B. de Lima C.K.F. da Silva L.L. Romeiro N.C. Miranda A.L.P. Barreiro E.J. Fraga C.A.M. Discovery of novel analgesic and anti-inflammatory 3-arylamine-imidazo[1,2-a]pyridine symbiotic prototypes. Bioorg. Med. Chem. 2009 17 1 74 84 10.1016/j.bmc.2008.11.018 19059783
    [Google Scholar]
  39. Gudmundsson K.S. Johns B.A. Imidazo[1,2-a]pyridines with potent activity against herpesviruses. Bioorg. Med. Chem. Lett. 2007 17 10 2735 2739 10.1016/j.bmcl.2007.02.079 17368024
    [Google Scholar]
  40. Narayan A. Patel S. Baile S.B. Jain S. Sharma S. Imidazo[1,2-A]Pyridine: Potent biological activity, SAR and docking investigations (2017-2022). Infect. Disord. Drug Targets 2024 24 8 e200324228067 10.2174/0118715265274067240223040333 38509674
    [Google Scholar]
  41. Abdullahi M. Adeniji S.E. Arthur D.E. Haruna A. Homology modeling and molecular docking simulation of some novel imidazo[1,2-a]pyridine-3-carboxamide (IPA) series as inhibitors of Mycobacterium tuberculosis. J. Genet. Eng. Biotechnol. 2021 19 1 12 10.1186/s43141‑020‑00102‑1 33474593
    [Google Scholar]
  42. Kibou Z. Aissaoui N. Daoud I. Seijas J.A. Vázquez-Tato M.P. Klouche Khelil N. Choukchou-Braham N. Efficient synthesis of 2-Aminopyridine derivatives: Antibacterial activity assessment and molecular docking studies. Molecules 2022 27 11 3439 10.3390/molecules27113439 35684377
    [Google Scholar]
  43. Comins D.L. Synthesis of MAPA reagents and 2-Alkyl(aryl)aminopyridines from 2-Bromopyridine Using the goldberg reaction. Molecules 2022 27 6 1833 10.3390/molecules27061833 35335206
    [Google Scholar]
  44. Panda J. Raiguru B.P. Mishra M. Mohapatra S. Nayak S. Recent advances in the synthesis of Imidazo[1,2‐ a]pyridines: A brief review. ChemistrySelect 2022 7 3 e202103987 10.1002/slct.202103987
    [Google Scholar]
  45. Mohana Roopan S. Patil S.M. Palaniraja J. Recent synthetic scenario on imidazo[1,2-a]pyridines chemical intermediate. Res. Chem. Intermed. 2016 42 4 2749 2790 10.1007/s11164‑015‑2216‑x
    [Google Scholar]
  46. Tali J.A. Kumar G. Sharma B.K. Rasool Y. Sharma Y. Shankar R. Synthesis and site selective C-H functionalization of imidazo-[1,2-a]pyridines. Org. Biomol. Chem. 2023 21 36 7267 7289 10.1039/D3OB00849E 37655687
    [Google Scholar]
  47. Rodionov V.O. Fokin V.V. Finn M.G. Mechanism of the ligand-free CuI-catalyzed azide-alkyne cycloaddition reaction. Angew. Chem. Int. Ed. 2005 44 15 2210 2215 10.1002/anie.200461496 15693051
    [Google Scholar]
  48. Groebke K. Weber L. Mehlin F. Synthesis of Imidazo[1,2-a] annulated pyridines, pyrazines and pyrimidines by a novel three-component condensation. Synlett 1998 1998 6 661 663 10.1055/s‑1998‑1721
    [Google Scholar]
  49. Palani T. Park K. Kumar M.R. Jung H.M. Lee S. Copper‐catalyzed decarboxylative three‐component reactions for the synthesis of Imidazo[1,2‐ a]pyridines. Eur. J. Org. Chem. 2012 2012 26 5038 5047 10.1002/ejoc.201200679
    [Google Scholar]
  50. Liu P. Fang L. Lei X. Lin G. Synthesis of imidazo[1,2a]pyridines via three-component reaction of 2-aminopyridines, aldehydes and alkynes. Tetrahedron Lett. 2010 51 35 4605 4608 10.1016/j.tetlet.2010.05.139
    [Google Scholar]
  51. Yu Y. Su Z. Cao H. Strategies for synthesis of Imidazo[1,2‐ a]pyridine Derivatives: Carbene transformations or C−H functionalizations. Chem. Rec. 2019 19 10 2105 2118 10.1002/tcr.201800168 30592370
    [Google Scholar]
  52. Chahal M. Dhillon S. Rani P. Kumari G. Aneja D.K. Kinger M. Unravelling the synthetic and therapeutic aspects of five, six and fused heterocycles using Vilsmeier-Haack reagent. RSC Advances 2023 13 38 26604 26629 10.1039/D3RA04309F 37674485
    [Google Scholar]
  53. Tyagi S. Mishra R. Mazumder A. Jindaniya V. Vilsmeier haack reaction: An exemplary tool for synthesis of different heterocycles. Lett. Org. Chem. 2024 21 2 131 148 10.2174/1570178620666230911152937
    [Google Scholar]
  54. Sharma M. Prasher P. C2-functionalized imidazo[1,2-a]pyridine: Synthesis and medicinal relevance. Synth. Commun. 2022 52 11-12 1337 1356 10.1080/00397911.2022.2079091
    [Google Scholar]
  55. Filippov I.P. Agafonova A.V. Titov G.D. Smetanin I.A. Rostovskii N.V. Khlebnikov A.F. Novikov M.S. Synthesis of Imidazo[1,2-a]pyridines via near UV light-induced cyclization of azirinylpyridinium salts. J. Org. Chem. 2022 87 9 6514 6519 10.1021/acs.joc.2c00514 35476415
    [Google Scholar]
  56. Rostovtsev V.V. Green L.G. Cyclization of 2-halopyridines in the Synthesis of Imidazo[1,2-a]pyridines. Angew. Chem. Int. Ed. 2002 41 14 2596 2599 10.1002/1521‑3773(20020715)41:14<2596:AID‑ANIE2596>3.0.CO;2‑4
    [Google Scholar]
  57. Heravi M.M. Kheilkordi Z. Zadsirjan V. Heydari M. Malmir M. Buchwald-Hartwig reaction: An overview. J. Organomet. Chem. 2018 861 17 104 10.1016/j.jorganchem.2018.02.023
    [Google Scholar]
  58. Heravi M.M. Zadsirjan V. Malmir M. Mohammadi L. Buchwald-Hartwig reaction: An update. Monatsh. Chem. 1522021 1127 10.1007/s00706‑021‑02834‑3
    [Google Scholar]
  59. Jacoby S.A. Harris N.W. Wiemann A. Glenn C.D. Kantzler A.R. Dinh L.P. Yet L. Suzuki‐Miyaura and Buchwald‐Hartwig cross‐coupling reactions utilizing a set of complementary Imidazopyridine Monophosphine ligands. ChemistrySelect 2024 9 10 e202305085 10.1002/slct.202305085
    [Google Scholar]
  60. Ghobadi N. Nazari N. Gholamzadeh P. The Friedländer reaction: A powerful strategy for the synthesis of heterocycles. Adv. Heterocycl. Chem. 2020 132 85 134 10.1016/bs.aihch.2020.01.001
    [Google Scholar]
  61. Shehab W.S. Amer M.M.K. Elsayed D.A. Yadav K.K. Abdellattif M.H. Current progress toward synthetic routes and medicinal significance of quinoline. Med. Chem. Res. 2023 32 12 2443 2457 10.1007/s00044‑023‑03121‑y
    [Google Scholar]
  62. Kumar A. Pericherla K. Kaswan P. Pandey K. Recent developments in the synthesis of Imidazo[1,2-a]pyridines. Synthesis 2015 47 7 887 912 10.1055/s‑0034‑1380182
    [Google Scholar]
  63. Giese B. Kopping B. Göbel T. Dickhaut J. Thoma G. Kulicke K. Trach F. Radical cyclization reactions. Org. React. 1996 48 301 856 10.1002/0471264180.or048.02
    [Google Scholar]
  64. Sofi F.A. Gogde K. Mukherjee D. Masoodi M.H. Sustainable approaches towards the synthesis of functionalized imidazo[1,2-a]pyridines: Recent advancements. J. Mol. Struct. 2024 1297 137012 10.1016/j.molstruc.2023.137012
    [Google Scholar]
  65. Yadav R.K. Chaudhary S. Microwave-assisted synthesis of Imidazo[1,2- a]pyridine class of bio-heterocycles: Green avenues and sustainable developments. In: Advances in Green Synthesis: Avenues and Sustainability Springer Nature: UK 2021 10.1007/978‑3‑030‑67884‑5_12
    [Google Scholar]
  66. Kappe C.O. Controlled microwave heating in modern organic synthesis. Angew. Chem. Int. Ed. 2004 43 46 6250 6284 10.1002/anie.200400655 15558676
    [Google Scholar]
  67. Yi Y. Xu L. Liu Y. Li M. Zhang L. Ye J. Hu A. Solvent-dependence of KI mediated electrosynthesis of Imidazo[1,2-a]pyridines. Chem. Res. Chin. Univ. 2023 39 2 318 324 10.1007/s40242‑023‑2323‑y
    [Google Scholar]
  68. Anastas P. Eghbali N. Green chemistry: Principles and practice. Chem. Soc. Rev. 2010 39 1 301 312 10.1039/B918763B 20023854
    [Google Scholar]
  69. Tundo P. Anastas P. Black D.S. Breen J. Collins T.J. Memoli S. Miyamoto J. Polyakoff M. Tumas W. Synthetic pathways and processes in green chemistry. Introductory overview. Pure Appl. Chem. 2000 72 7 1207 1228 10.1351/pac200072071207
    [Google Scholar]
  70. Haouchine A.L. Kabri Y. Bakhta S. Curti C. Nedjar-Kolli B. Vanelle P. Simple synthesis of imidazo[1,2-a]pyridine derivatives bearing 2-aminonicotinonitrile or 2-aminochromene moiety. Synth. Commun. 2018 48 17 2159 2168 10.1080/00397911.2018.1479759
    [Google Scholar]
  71. Budhiraja M. Kondabala R. Ali A. Tyagi V. First biocatalytic Groebke-Blackburn-Bienaymé reaction to synthesize imidazo[1,2-a]pyridine derivatives using lipase enzyme. Tetrahedron 2020 76 47 131643 10.1016/j.tet.2020.131643
    [Google Scholar]
  72. Geedkar D. Kumar A. Sharma P. Molecular Iodine-Catalyzed Synthesis of Imidazo[1,2-a]Pyridines: Screening of Their In Silico Selectivity, Binding Affinity to Biological Targets, and Density Functional Theory Studies Insight. ACS Omega 2022 7 26 22421 22439 10.1021/acsomega.2c01570 35811892
    [Google Scholar]
  73. Asghariganjeh M.R. Mohammadi A.A. Tahanpesar E. Rayatzadeh A. Makarem S. Electro-organic synthesis of tetrahydroimidazo[1,2-a]pyridin-5(1H)-one via a multicomponent reaction. Mol. Divers. 2021 25 1 509 516 10.1007/s11030‑019‑10029‑6 31919737
    [Google Scholar]
  74. Ramarao S. Pothireddy M. Venkateshwarlu R. Moturu K.M.V.R. Siddaiah V. Kapavarapu R. Dandela R. Pal M. Sonochemical synthesis and In Silico evaluation of Imidazo[1,2-a]Pyridine derivatives as potential inhibitors of Sirtuins. Polycycl. Aromat. Compd. 2023 43 4 3741 3760 10.1080/10406638.2022.2077774
    [Google Scholar]
  75. Thakur A. Pereira G. Patel C. Chauhan V. Dhaked R.K. Sharma A. Design, one-pot green synthesis and antimicrobial evaluation of novel imidazopyridine bearing pyran bis-heterocycles. J. Mol. Struct. 2020 1206 127686 10.1016/j.molstruc.2020.127686
    [Google Scholar]
  76. Dorai S.T. Lakshmikanth K. Tiwari P. Saini S.M. Chandrashekharappa S. One-pot construction of novel trifluoromethyl dihydro-imidazo[1, 2-a]pyridine: A greener approach. Tetrahedron 2023 148 133691 10.1016/j.tet.2023.133691
    [Google Scholar]
  77. Jiang S. Copper (II) complex supported on magnetic nanoparticles as a novel nanocatalyst for the synthesis of imidazo[1,2-a]pyridines. Mol. Divers. 2024 28 6 3859 3877 10.1007/s11030‑023‑10781‑w 38267750
    [Google Scholar]
  78. Kamboj P. Tyagi V. Enzymatic synthesis of indole-based imidazopyridine using α-amylase. ChemBioChem 2024 25 6 e202300824 10.1002/cbic.202300824
    [Google Scholar]
  79. Jadhaoa A.R. Zyateb S.C. Gaikwad S.S. Blue LED-driven C-N bond formation for synthesis of Imidazopyridines. Indian J. Chem. 2024 63 2 203 210 10.56042/ijc.v63i2.6338
    [Google Scholar]
  80. Mukherjee D. Karmakar I. Brahmachari G. Electro- and mechanochemical strategy as a dual synthetic approach for biologically relevant 3-Nitro-imidazo-[1,2-a]pyridines. J. Org. Chem. 2024 89 17 12071 12084 10.1021/acs.joc.4c00881 39145592
    [Google Scholar]
  81. Cao H. Liu X. Zhao L. Cen J. Lin J. Zhu Q. Fu M. One-pot regiospecific synthesis of imidazo[1,2-a]pyridines: A novel, metal-free, three-component reaction for the formation of C-N, C-O, and C-S bonds. Org. Lett. 2014 16 1 146 149 10.1021/ol4031414 24320098
    [Google Scholar]
  82. Dhara K. Pachfule P. Efficient one-pot synthesis of Imidazo[1,2-a]pyridines via A multicomponent reaction. Tetrahedron Lett. 2017 58 30 2927 2931 10.1039/B918763B
    [Google Scholar]
  83. Zhao Y. Li J. Catalyst-free one-pot synthesis of Imidazo[1,2-a]pyridines under solvent-free conditions. Green Chem. 2014 16 11 4985 4990 10.1016/j.isci.2022.105005
    [Google Scholar]
  84. Abdel Hameed A.M. Moustafa M.S. Al-Mousawi S.M. Awed R.R. Sadek K.U. An efficient and catalyst-free synthesis of N-arylidene-2-arylimidazo[1,2-a]pyridine-3-ylamine derivatives via Strecker reaction under controlled microwave heating. Green Process. Synth. 2017 6 4 371 375 10.1515/gps‑2017‑0019
    [Google Scholar]
  85. Devi N. Jana A.K. Singh V. Assessment of novel pyrazolopyridinone fused imidazopyridines as potential antimicrobial agents. Karbala. Int. J. Modern. Sci. 2018 4 1 164 170 10.1016/j.kijoms.2018.01.003
    [Google Scholar]
  86. Ebenezer O. Awolade P. Koorbanally N. Singh P. New library of pyrazole-Imidazo[1,2‐a]pyridine molecular conjugates: Synthesis, antibacterial activity and molecular docking studies. Chem. Biol. Drug Des. 2019 95 1 162 10.1111/cbdd.13632 31580533
    [Google Scholar]
  87. Zhou Z. Luo D. Li G. Yang Z. Cui L. Yang W. Copper-catalyzed three-component reaction to synthesize polysubstituted imidazo[1,2-a]pyridines. RSC Advances 2022 12 31 20199 20205 10.1039/D2RA02722D 35919587
    [Google Scholar]
  88. Mishra N.P. Mohapatra S. Sahoo C.R. Raiguru B.P. Nayak S. Jena S. Padhy R.N. Design, one-pot synthesis, molecular docking study, and antibacterial evaluation of novel 2H-chromene based imidazo[1,2-a]pyridine derivatives as potent peptide deformylase inhibitors. J. Mol. Struct. 2021 1246 131183 10.1016/j.molstruc.2021.131183
    [Google Scholar]
  89. Althagafia I. Abdel-Latif E. Synthesis and antibacterial activity of new Imidazo[1,2-a]pyridines Festooned with Pyridine, Thiazole or Pyrazole Moiety. Polycycl. Aromat. Compd. 2021 10.1080/10406638.2021.1894185
    [Google Scholar]
  90. Lidström P. Tierney J. Wathey B. Westman J. Microwave assisted organic synthesis: A review. Tetrahedron 2001 57 45 9225 9283 10.1016/S0040‑4020(01)00906‑1
    [Google Scholar]
  91. Varma R.S. Solvent-free organic syntheses. Green Chem. 1999 1 1 43 55 10.1039/a808223e
    [Google Scholar]
  92. Güngör T. Microwave assisted, sequential two-step, one-pot synthesis of novel imidazo[1,2-a] pyrimidine containing tri/tetrasubstituted imidazole derivatives. Turk. J. Chem. 2021 45 1 219 230 10.3906/kim‑2009‑40 33679165
    [Google Scholar]
  93. Basavanag U.M.V. Islas-Jácome A. Rentería-Gómez A. Conejo A.S. Kurva M. Jiménez-Halla J.O.C. Velusamy J. Ramos-Ortíz G. Gámez-Montaño R. Synthesis of 2-julolidin-imidazo[1,2-a]pyridines via Groebke-Blackburn-Bienaymé reaction and studies of optical properties. New J. Chem. 2017 41 9 3450 3459 10.1039/C6NJ04044F
    [Google Scholar]
  94. Rodríguez J.C. Maldonado R.A. Ramírez-García G. Díaz Cervantes E. de la Cruz F.N. Microwave‐assisted synthesis and luminescent activity of imidazo[1,2‐a]pyridine derivatives. J. Heterocycl. Chem. 2020 57 5 2279 2287 10.1002/jhet.3950
    [Google Scholar]
  95. Perumalla S. Kumar A.S. Cyclization strategies for the synthesis of Imidazo[1,2-a] pyridines and their biological significance. Org. Biomol. Chem. 2019 17 30 7036 7055 10.1002/tcr.201800168
    [Google Scholar]
  96. Zhang X. Sun L. Microwave-assisted cyclization for the efficient synthesis of Imidazo[1,2-a]pyridine derivatives. J. Heterocycl. Chem. 2017 54 2 889 896 10.1002/chin.201536186
    [Google Scholar]
  97. Hariss L. Hadir K.B. El-Masri M. Roisnel T. Grée R. Hachem A. Preparation of imidazo[1,2-a]-N-heterocyclic derivatives with gem-difluorinated side chains. Beilstein J. Org. Chem. 2017 13 2115 2121 10.3762/bjoc.13.208 29062431
    [Google Scholar]
  98. Kuthyala S. Shankar M.K. Nagaraja G.K. Synthesis, single‐crystal X‐Ray, Hirshfeld and antimicrobial evaluation of some new imidazopyridine nucleus incorporated with oxadiazole scaffold. ChemistrySelect 2018 3 45 12894 12899 10.1002/slct.201802011
    [Google Scholar]
  99. Samanta S.K. Bera M.K. Iodine mediated oxidative cross coupling of 2-aminopyridine and aromatic terminal alkyne: a practical route to imidazo[1,2-a]pyridine derivatives. Org. Biomol. Chem. 2019 17 26 6441 6449 10.1039/C9OB00812H 31206121
    [Google Scholar]
  100. Salhi L. Achouche-Bouzroura S. Nechak R. Nedjar-Kolli B. Rabia C. Merazig H. Poulain-Martini S. Dunach E. Synthesis of functionalized dihydroimidazo[1,2-A]pyridines and 4-thiazolidinone derivatives from maleimide, as new class of antimicrobial agents. Syn. Commun. Rev. 2019 2019 412 422 10.1080/00397911.2019.1699933
    [Google Scholar]
  101. Ablo E. Coulibali S. Touré D. Coulibaly S. Kablan A.L.C. Konan Kouadio F. Sissouma D. Guessend Kouadio N. Ané A. Synthesis and antibacterial activity in vitro of 2-benzylthioimidazo[1,2-a]pyridine derivatives against pathogenic bacterial. Synth. Commun. 2022 52 3 462 469 10.1080/00397911.2022.2032175
    [Google Scholar]
  102. Padmaja P. Reddy P.N. Subba Reddy B.V. Kumar Tiwari A. Ugale V.G. Komati A. Sridhar B. Design, synthesis, in vitro α-glucosidase inhibitory, antioxidant activity and molecular docking studies of novel pyridine linked imidazo[1,2-a]pyridine derivatives. J. Mol. Struct. 2023 1273 134238 10.1016/j.molstruc.2022.134238
    [Google Scholar]
  103. He Q.X. Liang Y.F. Xu C. Yao X.K. Cao H. Yao H.G. Highly regioselective, acid-catalyzed, three-component cascade reaction for the synthesis of 2-aminopyridine-Decorated Imidazo[1,2-a]pyridine. ACS Comb. Sci. 2019 21 3 149 153 10.1021/acscombsci.8b00149 30653293
    [Google Scholar]
  104. Sharma A. Patel M. Advances in multi-step synthesis and medicinal applications of Imidazo[1,2-a] pyridines. Eur. J. Med. Chem. 2017 138 772 783 10.1021/acs.orglett.0c02929
    [Google Scholar]
  105. Chhabra S. Gopinath R. Multi-step synthesis of Imidazo[1,2-a]pyridine derivatives: A review of recent methodologies. Molecules 2019 24 16 2905 10.1002/vjch.202300362
    [Google Scholar]
  106. Barluenga J. Valdés C. Recent developments in the synthesis of Imidazo[1,2-a] pyridines and related heterocycles. Org. Chem. Front. 2008 5 2 234 246 10.1016/J.TET.2007.10.112?sid=semanticscholar
    [Google Scholar]
  107. Chen R. Wang Z. Sima L. Cheng H. Luo B. Wang J. Guo B. Mao S. Zhou Z. Peng J. Tang L. Liu X. Liao W. Design, synthesis and evaluation of 2, 6, 8-substituted Imidazopyridine derivatives as potent PI3K α inhibitors. J. Enzyme Inhib. Med. Chem. 2023 38 1 2155638 10.1080/14756366.2022.2155638 36650905
    [Google Scholar]
  108. Jadhav S.R. Gurav S.S. Yasin H. Nagpal P. Mali S.N. Imidazo[1,2-a]pyridine-appended chalcone and Schiff base conjugates: Synthetic, spectrophotometric, biological, and computational aspects. Chemical Physics Impact 2024 9 100694 10.1016/j.chphi.2024.100694
    [Google Scholar]
  109. Elkotamy M.S. Elgohary M.K. Al-Rashood S.T. Almahli H. Eldehna W.M. Abdel-Aziz H.A. Novel imidazo[2,1-b]thiazoles and imidazo[1,2-a]pyridines tethered with indolinone motif as VEGFR-2 inhibitors and apoptotic inducers: Design, synthesis and biological evaluations. Bioorg. Chem. 2024 151 107644 10.1016/j.bioorg.2024.107644 39079394
    [Google Scholar]
  110. Dömling A. Ugi I. Multicomponent reactions with Isocyanides. Angew. Chem. Int. Ed. 2000 39 18 3168 10.1002/1521‑3773(20000915)39:18<3168:AID‑ANIE3168>3.0.CO;2‑U
    [Google Scholar]
  111. Akbari J. Heydari A. Khaksar S. Efficient synthesis of Imidazo[1,2-a] pyridines via three-component reactions under solvent-free conditions. Monatsh. Chem. 2015 146 5 793 798 10.1016/j.carres.2023.108974
    [Google Scholar]
  112. Zhang H. Jiang L. Microwave-assisted solvent-free synthesis of imidazo[1,2-a]pyridines via a three-component reaction. Tetrahedron Lett. 2015 56 21 2777 2779 10.1016/j.tetlet.2015.04.030
    [Google Scholar]
  113. Butera R. Ważyńska M. Magiera-Mularz K. Plewka J. Musielak B. Surmiak E. Sala D. Kitel R. de Bruyn M. Nijman H.W. Elsinga P.H. Holak T.A. Dömling A. Design, synthesis, and biological evaluation of Imidazopyridines as PD-1/PD-L1 antagonists. ACS Med. Chem. Lett. 2021 12 5 768 773 10.1021/acsmedchemlett.1c00033 34055224
    [Google Scholar]
  114. Yang K. Chen C.B. Liu Z.W. Li Z.L. Zeng Y. Wang Z.Y. C3-alkylation of Imidazo[1,2-a]pyridines via three-component aza-friedel-crafts reaction catalyzed by Y(OTf)3. Molecules 2024 29 15 3463 10.3390/molecules29153463 39124868
    [Google Scholar]
  115. Krause M. Foks H. Gobis K. Pharmacological potential and synthetic approaches of Imidazo[4,5-b]pyridine and Imidazo[4,5-c]pyridine derivatives. Molecules 2017 22 3 399 10.3390/molecules22030399 28273868
    [Google Scholar]
  116. Gangjee A. Jain H. Kurup S. Recent advances in classical and non-classical antifolates as antitumor and antiopportunistic infection agents: Part II. Anticancer. Agents Med. Chem. 2008 8 2 205 231 10.2174/187152008783497064 18288923
    [Google Scholar]
  117. Silva D.G. Junker A. de Melo S.M.G. Fumagalli F. Gillespie J.R. Molasky N. Buckner F.S. Matheeussen A. Synthesis and structure activity relationships of Imidazopyridine/Pyrimidine- and Furopyridine-based antiinfective agents against trypanosomiases. ChemMedChem 2021 16 966 975 10.1002/cmdc.202000616 33078573
    [Google Scholar]
  118. Xue C. Han J. Zhao M. Wang L. Rapid construction of fused heteropolycyclic aromatics via palladium-catalyzed domino arylations of Imidazopyridine derivatives. Org. Lett. 2019 21 12 4402 4406 10.1021/acs.orglett.9b00761 31002518
    [Google Scholar]
  119. Li B. Shen N. Zhang X. Fan X. Synthesis of fused imidazo[1,2-a]pyridines derivatives through cascade C(sp 2)-H functionalizations. Org. Biomol. Chem. 2019 17 41 9140 9150 10.1039/C9OB01744E 31588947
    [Google Scholar]
  120. Li B. Guo C. Shen N. Zhang X. Fan X. Synthesis of maleimide fused benzocarbazoles and imidazo[1,2-a]pyridines via rhodium(III)-catalyzed [4 + 2] oxidative cycloaddition. Org. Chem. Front. 2020 7 22 3698 3704 10.1039/D0QO01109F
    [Google Scholar]
  121. Li B. Shen N. Yang Y. Zhang X. Fan X. Synthesis of naphtho[1′,2′:4,5]imidazo[1,2-a]pyridines via Rh(III)-catalyzed C-H functionalization of 2-arylimidazo[1,2-a]pyridines with cyclic 2-diazo-1,3-diketones featuring with a ring opening and reannulation. Org. Chem. Front. 2020 7 7 919 925 10.1039/D0QO00073F
    [Google Scholar]
  122. Lipinski C.A. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov. Today. Technol. 2004 1 4 337 341 10.1016/j.ddtec.2004.11.007 24981612
    [Google Scholar]
  123. Kim J.H. Lee S.H. Kim N.H. Kang E.J. Sustainable synthesis of fivemembered heterocycles using carbon dioxide and Fe-iminopyridine catalysts. J. CO2 Util 2021 50 101595 10.1016/j.jcou.2021.101595
    [Google Scholar]
  124. Sharma U.K. Van Der Eycken E.V. Flow chemistry for the synthesis of heterocycles. Springer 2018 10.1007/978‑3‑319‑94328‑2
    [Google Scholar]
  125. Wan Q. Zheng C. Yuan Y.F. You S.L. Ag2O/squaramide cocatalyzed asymmetric interrupted Barton-Zard reaction of 8-nitroimidazo[1,2-a]pyridines. Sci. Bull. (Beijing) 2022 67 16 1688 1695 10.1016/j.scib.2022.07.019 36546048
    [Google Scholar]
  126. He C. Zhang C. Bian T. Jiao K. Su W. Wu K.J. Su A. A review on artificial intelligence enabled design, synthesis, and process optimization of chemical products for industry 4.0. Processes 2023 11 2 330 10.3390/pr11020330
    [Google Scholar]
/content/journals/coc/10.2174/0113852728367154250617095504
Loading
/content/journals/coc/10.2174/0113852728367154250617095504
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test