Skip to content
2000
Volume 30, Issue 4
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

A well-known heterocyclic scaffold, imidazopyridine, is recognized for its important role in the development of therapeutic drugs. This is because imidazopyridine possesses a wide range of biological characteristics. The aim of this study is to provide a comprehensive outline of various synthetic techniques (2018˗2024) employed in the synthesis of Imidazo[1,2˗a] pyridine derivatives, highlighting both traditional and modern methodologies. The review article includes approaches like one-pot and microwave˗assisted synthesis in addition to traditional multistep synthesis. The review also looks at green chemistry strategies, emphasizing environmentally friendly techniques that reduce the usage of dangerous solvents and reagents. It includes forty different synthetic strategies, with respect to “green” methods, “one˗pot” reactions, “microwave˗assisted” methods, and “cyclization˗based” strategies. This review aims to assist researchers in selecting the most effective strategies for the efficient synthesis of imidazopyridine derivatives, thereby promoting their broader application in medicinal chemistry and related fields.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728367154250617095504
2026-07-08
2026-01-31
Loading full text...

Full text loading...

References

  1. KurtevaV. Recent progress in metal-free direct synthesis of imidazo[1,2-a] pyridines.ACS Omega2021651351733518510.1021/acsomega.1c0347634984250
    [Google Scholar]
  2. KatritzkyA.R. XuY.J. TuH. Regiospecific synthesis of 3-substituted imidazo[1,2-a]pyridines, Imidazo[1,2-a]pyrimidines, and Imidazo[1,2-c]pyrimidine.J. Org. Chem.200368124935493710.1021/jo026797p12790603
    [Google Scholar]
  3. NandikollaA. SrinivasaraoS. Karan KumarB. MurugesanS. AggarwalH. MajorL.L. SmithT.K. Chandra SekharK.V.G. Synthesis, study of antileishmanial and antitrypanosomal activity of imidazo pyridine fused triazole analogues.RSC Advances20201063383283834310.1039/D0RA07881F35517538
    [Google Scholar]
  4. KonwarD. BoraU. Recent developments in transition‐metal‐catalyzed regioselective functionalization of Imidazo[1, 2‐a]pyridine.ChemistrySelect20216112716274410.1002/slct.202100144
    [Google Scholar]
  5. SelvamP. DeS. PairaP. KumarS.K.A. Kumar RS. MoorthyA. GhoshA. KuoY.C. BanerjeeS. JeniferS.K. In vitro studies on the selective cytotoxic effect of luminescent Ru(II)- p -cymene complexes of imidazo-pyridine and imidazo quinoline ligands.Dalton Trans.20225145172631727610.1039/D2DT02237K36317406
    [Google Scholar]
  6. SanapalliB.K.R. AshamesA. SigalapalliD.K. ShaikA.B. BhandareR.R. YeleV. Synthetic imidazopyridine-based derivatives as potential inhibitors against multi-drug resistant bacterial infections: A review.Antibiotics20221112168010.3390/antibiotics1112168036551338
    [Google Scholar]
  7. KwongH.C. Chidan KumarC.S. MahS.H. MahY.L. ChiaT.S. QuahC.K. LimG.K. ChandrajuS. Crystal correlation of heterocyclic imidazo[1,2-a]pyridine analogues and their anticholinesterase potential evaluation.Sci. Rep.20199192610.1038/s41598‑018‑37486‑730700752
    [Google Scholar]
  8. ChangundaC.R.K. VenkateshB.C. MokoneW.K. RousseauA.L. BradyD. FernandesM.A. BodeM.L. Efficient one-pot synthesis of functionalised imidazo[1,2-a]pyridines and unexpected synthesis of novel tetracyclic derivatives by nucleophilic aromatic substitution.RSC Advances202010148104811410.1039/C9RA10447J35497852
    [Google Scholar]
  9. KanthechaD.A. BhattB.S. PatelM.N. Synthesis, characterization and biological activities of imidazo[1,2-a]pyridine based gold(III) metal complexes.Heliyon201956e0196810.1016/j.heliyon.2019.e0196831294115
    [Google Scholar]
  10. Al-LamiN. SalomK.J. Synthesis and biological activity evaluation of new Imidazo and Bis Imidazo (1, 2-a) pyridine derivatives.J. Glob. Pharma Technol.20181011Suppl.603611
    [Google Scholar]
  11. MaC-H. ChenM. FengZ-W. ZhangY. WangJ. JiangY-Q. YuB. Functionalization of imidazo[1,2-a]pyridines via radical reactions.New J. Chem.202145219302931410.1039/D1NJ00704A
    [Google Scholar]
  12. MajewskiM.W. TiwariR. MillerP.A. ChoS. FranzblauS.G. MillerM.J. Design, syntheses, and anti-tuberculosis activities of conjugates of piperazino-1,3-benzothiazin-4-ones (pBTZs) with 2,7-dimethylimidazo [1,2-a]pyridine-3-carboxylic acids and 7-phenylacetyl cephalosporins.Bioorg. Med. Chem. Lett.20162682068207110.1016/j.bmcl.2016.02.07626951749
    [Google Scholar]
  13. HranjecM. KraljM. PiantanidaI. SedićM. ŠumanL. PavelićK. Karminski-ZamolaG. Novel cyano- and amidino-substituted derivatives of styryl-2-benzimidazoles and benzimidazo[1,2-a]quinolines. Synthesis, photochemical synthesis, DNA binding, and antitumor evaluation, part 3.J. Med. Chem.200750235696571110.1021/jm070876h17935309
    [Google Scholar]
  14. RaviC. AdimurthyS. Synthesis of Imidazo[1,2‐a]pyridines: C‐H functionalization in the direction of C‐S bond formation.Chem. Rec.201717101019103810.1002/tcr.20160014628318093
    [Google Scholar]
  15. VolkovaY. GevorgyanV. Synthesis of functionalyzed imidazo[1,2-a]pyridines via domino A3-coupling/cycloisomerization approach.Chem. Heterocycl. Compd.201753440941210.1007/s10593‑017‑2066‑0
    [Google Scholar]
  16. ReenG.K. KumarA. SharmaP. Recent advances on the transition-metal-catalyzed synthesis of imidazopyridines: An updated coverage.Beilstein J. Org. Chem.2019151612170410.3762/bjoc.15.16531435443
    [Google Scholar]
  17. BagdiA.K. HajraA. Visible light promoted C-H functionalization of imidazoheterocycles.Org. Biomol. Chem.202018142611263110.1039/D0OB00246A32215443
    [Google Scholar]
  18. GhoshD. GhoshS. HajraA. Electrochemical functionalization of imidazopyridine and indazole: An overview.Adv. Synth. Catal.2021363225047507110.1002/adsc.202100981
    [Google Scholar]
  19. SamantaS. KumarS. AratikatlaE.K. GhorpadeS.R. SinghV. Recent developments of imidazo[1,2-a]pyridine analogues as antituberculosis agents.RSC Med. Chem.202314464465710.1039/D3MD00019B37122538
    [Google Scholar]
  20. KunduD. KunduS.K. MajeeA. HajraA. A facile synthesis of 2,2,4‐Trisubstituted‐1,2‐Dihydroquinolines catalyzed by zinc triflate under solvent‐free conditions.J. Chin. Chem. Soc. (Taipei)20085551186119010.1002/jccs.200800175
    [Google Scholar]
  21. AttanasiO.A. BianchiL. CampisiL.A. CrescentiniL.D. FaviG. MantelliniF. A novel solvent-free approach to imidazole containing nitrogen-bridgehead heterocycles.Org. Lett.201315143646364910.1021/ol401526723805986
    [Google Scholar]
  22. IsmailM.A. BrunR. WenzlerT. TaniousF.A. WilsonW.D. BoykinD.W. Novel dicationic imidazo[1,2-a]pyridines and 5,6,7,8-tetrahydro-imidazo[1,2-a]pyridines as antiprotozoal agents.J. Med. Chem.200447143658366410.1021/jm040009215214792
    [Google Scholar]
  23. KushchS.O. GoryaevaM.V. SurninaE.A. BurgartY.V. EzhikovaM.A. KodessM.I. SlepukhinP.A. SaloutinV.I. Multicomponent domino reactions for the synthesis of variable hydrogenated Imidazo[1,2‐ a]pyridines.Asian J. Org. Chem.2022112e20210070910.1002/ajoc.202100709
    [Google Scholar]
  24. WangJ. WuH. SongG. YangD. HuangJ. YaoX. QinH. ChenZ. XuZ. XuC. A novel imidazopyridine derivative exerts anticancer activity by inducing mitochondrial pathway‐mediated apoptosis.BioMed Res. Int.202020201492905310.1155/2020/492905332908894
    [Google Scholar]
  25. Enguehard-GueiffierC. GueiffierA. Recent progress in the pharmacology of imidazo[1,2-a]pyridines.Mini Rev. Med. Chem.20077988889910.2174/13895570778166264517897079
    [Google Scholar]
  26. RawalT. ButaniS. Combating tuberculosis infection: A forbidding challenge.Indian J. Pharm. Sci.201678181610.4103/0250‑474X.18024327168676
    [Google Scholar]
  27. García-GonzálezM.C. Hernández-VázquezE. Gordillo-CruzR.E. MirandaL.D. Ugi-derived dehydroalanines as a pivotal template in the diversity oriented synthesis of aza-polyheterocycles.Chem. Commun. (Camb.)20155158116691167210.1039/C5CC02927A26102372
    [Google Scholar]
  28. KerruN. GummidiL. MaddilaS. GanguK.K. JonnalagaddaS.B. A review on recent advances in nitrogen-containing molecules and their biological applications.Molecules2020258190910.3390/molecules2508190932326131
    [Google Scholar]
  29. MishraS. MonirK. MitraS. HajraA. FeCl3/ZnI2-catalyzed synthesis of benzo[d]imidazo[2,1-b]thiazole through aerobic oxidative cyclization between 2-aminobenzothiazole and ketone.Org. Lett.201416236084608710.1021/ol502889325393913
    [Google Scholar]
  30. RawatR. VermaS.M. Advancements in chemical methodologies for the synthesis of 3-aroylimidazo[1,2-a]pyridines: An update of the decade.Synth. Commun.202050233507353410.1080/00397911.2020.1803915
    [Google Scholar]
  31. NeogiS. Kumar GhoshA. MandalS. GhoshD. GhoshS. HajraA. Three-component carbosilylation of alkenes by merging iron and visible-light photocatalysis.Org. Lett.202123166510651410.1021/acs.orglett.1c0232234379426
    [Google Scholar]
  32. SonawaneR.S. ShirsatM. PatilS.R. HundiwaleJ.C. atilA.V.P. Design and synthesis of novel Imidazopyridine analogues and evaluation as H+/K+-ATPase antagonist.Asian J. Chem.202032112685269210.14233/ajchem.2020.22697
    [Google Scholar]
  33. AlmiranteL. PoloL. MugnainiA. ProvincialiE. RugarliP. BiancottiA. GambaA. MurmannW. Derivatives of Imidazole. I. synthesis and reactions of Imidazo[1,2-α]pyridines with analgesic, antiinflammatory, antipyretic, and anticonvulsant activity.J. Med. Chem.19658330531210.1021/jm00327a00714329509
    [Google Scholar]
  34. BiftuT. FengD. FisherM. LiangG.B. QianX. ScribnerA. DennisR. LeeS. LiberatorP.A. BrownC. GurnettA. LeavittP.S. ThompsonD. MathewJ. MisuraA. SamarasS. TamasT. SinaJ.F. McNultyK.A. McKnightC.G. SchmatzD.M. WyvrattM. Synthesis and SAR studies of very potent imidazopyridine antiprotozoal agents.Bioorg. Med. Chem. Lett.20061692479248310.1016/j.bmcl.2006.01.09216464591
    [Google Scholar]
  35. ZhouS. ChenG. HuangG. Design, synthesis and biological evaluation of imidazo[1,2‐a]pyridine analogues or derivatives as anti‐helmintic drug.Chem. Biol. Drug Des.201993450351010.1111/cbdd.1344130427117
    [Google Scholar]
  36. UllooraS. AdhikariA.V. ShabarayaR. Synthesis and antiepileptic studies of new imidazo[1,2-a]pyridine derivatives.Chin. Chem. Lett.201324985385610.1016/j.cclet.2013.05.030
    [Google Scholar]
  37. KaplancikliZ.A. Turan-ZitouniG. ÖzdemrA. RevialG. Synthesis and anticandidal activity of some imidazopyridine derivatives.J. Enzyme Inhib. Med. Chem.200823686687010.1080/1475636070181111418608774
    [Google Scholar]
  38. LacerdaR.B. de LimaC.K.F. da SilvaL.L. RomeiroN.C. MirandaA.L.P. BarreiroE.J. FragaC.A.M. Discovery of novel analgesic and anti-inflammatory 3-arylamine-imidazo[1,2-a]pyridine symbiotic prototypes.Bioorg. Med. Chem.2009171748410.1016/j.bmc.2008.11.01819059783
    [Google Scholar]
  39. GudmundssonK.S. JohnsB.A. Imidazo[1,2-a]pyridines with potent activity against herpesviruses.Bioorg. Med. Chem. Lett.200717102735273910.1016/j.bmcl.2007.02.07917368024
    [Google Scholar]
  40. NarayanA. PatelS. BaileS.B. JainS. SharmaS. Imidazo[1,2-A]Pyridine: Potent biological activity, SAR and docking investigations (2017-2022).Infect. Disord. Drug Targets2024248e20032422806710.2174/011871526527406724022304033338509674
    [Google Scholar]
  41. AbdullahiM. AdenijiS.E. ArthurD.E. HarunaA. Homology modeling and molecular docking simulation of some novel imidazo[1,2-a]pyridine-3-carboxamide (IPA) series as inhibitors of Mycobacterium tuberculosis.J. Genet. Eng. Biotechnol.20211911210.1186/s43141‑020‑00102‑133474593
    [Google Scholar]
  42. KibouZ. AissaouiN. DaoudI. SeijasJ.A. Vázquez-TatoM.P. Klouche KhelilN. Choukchou-BrahamN. Efficient synthesis of 2-Aminopyridine derivatives: Antibacterial activity assessment and molecular docking studies.Molecules20222711343910.3390/molecules2711343935684377
    [Google Scholar]
  43. CominsD.L. Synthesis of MAPA reagents and 2-Alkyl(aryl)aminopyridines from 2-Bromopyridine Using the goldberg reaction.Molecules2022276183310.3390/molecules2706183335335206
    [Google Scholar]
  44. PandaJ. RaiguruB.P. MishraM. MohapatraS. NayakS. Recent advances in the synthesis of Imidazo[1,2‐ a]pyridines: A brief review.ChemistrySelect202273e20210398710.1002/slct.202103987
    [Google Scholar]
  45. Mohana RoopanS. PatilS.M. PalanirajaJ. Recent synthetic scenario on imidazo[1,2-a]pyridines chemical intermediate.Res. Chem. Intermed.20164242749279010.1007/s11164‑015‑2216‑x
    [Google Scholar]
  46. TaliJ.A. KumarG. SharmaB.K. RasoolY. SharmaY. ShankarR. Synthesis and site selective C-H functionalization of imidazo-[1,2-a]pyridines.Org. Biomol. Chem.202321367267728910.1039/D3OB00849E37655687
    [Google Scholar]
  47. RodionovV.O. FokinV.V. FinnM.G. Mechanism of the ligand-free CuI-catalyzed azide-alkyne cycloaddition reaction.Angew. Chem. Int. Ed.200544152210221510.1002/anie.20046149615693051
    [Google Scholar]
  48. GroebkeK. WeberL. MehlinF. Synthesis of Imidazo[1,2-a] annulated pyridines, pyrazines and pyrimidines by a novel three-component condensation.Synlett19981998666166310.1055/s‑1998‑1721
    [Google Scholar]
  49. PalaniT. ParkK. KumarM.R. JungH.M. LeeS. Copper‐catalyzed decarboxylative three‐component reactions for the synthesis of Imidazo[1,2‐ a]pyridines.Eur. J. Org. Chem.20122012265038504710.1002/ejoc.201200679
    [Google Scholar]
  50. LiuP. FangL. LeiX. LinG. Synthesis of imidazo[1,2a]pyridines via three-component reaction of 2-aminopyridines, aldehydes and alkynes.Tetrahedron Lett.201051354605460810.1016/j.tetlet.2010.05.139
    [Google Scholar]
  51. YuY. SuZ. CaoH. Strategies for synthesis of Imidazo[1,2‐ a]pyridine Derivatives: Carbene transformations or C−H functionalizations.Chem. Rec.201919102105211810.1002/tcr.20180016830592370
    [Google Scholar]
  52. ChahalM. DhillonS. RaniP. KumariG. AnejaD.K. KingerM. Unravelling the synthetic and therapeutic aspects of five, six and fused heterocycles using Vilsmeier-Haack reagent.RSC Advances20231338266042662910.1039/D3RA04309F37674485
    [Google Scholar]
  53. TyagiS. MishraR. MazumderA. JindaniyaV. Vilsmeier haack reaction: An exemplary tool for synthesis of different heterocycles.Lett. Org. Chem.202421213114810.2174/1570178620666230911152937
    [Google Scholar]
  54. SharmaM. PrasherP. C2-functionalized imidazo[1,2-a]pyridine: Synthesis and medicinal relevance.Synth. Commun.20225211-121337135610.1080/00397911.2022.2079091
    [Google Scholar]
  55. FilippovI.P. AgafonovaA.V. TitovG.D. SmetaninI.A. RostovskiiN.V. KhlebnikovA.F. NovikovM.S. Synthesis of Imidazo[1,2-a]pyridines via near UV light-induced cyclization of azirinylpyridinium salts.J. Org. Chem.20228796514651910.1021/acs.joc.2c0051435476415
    [Google Scholar]
  56. RostovtsevV.V. GreenL.G. Cyclization of 2-halopyridines in the Synthesis of Imidazo[1,2-a]pyridines.Angew. Chem. Int. Ed.200241142596259910.1002/1521‑3773(20020715)41:14<2596::AID‑ANIE2596>3.0.CO;2‑4
    [Google Scholar]
  57. HeraviM.M. KheilkordiZ. ZadsirjanV. HeydariM. MalmirM. Buchwald-Hartwig reaction: An overview.J. Organomet. Chem.20188611710410.1016/j.jorganchem.2018.02.023
    [Google Scholar]
  58. HeraviM.M. ZadsirjanV. MalmirM. MohammadiL. Buchwald-Hartwig reaction: An update.Monatsh. Chem.2021152112710.1007/s00706‑021‑02834‑3
    [Google Scholar]
  59. JacobyS.A. HarrisN.W. WiemannA. GlennC.D. KantzlerA.R. DinhL.P. YetL. Suzuki‐Miyaura and Buchwald‐Hartwig cross‐coupling reactions utilizing a set of complementary Imidazopyridine Monophosphine ligands.ChemistrySelect2024910e20230508510.1002/slct.202305085
    [Google Scholar]
  60. GhobadiN. NazariN. GholamzadehP. The Friedländer reaction: A powerful strategy for the synthesis of heterocycles.Adv. Heterocycl. Chem.20201328513410.1016/bs.aihch.2020.01.001
    [Google Scholar]
  61. ShehabW.S. AmerM.M.K. ElsayedD.A. YadavK.K. AbdellattifM.H. Current progress toward synthetic routes and medicinal significance of quinoline.Med. Chem. Res.202332122443245710.1007/s00044‑023‑03121‑y
    [Google Scholar]
  62. KumarA. PericherlaK. KaswanP. PandeyK. Recent developments in the synthesis of Imidazo[1,2-a]pyridines.Synthesis201547788791210.1055/s‑0034‑1380182
    [Google Scholar]
  63. GieseB. KoppingB. GöbelT. DickhautJ. ThomaG. KulickeK. TrachF. Radical cyclization reactions.Org. React.19964830185610.1002/0471264180.or048.02
    [Google Scholar]
  64. SofiF.A. GogdeK. MukherjeeD. MasoodiM.H. Sustainable approaches towards the synthesis of functionalized imidazo[1,2-a]pyridines: Recent advancements.J. Mol. Struct.2024129713701210.1016/j.molstruc.2023.137012
    [Google Scholar]
  65. YadavR.K. ChaudharyS. Microwave-assisted synthesis of Imidazo[1,2-a]pyridine class of bio-heterocycles: Green avenues and sustainable developments.Advances in Green Synthesis: Avenues and SustainabilitySpringer NatureUK202110.1007/978‑3‑030‑67884‑5_12
    [Google Scholar]
  66. KappeC.O. Controlled microwave heating in modern organic synthesis.Angew. Chem. Int. Ed.200443466250628410.1002/anie.20040065515558676
    [Google Scholar]
  67. YiY. XuL. LiuY. LiM. ZhangL. YeJ. HuA. Solvent-dependence of KI mediated electrosynthesis of Imidazo[1,2-a]pyridines.Chem. Res. Chin. Univ.202339231832410.1007/s40242‑023‑2323‑y
    [Google Scholar]
  68. AnastasP. EghbaliN. Green chemistry: Principles and practice.Chem. Soc. Rev.201039130131210.1039/B918763B20023854
    [Google Scholar]
  69. TundoP. AnastasP. BlackD.S. BreenJ. CollinsT.J. MemoliS. MiyamotoJ. PolyakoffM. TumasW. Synthetic pathways and processes in green chemistry. Introductory overview.Pure Appl. Chem.20007271207122810.1351/pac200072071207
    [Google Scholar]
  70. HaouchineA.L. KabriY. BakhtaS. CurtiC. Nedjar-KolliB. VanelleP. Simple synthesis of imidazo[1,2-a]pyridine derivatives bearing 2-aminonicotinonitrile or 2-aminochromene moiety.Synth. Commun.201848172159216810.1080/00397911.2018.1479759
    [Google Scholar]
  71. BudhirajaM. KondabalaR. AliA. TyagiV. First biocatalytic Groebke-Blackburn-Bienaymé reaction to synthesize imidazo[1,2-a]pyridine derivatives using lipase enzyme.Tetrahedron2020764713164310.1016/j.tet.2020.131643
    [Google Scholar]
  72. GeedkarD. KumarA. SharmaP. Molecular Iodine-Catalyzed Synthesis of Imidazo[1,2-a]Pyridines: Screening of Their In Silico Selectivity, Binding Affinity to Biological Targets, and Density Functional Theory Studies Insight.ACS Omega2022726224212243910.1021/acsomega.2c0157035811892
    [Google Scholar]
  73. AsghariganjehM.R. MohammadiA.A. TahanpesarE. RayatzadehA. MakaremS. Electro-organic synthesis of tetrahydroimidazo[1,2-a]pyridin-5(1H)-one via a multicomponent reaction.Mol. Divers.202125150951610.1007/s11030‑019‑10029‑631919737
    [Google Scholar]
  74. RamaraoS. PothireddyM. VenkateshwarluR. MoturuK.M.V.R. SiddaiahV. KapavarapuR. DandelaR. PalM. Sonochemical synthesis and In Silico evaluation of Imidazo[1,2-a]Pyridine derivatives as potential inhibitors of Sirtuins.Polycycl. Aromat. Compd.20234343741376010.1080/10406638.2022.2077774
    [Google Scholar]
  75. ThakurA. PereiraG. PatelC. ChauhanV. DhakedR.K. SharmaA. Design, one-pot green synthesis and antimicrobial evaluation of novel imidazopyridine bearing pyran bis-heterocycles.J. Mol. Struct.2020120612768610.1016/j.molstruc.2020.127686
    [Google Scholar]
  76. DoraiS.T. LakshmikanthK. TiwariP. SainiS.M. ChandrashekharappaS. One-pot construction of novel trifluoromethyl dihydro-imidazo[1, 2-a]pyridine: A greener approach.Tetrahedron202314813369110.1016/j.tet.2023.133691
    [Google Scholar]
  77. JiangS. Copper (II) complex supported on magnetic nanoparticles as a novel nanocatalyst for the synthesis of imidazo[1,2-a]pyridines.Mol. Divers.20242863859387710.1007/s11030‑023‑10781‑w38267750
    [Google Scholar]
  78. KambojP. TyagiV. Enzymatic synthesis of indole-based imidazopyridine using α-amylase.ChemBioChem2024256e20230082410.1002/cbic.202300824
    [Google Scholar]
  79. JadhaoaA.R. ZyatebS.C. GaikwadS.S. Blue LED-driven C-N bond formation for synthesis of Imidazopyridines.Indian J. Chem.202463220321010.56042/ijc.v63i2.6338
    [Google Scholar]
  80. MukherjeeD. KarmakarI. BrahmachariG. Electro- and mechanochemical strategy as a dual synthetic approach for biologically relevant 3-Nitro-imidazo-[1,2-a]pyridines.J. Org. Chem.20248917120711208410.1021/acs.joc.4c0088139145592
    [Google Scholar]
  81. CaoH. LiuX. ZhaoL. CenJ. LinJ. ZhuQ. FuM. One-pot regiospecific synthesis of imidazo[1,2-a]pyridines: A novel, metal-free, three-component reaction for the formation of C-N, C-O, and C-S bonds.Org. Lett.201416114614910.1021/ol403141424320098
    [Google Scholar]
  82. DharaK. PachfuleP. Efficient one-pot synthesis of Imidazo[1,2-a]pyridines via A multicomponent reaction.Tetrahedron Lett.201758302927293110.1039/B918763B
    [Google Scholar]
  83. ZhaoY. LiJ. Catalyst-free one-pot synthesis of Imidazo[1,2-a]pyridines under solvent-free conditions.Green Chem.201416114985499010.1016/j.isci.2022.105005
    [Google Scholar]
  84. Abdel HameedA.M. MoustafaM.S. Al-MousawiS.M. AwedR.R. SadekK.U. An efficient and catalyst-free synthesis of N-arylidene-2-arylimidazo[1,2-a]pyridine-3-ylamine derivatives via Strecker reaction under controlled microwave heating.Green Process. Synth.20176437137510.1515/gps‑2017‑0019
    [Google Scholar]
  85. DeviN. JanaA.K. SinghV. Assessment of novel pyrazolopyridinone fused imidazopyridines as potential antimicrobial agents. Karbala. Int. J. Modern.Sci.20184116417010.1016/j.kijoms.2018.01.003
    [Google Scholar]
  86. EbenezerO. AwoladeP. KoorbanallyN. SinghP. New library of pyrazole-Imidazo[1,2‐a]pyridine molecular conjugates: Synthesis, antibacterial activity and molecular docking studies.Chem. Biol. Drug Des.201995116210.1111/cbdd.1363231580533
    [Google Scholar]
  87. ZhouZ. LuoD. LiG. YangZ. CuiL. YangW. Copper-catalyzed three-component reaction to synthesize polysubstituted imidazo[1,2-a]pyridines.RSC Advances20221231201992020510.1039/D2RA02722D35919587
    [Google Scholar]
  88. MishraN.P. MohapatraS. SahooC.R. RaiguruB.P. NayakS. JenaS. PadhyR.N. Design, one-pot synthesis, molecular docking study, and antibacterial evaluation of novel 2H-chromene based imidazo[1,2-a]pyridine derivatives as potent peptide deformylase inhibitors.J. Mol. Struct.2021124613118310.1016/j.molstruc.2021.131183
    [Google Scholar]
  89. AlthagafiaI. Abdel-LatifE. Synthesis and antibacterial activity of new Imidazo[1,2-a]pyridines Festooned with Pyridine, Thiazole or Pyrazole Moiety.Polycycl. Aromat. Compd.20224274481450010.1080/10406638.2021.1894185
    [Google Scholar]
  90. LidströmP. TierneyJ. WatheyB. WestmanJ. Microwave assisted organic synthesis: A review.Tetrahedron200157459225928310.1016/S0040‑4020(01)00906‑1
    [Google Scholar]
  91. VarmaR.S. Solvent-free organic syntheses.Green Chem.199911435510.1039/a808223e
    [Google Scholar]
  92. GüngörT. Microwave assisted, sequential two-step, one-pot synthesis of novel imidazo[1,2-a] pyrimidine containing tri/tetrasubstituted imidazole derivatives.Turk. J. Chem.202145121923010.3906/kim‑2009‑4033679165
    [Google Scholar]
  93. BasavanagU.M.V. Islas-JácomeA. Rentería-GómezA. ConejoA.S. KurvaM. Jiménez-HallaJ.O.C. VelusamyJ. Ramos-OrtízG. Gámez-MontañoR. Synthesis of 2-julolidin-imidazo[1,2-a]pyridines via Groebke-Blackburn-Bienaymé reaction and studies of optical properties.New J. Chem.20174193450345910.1039/C6NJ04044F
    [Google Scholar]
  94. RodríguezJ.C. MaldonadoR.A. Ramírez-GarcíaG. Díaz CervantesE. de la CruzF.N. Microwave‐assisted synthesis and luminescent activity of imidazo[1,2‐a]pyridine derivatives.J. Heterocycl. Chem.20205752279228710.1002/jhet.3950
    [Google Scholar]
  95. PerumallaS. KumarA.S. Cyclization strategies for the synthesis of Imidazo[1,2-a] pyridines and their biological significance.Org. Biomol. Chem.201917307036705510.1002/tcr.201800168
    [Google Scholar]
  96. ZhangX. SunL. Microwave-assisted cyclization for the efficient synthesis of Imidazo[1,2-a]pyridine derivatives.J. Heterocycl. Chem.201754288989610.1002/chin.201536186
    [Google Scholar]
  97. HarissL. HadirK.B. El-MasriM. RoisnelT. GréeR. HachemA. Preparation of imidazo[1,2-a]-N-heterocyclic derivatives with gem-difluorinated side chains.Beilstein J. Org. Chem.2017132115212110.3762/bjoc.13.20829062431
    [Google Scholar]
  98. KuthyalaS. ShankarM.K. NagarajaG.K. Synthesis, single‐crystal X‐Ray, Hirshfeld and antimicrobial evaluation of some new imidazopyridine nucleus incorporated with oxadiazole scaffold.ChemistrySelect2018345128941289910.1002/slct.201802011
    [Google Scholar]
  99. SamantaS.K. BeraM.K. Iodine mediated oxidative cross coupling of 2-aminopyridine and aromatic terminal alkyne: a practical route to imidazo[1,2-a]pyridine derivatives.Org. Biomol. Chem.201917266441644910.1039/C9OB00812H31206121
    [Google Scholar]
  100. SalhiL. Achouche-BouzrouraS. NechakR. Nedjar-KolliB. RabiaC. MerazigH. Poulain-MartiniS. DunachE. Synthesis of functionalized dihydroimidazo[1,2-A]pyridines and 4-thiazolidinone derivatives from maleimide, as new class of antimicrobial agents.Syn. Commun. Rev.2019201941242210.1080/00397911.2019.1699933
    [Google Scholar]
  101. AbloE. CoulibaliS. TouréD. CoulibalyS. KablanA.L.C. Konan KouadioF. SissoumaD. Guessend KouadioN. AnéA. Synthesis and antibacterial activity in vitro of 2-benzylthioimidazo[1,2-a]pyridine derivatives against pathogenic bacterial.Synth. Commun.202252346246910.1080/00397911.2022.2032175
    [Google Scholar]
  102. PadmajaP. ReddyP.N. Subba ReddyB.V. Kumar TiwariA. UgaleV.G. KomatiA. SridharB. Design, synthesis, in vitro α-glucosidase inhibitory, antioxidant activity and molecular docking studies of novel pyridine linked imidazo[1,2-a]pyridine derivatives.J. Mol. Struct.2023127313423810.1016/j.molstruc.2022.134238
    [Google Scholar]
  103. HeQ.X. LiangY.F. XuC. YaoX.K. CaoH. YaoH.G. Highly regioselective, acid-catalyzed, three-component cascade reaction for the synthesis of 2-aminopyridine-Decorated Imidazo[1,2-a]pyridine.ACS Comb. Sci.201921314915310.1021/acscombsci.8b0014930653293
    [Google Scholar]
  104. SharmaA. PatelM. Advances in multi-step synthesis and medicinal applications of Imidazo[1,2-a] pyridines.Eur. J. Med. Chem.201713877278310.1021/acs.orglett.0c02929
    [Google Scholar]
  105. ChhabraS. GopinathR. Multi-step synthesis of Imidazo[1,2-a]pyridine derivatives: A review of recent methodologies.Molecules20192416290510.1002/vjch.202300362
    [Google Scholar]
  106. BarluengaJ. ValdésC. Recent developments in the synthesis of Imidazo[1,2-a] pyridines and related heterocycles.Org. Chem. Front.20085223424610.1016/J.TET.2007.10.112?sid=semanticscholar
    [Google Scholar]
  107. ChenR. WangZ. SimaL. ChengH. LuoB. WangJ. GuoB. MaoS. ZhouZ. PengJ. TangL. LiuX. LiaoW. Design, synthesis and evaluation of 2, 6, 8-substituted Imidazopyridine derivatives as potent PI3K α inhibitors.J. Enzyme Inhib. Med. Chem.2023381215563810.1080/14756366.2022.215563836650905
    [Google Scholar]
  108. JadhavS.R. GuravS.S. YasinH. NagpalP. MaliS.N. Imidazo[1,2-a]pyridine-appended chalcone and Schiff base conjugates: Synthetic, spectrophotometric, biological, and computational aspects.Chemical Physics Impact2024910069410.1016/j.chphi.2024.100694
    [Google Scholar]
  109. ElkotamyM.S. ElgoharyM.K. Al-RashoodS.T. AlmahliH. EldehnaW.M. Abdel-AzizH.A. Novel imidazo[2,1-b]thiazoles and imidazo[1,2-a]pyridines tethered with indolinone motif as VEGFR-2 inhibitors and apoptotic inducers: Design, synthesis and biological evaluations.Bioorg. Chem.202415110764410.1016/j.bioorg.2024.10764439079394
    [Google Scholar]
  110. DömlingA. UgiI. Multicomponent reactions with Isocyanides.Angew. Chemie. Int. Ed.20003918316810.1002/1521‑3773(20000915)39:18<3168::AID‑ANIE3168>3.0.CO;2‑U
    [Google Scholar]
  111. AkbariJ. HeydariA. KhaksarS. Efficient synthesis of Imidazo[1,2-a] pyridines via three-component reactions under solvent-free conditions.Monatsh. Chem.2015146579379810.1016/j.carres.2023.108974
    [Google Scholar]
  112. ZhangH. JiangL. Microwave-assisted solvent-free synthesis of imidazo[1,2-a]pyridines via a three-component reaction.Tetrahedron Lett.201556212777277910.1016/j.tetlet.2015.04.030
    [Google Scholar]
  113. ButeraR. WażyńskaM. Magiera-MularzK. PlewkaJ. MusielakB. SurmiakE. SalaD. KitelR. de BruynM. NijmanH.W. ElsingaP.H. HolakT.A. DömlingA. Design, synthesis, and biological evaluation of Imidazopyridines as PD-1/PD-L1 antagonists.ACS Med. Chem. Lett.202112576877310.1021/acsmedchemlett.1c0003334055224
    [Google Scholar]
  114. YangK. ChenC.B. LiuZ.W. LiZ.L. ZengY. WangZ.Y. C3-alkylation of Imidazo[1,2-a]pyridines via three-component aza-friedel-crafts reaction catalyzed by Y(OTf)3.Molecules20242915346310.3390/molecules2915346339124868
    [Google Scholar]
  115. KrauseM. FoksH. GobisK. Pharmacological potential and synthetic approaches of Imidazo[4,5-b]pyridine and Imidazo[4,5-c]pyridine derivatives.Molecules201722339910.3390/molecules2203039928273868
    [Google Scholar]
  116. GangjeeA. JainH. KurupS. Recent advances in classical and non-classical antifolates as antitumor and antiopportunistic infection agents: Part II.Anticancer. Agents Med. Chem.20088220523110.2174/18715200878349706418288923
    [Google Scholar]
  117. SilvaD.G. JunkerA. de MeloS.M.G. FumagalliF. GillespieJ.R. MolaskyN. BucknerF.S. MatheeussenA. Synthesis and structure activity relationships of Imidazopyridine/Pyrimidine- and Furopyridine-based antiinfective agents against trypanosomiases.ChemMedChem20211696697510.1002/cmdc.20200061633078573
    [Google Scholar]
  118. XueC. HanJ. ZhaoM. WangL. Rapid construction of fused heteropolycyclic aromatics via palladium-catalyzed domino arylations of Imidazopyridine derivatives.Org. Lett.201921124402440610.1021/acs.orglett.9b0076131002518
    [Google Scholar]
  119. LiB. ShenN. ZhangX. FanX. Synthesis of fused imidazo[1,2-a]pyridines derivatives through cascade C(sp 2)-H functionalizations.Org. Biomol. Chem.201917419140915010.1039/C9OB01744E31588947
    [Google Scholar]
  120. LiB. GuoC. ShenN. ZhangX. FanX. Synthesis of maleimide fused benzocarbazoles and imidazo[1,2-a]pyridines via rhodium(III)-catalyzed [4 + 2] oxidative cycloaddition.Org. Chem. Front.20207223698370410.1039/D0QO01109F
    [Google Scholar]
  121. LiB. ShenN. YangY. ZhangX. FanX. Synthesis of naphtho[1′,2′:4,5]imidazo[1,2-a]pyridines via Rh(III)-catalyzed C-H functionalization of 2-arylimidazo[1,2-a]pyridines with cyclic 2-diazo-1,3-diketones featuring with a ring opening and reannulation.Org. Chem. Front.20207791992510.1039/D0QO00073F
    [Google Scholar]
  122. LipinskiC.A. Lead- and drug-like compounds: The rule-of-five revolution.Drug Discov. Today. Technol.20041433734110.1016/j.ddtec.2004.11.00724981612
    [Google Scholar]
  123. KimJ.H. LeeS.H. KimN.H. KangE.J. Sustainable synthesis of fivemembered heterocycles using carbon dioxide and Fe-iminopyridine catalysts.J. CO2 Util20215010159510.1016/j.jcou.2021.101595
    [Google Scholar]
  124. SharmaU.K. Van Der EyckenE.V. Flow chemistry for the synthesis of heterocycles.Springer201810.1007/978‑3‑319‑94328‑2
    [Google Scholar]
  125. WanQ. ZhengC. YuanY.F. YouS.L. Ag2O/squaramide cocatalyzed asymmetric interrupted Barton-Zard reaction of 8-nitroimidazo[1,2-a]pyridines.Sci. Bull. (Beijing)202267161688169510.1016/j.scib.2022.07.01936546048
    [Google Scholar]
  126. HeC. ZhangC. BianT. JiaoK. SuW. WuK.J. SuA. A review on artificial intelligence enabled design, synthesis, and process optimization of chemical products for industry 4.0.Processes202311233010.3390/pr11020330
    [Google Scholar]
/content/journals/coc/10.2174/0113852728367154250617095504
Loading
/content/journals/coc/10.2174/0113852728367154250617095504
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test