Skip to content
2000
image of Eco-Friendly Heterocyclic Synthesis Via Multicomponent Reactions Using Solid Base Catalysts: An Overview

Abstract

Heterocyclic compounds, which contain at least one heteroatom ( nitrogen, oxygen, sulfur) within their ring structures, are crucial in pharmaceuticals and agrochemicals due to their bioactive properties. They serve as the core components of numerous drugs, including antibiotics, anticancer agents, and agrochemicals like pesticides. Given the increasing demand for these compounds, the need for efficient and sustainable synthetic methods has become paramount. Multicomponent reactions (MCRs) have emerged as a powerful tool for the rapid and efficient synthesis of heterocyclic frameworks. By combining three or more reactants in a single step, MCRs offer high atom economy, reduced waste, and simplified reaction protocols. Solid base catalysts have been extensively utilized to improve the sustainability of these reactions further. These catalysts, including metal oxides and supported alkali metals, provide several advantages: enhanced selectivity, ease of recovery and reuse, and minimal environmental impact. This review explores the diverse MCR strategies for heterocyclic synthesis using solid base catalysts. It highlights their role in promoting green chemistry by enabling scalable and environmentally benign processes. Key examples, such as the synthesis of imidazoles, pyridines, pyrans, pyrimidine, etc, are discussed, demonstrating these methods' efficiency and industrial relevance. Solid base catalysis ensures operational simplicity and aligns with sustainable chemistry goals, making it a cornerstone in modern heterocyclic synthesis.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728364378250403062328
2025-04-14
2025-10-09
Loading full text...

Full text loading...

References

  1. Varma R.S. Solvent-free organic syntheses. Green Chem. 1999 1 1 43 55 10.1039/a808223e
    [Google Scholar]
  2. Kamal A. Srinivasulu V. Seshadri B.N. Markandeya N. Alarifi A. Shankaraiah N. Water mediated Heck and Ullmann couplings by supported palladium nanoparticles: importance of surface polarity of the carbon spheres. Green Chem. 2012 14 9 2513 2522 10.1039/c2gc16430b
    [Google Scholar]
  3. Colacino E. Lamaty F. Martinez J. Parrot I. Microwave-assisted solid-phase synthesis of hydantoin derivatives. Tetrahedron Lett. 2007 48 30 5317 5320 10.1016/j.tetlet.2007.05.084
    [Google Scholar]
  4. Bagley M.C. Lubinu M.C. Microwave-assisted multicomponent reactionsfor the synthesis of heterocycles. Microwave-Assisted Synthesis of Heterocycles. Topics in Heterocyclic Chemistry. Van der Eycken E. Kappe C.O. Springer Berlin, Heidelberg 2006 Vol. 1 31 58 10.1007/7081_004
    [Google Scholar]
  5. John S.E. Gulati S. Shankaraiah N. Recent advances in multi-component reactions and their mechanistic insights: a triennium review. Org. Chem. Front. 2021 8 15 4237 4287 10.1039/D0QO01480J
    [Google Scholar]
  6. Heravi M. Zadsirjan V. Recent advances in applications of name reactions in multicomponent reactions. London Elsevier 2020 425 10.1016/C2018‑0‑04243‑7
    [Google Scholar]
  7. Narath S. Patel R.R. Singh S.K. Facile green synthesis of extract capped silver nanoparticles and its biological applications. Ecol. Chem. Eng. S 2023 30 1 7 21
    [Google Scholar]
  8. Deligeorgiev T. Dhawan R.K. singh B. Green chemistry in organic synthesis. Mini Rev. Org. Chem. 2010 7 1 44 53
    [Google Scholar]
  9. Hülsey M.J. Yang H. Yan N. Sustainable routes for the synthesis of renewable heteroatom-containing chemicals. ACS Sustain. Chem.& Eng. 2018 6 5 5694 5707 10.1021/acssuschemeng.8b00612
    [Google Scholar]
  10. Kaur N. Jangid N.K. Sharma V. Metal- and nonmetal-catalyzed synthesis of five-membered S,N-heterocycles. J. Sulfur Chem. 2018 39 2 193 236 10.1080/17415993.2017.1415338
    [Google Scholar]
  11. Bhaskaruni S.V.H.S. Maddila S. Gangu K.K. A review on multi-component green synthesis of N-containing heterocycles using mixed oxides as heterogeneous catalysts. Arab. J. Chem. 2020 13 1 1142 1178 10.1016/j.arabjc.2017.09.016
    [Google Scholar]
  12. Batista V.F. Pinto D.C.G.A. Silva A.M.S. “Synthesis of quinolines: A green perspective.”. ACS Sustain. Chem. Eng. 2016 4 8 4064 4078 10.1021/acssuschemeng.6b01010
    [Google Scholar]
  13. Frecentese F. Saccone I. Caliendo G. Corvino A. Fiorino F. Magli E. Perissutti E. Severino B. Santagada V. Microwave assisted organic synthesis of heterocycles in aqueous media: recent advances in medicinal chemistry. Med. Chem. 2016 12 8 720 732 10.2174/1573406412666160502153553 27140185
    [Google Scholar]
  14. Naga P.K. Kumar K.R. Green synthesis of benzimidazole derivatives: An overview of bulk drug synthesis. Int. J. Pharm. Tech. Res. 2015 8 60 68
    [Google Scholar]
  15. Kaur N. Review on the synthesis of six-membered N, N-heterocycles by microwave irradiation. Synth. Commun. 2015 45 10 1145 1182 10.1080/00397911.2013.827208
    [Google Scholar]
  16. Yadav G.D. Journal of the Indian Chemical Society. Hazra, Kolkata Calcutta University Press 1977 54 1 6
    [Google Scholar]
  17. Ivantsova M.N. Tokareva M.I. Mironov M.A. Multicomponent interphase synthesis of heterocyclic compounds (Review). Chem. Heterocycl. Compd. 2012 48 4 584 600 10.1007/s10593‑012‑1031‑1
    [Google Scholar]
  18. Sharma S. Gangal S. Rauf A. Green chemistry approach to the sustainable advancement to the synthesis of heterocyclic chemistry. Rasayan J. Chem. 2008 1 4 693 717
    [Google Scholar]
  19. Bryson T.A. Gibson J.M. Stewart J.J. Voegtle H. Tiwari A. Dawson J.H. Marley W. Harmon B. Synthesis of quinolines, pyridine ligands and biological probes in green media Green Chem. 2003 5 2 177 180 10.1039/b211968d
    [Google Scholar]
  20. Qadir T. Amin A. Sharma P.K. Jeelani I. Abe H. A review on medicinally important heterocyclic compounds. Open Med. Chem. J. 2022 16 1 e2202280 10.2174/18741045‑v16‑e2202280
    [Google Scholar]
  21. Kunied T. Mutsanga H. The chemistry of heterocyclic compounds. Cham Springer 2002 1 6
    [Google Scholar]
  22. Czarnik A.W. Top 20 ethical pharmaceuticals prescribed in the USA in 1994, 17 are heterocyclic compounds. Acc. Chem. Res. 1996 29 112 10.1021/ar950256n
    [Google Scholar]
  23. Arora P. Arora V. Lamba H.S. Deepak W. Importance of heterocyclic chemistry: A review. Int. J. Pharm. Sci. Res. 2012 3 9 2947 2954 10.13040/IJPSR.0975‑8232.3(9).2947‑54
    [Google Scholar]
  24. Sahu B. Verma M. Thakur A. Bharti R. Sharma R. TBAB in one-pot green approach for the synthesis of N-heterocyclic compounds: a comprehensive review. Current Chinese Science 2024 4 1 2 24 10.2174/0122102981233465230920154404
    [Google Scholar]
  25. Shaikh A.R. Farooqui M. Satpute R.H. Abed S. Overview on Nitrogen containing compounds and their assessment based on ‘International Regulatory Standards’. J. Drug Deliv. Ther. 2018 8 6-s 424 428 10.22270/jddt.v8i6‑s.2156
    [Google Scholar]
  26. Bader A.T. Al-Abdaly B.I. Jassim I.K. Synthesis and characterization new metal complexes of heterocyclic units and study antibacterial and antifungal. J. Pharma. Sci. Res. 2019 11 5 2062 2073
    [Google Scholar]
  27. Kumar B. Debut A. Green Chemistry: New Perspectives. BoD–Books on Demand London, UK Intechopen 2022 268 10.5772/intechopen.98002
    [Google Scholar]
  28. Bharti R. Thakur A. Giri M. One-Pot Synthesis Of Organic Molecules Using Hydrotalcite-Based Materials. Hydrotalcite-based Materials: Synthesis, Characterization and Application. Sharjah, UAE Bentham Science Publishers 2024 329 362 10.2174/9789815256116124010012
    [Google Scholar]
  29. Yadav V. Thakur A. Bharti R. Verma M. Sharma R. Recent advancement in multicomponent synthesis of fused coumarin derivatives. Curr. Org. Synth. 2024 21 3 303 330 10.2174/1570179420666230427110019 37102478
    [Google Scholar]
  30. Thakral A. Verma M. Thakur A. Bharti R. Sharma R. Comprehensive review on one-pot green synthesis of pyran and chromene fused benzo[α]phenazines. Polycycl. Aromat. Compd. 2024 44 3 1697 1721 10.1080/10406638.2023.2203506
    [Google Scholar]
  31. Goswami A. Verma M. Thakur A. Bharti R. Sharma R. Visible light mediated CO2 fixation reactions to produce carbamates and carbonates: a comprehensive review. J. Heterocycl. Chem. 2024 61 12 2050 2069 10.1002/jhet.4882
    [Google Scholar]
  32. Bharti R. Thakur A. Verma M. Sharma R. Sharma A. Gupta A. Sharma V. Ultra-sonicated one-pot synthesis of potent bioactive biscoumarin and polycyclic pyranodichromenone scaffolds in aqueous media: a complementary tool to organic synthesis. Synthesis 2023 55 19 3129 3144 10.1055/s‑0042‑1751475
    [Google Scholar]
  33. Verma M. Thakur A. Kapil S. Sharma R. Sharma A. Bharti R. Antibacterial and antioxidant assay of novel heteroaryl-substituted methane derivatives synthesized via ceric ammonium nitrate (CAN) catalyzed one-pot green approach. Mol. Divers. 2023 27 2 889 900 10.1007/s11030‑022‑10461‑1 35781657
    [Google Scholar]
  34. Hamidinasab M. Ahadi N. Bodaghifard M.A. Brahmachari G. Sustainable and bio-based catalysts for multicomponent organic synthesis: An overview. Polycycl. Aromat. Compd. 2023 43 6 5172 5226 10.1080/10406638.2022.2097278
    [Google Scholar]
  35. Blokhina S.V. Sharapova A.V. Ol’khovich M.V. Doroshenko I.A. Levshin I.B. Perlovich G.L. Synthesis and antifungal activity of new hybrids thiazolo[4,5-d]pyrimidines with (1H-1,2,4)triazole. Bioorg. Med. Chem. Lett. 2021 40 127944 10.1016/j.bmcl.2021.127944 33713781
    [Google Scholar]
  36. Abdelhakim H.K. El-Sayed E.R. Rashidi F.B. Biosynthesis of zinc oxide nanoparticles with antimicrobial, anticancer, antioxidant and photocatalytic activities by the endophytic Alternaria tenuissima. J. Appl. Microbiol. 2020 128 6 1634 1646 10.1111/jam.14581 31954094
    [Google Scholar]
  37. Mustafa Y.F. Synthesis, characterization and antibacterial activity of novel heterocycle, coumacine, and two of its derivatives. Saudi Pharm. J. 2018 26 6 870 875 10.1016/j.jsps.2018.03.010 30202230
    [Google Scholar]
  38. Tran T.D. Nguyen T.T.N. Do T.H. Huynh T.N.P. Tran C.D. Thai K.M. Synthesis and antibacterial activity of some heterocyclic chalcone analogues alone and in combination with antibiotics. Molecules 2012 17 6 6684 6696 10.3390/molecules17066684 22728362
    [Google Scholar]
  39. Harutyunyan A.A. Benzo [4’, 5’] imidazo [2’, 1’: 6, 1] pyrido [2, 3-d] pyrimidines: Past and present. IgMin Res. 2023 1 1 025 031 10.61927/igmin113
    [Google Scholar]
  40. Lingappa M. Guruswamy V. Bantal V. Synthesis and characterization of 4-amino-4H-1,2,4-triazole derivatives: Anticonvulsant activity. Curr. Chem. Lett. 2021 10 1 33 42 10.5267/j.ccl.2020.7.002
    [Google Scholar]
  41. Channabasappa V. Kumara K. Kariyappa A.K. Design, synthesis of coumarin tethered 1,2,3-triazoles analogues, evaluation of their antimicrobial and α-amylase inhibition activities. J. Chem. Sci. 2021 133 4 130 10.1007/s12039‑021‑01997‑0
    [Google Scholar]
  42. Védrine J.C. Metal oxides in heterogeneous catalysis. London Elsevier 2018 1 6
    [Google Scholar]
  43. Bhaduri S. Mukesh D. Hydrogenation and Other Hydrogen-Based Catalytic Reactions. Homogeneous Catalysis: Mechanisms and Industrial Applications 2nd Ed. Hoboken, New Jersey John Wiley & Sons 2014 1 6 10.1002/9781118872369.ch5
    [Google Scholar]
  44. Molyneux R.J. Beck J.J. Colegate S.M. Edgar J.A. Gaffield W. Gilbert J. Hofmann T. McConnell L.L. Schieberle P. Guidelines for unequivocal structural identification of compounds with biological activity of significance in food chemistry (IUPAC Technical Report). Pure Appl. Chem. 2019 91 8 1417 1437 10.1515/pac‑2017‑1204
    [Google Scholar]
  45. Cornils B. Herrmann W.A. Concepts in homogeneous catalysis: the industrial view. J. Catal. 2003 216 1-2 23 31 10.1016/S0021‑9517(02)00128‑8
    [Google Scholar]
  46. Farnetti E. Di Monte R. Kašpar J. Homogeneous and heterogeneous catalysis. Inorg. Bio-Inorg. Chem. 2009 2 1 10
    [Google Scholar]
  47. Verdoliva V. Saviano M. De Luca S. Zeolites as acid/basic solid catalysts: recent synthetic developments. Catalysts 2019 9 3 248 10.3390/catal9030248
    [Google Scholar]
  48. Zuo Z. Sha Y. Wang P. Da Z. From bench to industry, the application of all-inorganic solid base materials in traditional heterogeneous catalysis: a mini review. RSC Adv. 2024 14 11 7468 7489 10.1039/D4RA00335G 38440274
    [Google Scholar]
  49. Hölderich W.F. Preface to the Special Issue II “Industrial Catalytic Processes”. Appl. Catal., A General 2005 280 1 1 10.1016/j.apcata.2004.08.023
    [Google Scholar]
  50. Altalhi A.A. Mohamed E.A. Negm N.A. Recent advances in layered double hydroxide (LDH)-based materials: fabrication, modification strategies, characterization, promising environmental catalytic applications, and prospective aspects. Energy Adv. 2024 3 9 2136 2151 10.1039/D4YA00272E
    [Google Scholar]
  51. Naik N.S. Divakar S. Jyothi M.S. Biogenic derived egg shell and its derivatives as solid base heterogeneous catalysts for organic transformations: a comprehensive review. RSC Sustain. 2024 2 1246 1268 10.1039/D3SU00487B
    [Google Scholar]
  52. Kumar P.V. Madhumitha G. Clay based heterogeneous catalysts for carbon–nitrogen bond formation: a review. RSC Advances 2024 14 7 4810 4834 10.1039/D3RA06358E 38318622
    [Google Scholar]
  53. Malkar R.S. Jadhav A.L. Yadav G.D. Innovative catalysis in Michael addition reactions for C-X bond formation. Molec. Cataly. 2020 485 110814 10.1016/j.mcat.2020.110814
    [Google Scholar]
  54. Zhang Z.X. Li K. Ma S.W. Fast pyrolysis of biomass catalyzed by magnetic solid base catalyst in a hydrogen atmosphere for selective production of phenol. Indust. Crop. Prod. 2019 137 1 495 500 10.1016/j.indcrop.2019.05.066
    [Google Scholar]
  55. Pines H. Haag W. Communications-stereoselectivity in the carbanion-catalyzed isomerization of 1-Butene. J. Org. Chem. 1958 23 2 328 329 10.1021/jo01096a627
    [Google Scholar]
  56. Jothiramalingam R. Wang M.K. Review of recent developments in solid acid, base, and enzyme catalysts (heterogeneous) for biodiesel production via transesterification. Ind. Eng. Chem. Res. 2009 48 13 6162 6172 10.1021/ie801872t
    [Google Scholar]
  57. Yu X. Chen X. Meng W. Zhu M. Research progress on supported solid superbase and its catalytic application. Chem. Pap. 2021 75 9 4445 4463 10.1007/s11696‑021‑01669‑w
    [Google Scholar]
  58. Kishore D. Kannan S. Isomerization of eugenol and safrole over MgAl hydrotalcite, a solid base catalyst. Green Chem. 2002 4 6 607 610 10.1039/b207865a
    [Google Scholar]
  59. Zhang X. Li Y. Qian C. An L. Wang W. Li X. Shao X. Li Z. Research progress of catalysts for aldol condensation of biomass based compounds. RSC Adv 2023 13 14 9466 9478 10.1039/D3RA00906H 36968059
    [Google Scholar]
  60. Ghosh N. Patra M. Halder G. Current advances and future outlook of heterogeneous catalytic transesterification towards biodiesel production from waste cooking oil. Sustain. Energy Fuels 2024 8 6 1105 1152 10.1039/D3SE01564E
    [Google Scholar]
  61. Bing W. Wei M. Recent advances for solid basic catalysts: Structure design and catalytic performance. J. Solid State Chem. 2019 269 184 194 10.1016/j.jssc.2018.09.023
    [Google Scholar]
  62. O’Driscoll K.F. Boudreau R.J. Tobolsky A.V. Lithium‐initiated copolymerization of styrene and methyl methacrylate. I. J. Polym. Sci. 1958 31 122 115 121 10.1002/pol.1958.1203112212
    [Google Scholar]
  63. Corma A. Martín-Aranda R.M. Application of solid base catalysts in the preparation of prepolymers by condensation of ketones and malononitrile. Appl. Catal. A Gen. 1993 105 2 271 279 10.1016/0926‑860X(93)80252‑L
    [Google Scholar]
  64. Figueras F. Kantam M.L. Choudary B.M. Solid base catalysts in organic synthesis. Curr. Org. Chem. 2006 10 13 1627 1637 10.2174/138527206778249658
    [Google Scholar]
  65. Ono Y. Baba T. Selective reactions over solid base catalysts. Catal. Today 1997 38 3 321 337 10.1016/S0920‑5861(97)81502‑5
    [Google Scholar]
  66. Zhang M. Zhang S. Qi Z. Xie M. Qu Y. Recent advancements of CeO2-enabled liquid acid/base catalysis. Catal. Sci. Technol. 2023 14 2 225 240 10.1039/D3CY01294H
    [Google Scholar]
  67. Tanabe K. Hölderich W.F. Industrial application of solid acid–base catalysts. Appl. Catal. A Gen. 1999 181 2 399 434 10.1016/S0926‑860X(98)00397‑4
    [Google Scholar]
  68. Marwaha A. Rosha P. Mohapatra S.K. Mahla S.K. Dhir A. Waste materials as potential catalysts for biodiesel production: Current state and future scope. Fuel Process. Technol. 2018 181 175 186 10.1016/j.fuproc.2018.09.011
    [Google Scholar]
  69. Li F.J. Li H-Q. Wang L-G. Cao Y. Waste carbide slag as a solid base catalyst for effective synthesis of biodiesel via transesterification of soybean oil with methanol. Fuel Process. Technol. 2015 131 421 429 10.1016/j.fuproc.2014.12.018
    [Google Scholar]
  70. Bennett J.A. Wilson K. Lee A.F. Catalytic applications of waste derived materials. J. Mater. Chem. A Mater. Energy Sustain. 2016 4 10 3617 3637 10.1039/C5TA09613H
    [Google Scholar]
  71. Tan Y.H. Abdullah M.O. Nolasco-Hipolito C. Taufiq-Yap Y.H. Waste ostrich- and chicken-eggshells as heterogeneous base catalyst for biodiesel production from used cooking oil: Catalyst characterization and biodiesel yield performance. Appl. Energy 2015 160 58 70 10.1016/j.apenergy.2015.09.023
    [Google Scholar]
  72. Hart A. Mini-review of waste shell-derived materials’ applications. Waste Manag. Res. 2020 38 5 514 527 10.1177/0734242X19897812 31928177
    [Google Scholar]
  73. Hattori H. Solid base catalysts: fundamentals and their applications in organic reactions. Appl. Catal. A Gen. 2015 504 103 109 10.1016/j.apcata.2014.10.060
    [Google Scholar]
  74. Tomar R. Solid Base Catalysts: Synthesis, Characterization, and Applications. Pant K. Chandra R. Hoboken, New Jersey John Wiley & Sons 2024 1 6
    [Google Scholar]
  75. Daigaku H. Kenkyūjo S. Research Institute for Catalysis Japan Hokkaido University 1968 16 1 6
    [Google Scholar]
  76. Hattori H. Solid base catalysts: generation of basic sites and application to organic synthesis. Appl. Catal. A Gen. 2001 222 1-2 247 259 10.1016/S0926‑860X(01)00839‑0
    [Google Scholar]
  77. Junek H. Aigner H. Synthesen mit Nitrilen, XXXV. Reaktionen von tetracyanäthylen mit heterocyclen. Chem. Ber. 1973 106 3 914 921 10.1002/cber.19731060323
    [Google Scholar]
  78. Mistry P.T. Kamdar N.R. Haveliwala D.D. Patel S.K. Synthesis, characterization, and in vitro biological studies of some novel pyran fused pyrimidone derivatives. J. Heterocycl. Chem. 2012 49 2 349 357 10.1002/jhet.700
    [Google Scholar]
  79. Zaki M.E.A. Soliman H.A. Hiekal O.A. Pyrazolopyranopyrimidines as a class of anti-inflammatory agents. Z. Naturforsch. C. J. Biosci. 2006 61 1-2 1 5 10.1515/znc‑2006‑1‑201 16610208
    [Google Scholar]
  80. Wang J.L. Liu D. Zhang Z.J. Shan S. Han X. Srinivasula S.M. Croce C.M. Alnemri E.S. Huang Z. Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells. Proc. Natl. Acad. Sci. USA 2000 97 13 7124 7129 10.1073/pnas.97.13.7124 10860979
    [Google Scholar]
  81. Armetso D. Horspool W.M. Martin N. Ramos A. Seaone C. Synthesis of Cyclobutenes by the Novel Photochemical Ring Contraction of 4-Substituted-2-amino-3,5- dicyano-6-phenyl-4H-pyrans. J. Org. Chem. 1989 54 11 3069 3072
    [Google Scholar]
  82. Hekmatshoar R. Majedi S. Bakhtiari K. Sodium selenate catalyzed simple and efficient synthesis of tetrahydro benzo[b]pyran derivatives. Catal. Commun. 2008 9 2 307 310 10.1016/j.catcom.2007.06.016
    [Google Scholar]
  83. Khanna G. Aggarwal K. Khurana J.M. Efficient catalyst-free synthesis of diversified bis (spirooxindoles) via one-pot, three-component reaction. Synth. Commun. 2016 46 23 1880 1886 10.1080/00397911.2016.1233437
    [Google Scholar]
  84. Padvi S.A. Tayade Y.A. Wagh Y.B. Dalal D.S. [bmim]OH: An efficient catalyst for the synthesis of mono and bis spirooxindole derivatives in ethanol at room temperature. Chin. Chem. Lett. 2016 27 5 714 720 10.1016/j.cclet.2016.01.016
    [Google Scholar]
  85. Majhi S. Manickam S. Cravotto G. Sonochemical Organic Synthesis under Catalyst-Free Conditions and Nanoparticles as Efficient Catalyst: A Journey towards a Sustainable Future. Sonochemistry 1st Ed. Boca Raton, FL CRC Press 2024 61 90
    [Google Scholar]
  86. Brahmachari G. Nurjamal K. Begam S. Mandal M. Nayek N. Karmakar I. Mandal B. Alum (KAl (SO4) 2.12 H2O)-an eco-friendly and versatile acid-catalyst in organic transformations: a recent update. Curr. Green Chem. 2019 6 1 12 31 10.2174/2213346106666190307160332
    [Google Scholar]
  87. Hojati S.F. Moeini-Eghbali N. Mohammadi S. Jamshidi A. Zonoz F.M. Maleki B. 1-(4-Sulfonic Acid Butyl)-3-methylimidazolium polyoxo metalate as a novel nano-hybrid catalyst for the one-pot synthesis of 4h-pyran and spiro indoline derivatives. Polycycl. Aromat. Compd. 2023 43 9 8282 8306 10.1080/10406638.2022.2149562
    [Google Scholar]
  88. de Witte N.V. Stoppani A.O.M. Dubin M. 2-Phenyl-β-lapachone can affect mitochondrial function by redox cycling mediated oxidation. Arch. Biochem. Biophys. 2004 432 2 129 135 10.1016/j.abb.2004.09.020 15542051
    [Google Scholar]
  89. Lopez L.M. De Iraldi A.P. Carrizo P.H. Effect of the lipophilic o-naphthoquinone CG 10-248 on rat liver mitochondria structure and function. Biocell. 2002 26 2 237 245 12240558
    [Google Scholar]
  90. Ferreira S.B. Salomão K. de Carvalho da Silva F. Pinto A.V. Kaiser C.R. Pinto A.C. Ferreira V.F. de Castro S.L. Synthesis and anti-Trypanosoma cruzi activity of β-lapachone analogues. Eur. J. Med. Chem. 2011 46 7 3071 3077 10.1016/j.ejmech.2011.03.012 21450374
    [Google Scholar]
  91. Bloxham J. Dell C.P. Smith C.W. Preparation of some new benzylidenemalononitriles by an SNAr reaction: application to naphtho [1, 2-b] pyran synthesis. Heterocycles (Sendai) 1994 38 2 399 408 10.3987/COM‑93‑6594
    [Google Scholar]
  92. Rewcastle G.W. Denny W.A. Baguley B.C. Potential antitumor agents. 51. Synthesis and antitumor activity of substituted phenazine-1-carboxamides. J. Med. Chem. 1987 30 5 843 851 10.1021/jm00388a017 3572972
    [Google Scholar]
  93. Makgatho M.E. Anderson R. O’Sullivan J.F. Egan T.J. Freese J.A. Cornelius N. van Rensburg C.E.J. Tetramethylpiperidine-substituted phenazines as novel anti-plasmodial agents. Drug Dev. Res. 2000 50 2 195 202 10.1002/1098‑2299(200006)50:2<195::AID‑DDR10>3.0.CO;2‑T
    [Google Scholar]
  94. de Andrade-Neto V.F. Goulart M.O.F. da Silva Filho J.F. da Silva M.J. Pinto M.C.F.R. Pinto A.V. Zalis M.G. Carvalho L.H. Krettli A.U. Antimalarial activity of phenazines from lapachol, β-lapachone and its derivatives against Plasmodium falciparum in vitro and Plasmodium berghei in vivo. Bioorg. Med. Chem. Lett. 2004 14 5 1145 1149 10.1016/j.bmcl.2003.12.069 14980653
    [Google Scholar]
  95. Muller M. Sorrell T.C. Inhibition of the human platelet cyclooxygenase response by the naturally occurring phenazine derivative, 1-hydroxyphenazine. Prostaglandins. 1995 50 5-6 301 311 10.1016/0090‑6980(95)00133‑6
    [Google Scholar]
  96. Pinto A.V. Lisboa de Castro S. The trypanocidal activity of naphthoquinones: a review. Molecules 2009 14 11 4570 4590 10.3390/molecules14114570
    [Google Scholar]
  97. Cartwright D.K. Chilton W.S. Benson D.M. Pyrrolnitrin and phenazine production by Pseudomonas cepacia, strain 5.5B, a biocontrol agent of Rhizoctonia solani. Appl. Microbiol. Biotechnol. 1995 43 2 211 216 10.1007/BF00172814
    [Google Scholar]
  98. Ligon J.M. Hill D.S. Hammer P.E. Natural products with antifungal activity from Pseudomonas biocontrol bacteria. Pest Manag. Sci.: Form. Pestic. Sci. 2000 56 8 688 695 10.1002/1526‑4998(200008)56:8<688::AID‑PS186>3.0.CO;2‑V
    [Google Scholar]
  99. Chen G.-Q. Guo H.-Y. Quan Z.-S. Natural products-pyrazine hybrids: a review of developments in medicinal chemistry. Molecules 2023 28 21 7440 10.3390/molecules28217440
    [Google Scholar]
  100. Kim J.S. Rhee H.K. Park H.J. Lee I.K. Lee S.K. Suh M.E. Lee H.J. Ryu C.K. Choo H.Y.P. Synthesis of 6-chloroisoquinoline-5,8-diones and pyrido[3,4-b]phenazine-5,12-diones and evaluation of their cytotoxicity and DNA topoisomerase II inhibitory activity. Bioorg. Med. Chem. 2007 15 1 451 457 10.1016/j.bmc.2006.09.040 17035025
    [Google Scholar]
  101. Mohebat R. Yazdani-Elah-Abadi A. Maghsoodlou M.-T. Hazeri N. DABCO-catalyzed multi-component domino reactions for green and efficient synthesis of novel 3-oxo-3 H -benzo[a]pyrano[2,3-c]phenazine-1-carboxylate and 3-(5-hydroxybenzo[a]phenazin-6-yl)acrylate derivatives in water. Chin. Chem. Lett. 2017 28 5 943 948 10.1016/j.cclet.2016.12.042
    [Google Scholar]
  102. Rios R. Enantioselective methodologies for the synthesis of spiro compounds. Chem. Soc. Rev. 2012 41 3 1060 1074 10.1039/C1CS15156H 21975423
    [Google Scholar]
  103. Jin T. Himuro M. Yamamoto Y. Triflic acid catalyzed synthesis of spirocycles via acetylene cations. Angew. Chem. Int. Ed. 2009 48 32 5893 5896 10.1002/anie.200901771 19582747
    [Google Scholar]
  104. Dürr H. Gleiter R. Spiroconjugation. Angew. Chem. Int. Ed. Engl. 1978 17 8 559 569 10.1002/anie.197805591
    [Google Scholar]
  105. Xie Y.J. Sun J. Yan C.G. Unprecedented formation of 2-oxaspiro[bicyclo[2.2.1]heptane-6,3′-indoline] derivatives from reaction of 3-phenacyalideneoxindole with malononitrile or ethyl cyanoacetate. RSC Adv 2014 4 84 44537 44546 10.1039/C4RA06272H
    [Google Scholar]
  106. Li Y. Chen H. Shi C. Shi D. Ji S. Efficient one-pot synthesis of spirooxindole derivatives catalyzed by L-proline in aqueous medium. J. Comb. Chem. 2010 12 2 231 237 10.1021/cc9001185 20085353
    [Google Scholar]
  107. Borad M.A. Bhoi M.N. Prajapati N.P. Patel H.D. Review of synthesis of spiro heterocyclic compounds from isatin. Synth. Commun. 2014 44 7 897 922 10.1080/00397911.2013.843196
    [Google Scholar]
  108. Yazdani-Elah-Abadi A. Maghsoodlou M-T. Mohebat R. Heydari R. Theophylline as a new and green catalyst for the one-pot synthesis of spiro[benzo[a]pyrano[2,3-c]phenazine] and benzo[a]pyrano[2,3-c]phenazine derivatives under solvent-free conditions. Chin. Chem. Lett. 2017 28 2 446 452 10.1016/j.cclet.2016.09.016
    [Google Scholar]
  109. Seifi M. Sheibani H. High surface area MgO as a highly effective heterogeneous base catalyst for three-component synthesis of tetrahydrobenzopyran and 3, 4-dihydropyrano [c] chromene derivatives in aqueous media. Catal. Lett. 2008 126 3-4 275 279 10.1007/s10562‑008‑9603‑5
    [Google Scholar]
  110. Baraldi P.G. Manfredini S. Simoni D. Tabrizi M.A. Balzarini J. De Clercq E. Geiparvarin Analogs. 3. Synthesis and cytostatic activity of 3(2H)-furanone and 4,5-dihydro-3(2H)-furanone congeners of geiparvarin, containing a geraniol-like fragment in the side chain. J. Med. Chem. 1992 35 10 1877 1882 10.1021/jm00088a025 1588564
    [Google Scholar]
  111. Kangani M. Hazeri N. Maghsoodlou M.T. Co(NO3)2·6H2O as a powerful and reusable catalyst for the synthesis of phenylbenzo[g]chromenes. J. Iran. Chem. Soc. 2017 14 2659 2664 10.1007/s13738‑017‑1200‑3
    [Google Scholar]
  112. Andreani L.L. Lapi E. Aspects and orientations of modern pharmacognosy. Boll. Chim. Farm. 1960 99 583 586
    [Google Scholar]
  113. Nezhad S.M. Pourmousavi S.A. Zare E.N. Synthesis of polyhydroquinolines and 2-Amino-4H-chromenes and their alkylene bridging derivatives using sulfonic acid functionalized heterogeneous nanocatalyst based on modified poly (Styrene-alt-Maleic Anhydride). Lett. Org. Chem. 2022 19 7 542 557 10.2174/1570178618666210921125130
    [Google Scholar]
  114. Bonsignore L. Loy G. Secci D. Calignano A. Synthesis and pharmacological activity of 2-oxo-(2H) 1-benzopyran-3-carboxamide derivatives. Eur. J. Med. Chem. 1993 28 6 517 520 10.1016/0223‑5234(93)90020‑F
    [Google Scholar]
  115. Kumar R.S. Almansour A.I. Arumugam N. Al-thamili D.M. Basiri A. Kotresha D. Manohar T.S. Venketesh S. Asad M. Asiri A.M. Highly functionalized 2-amino-4H-pyrans as potent cholinesterase inhibitors. Bioorg. Chem. 2018 81 134 143 10.1016/j.bioorg.2018.08.009 30121001
    [Google Scholar]
  116. Chaudhuri H. Dash S. Sarkar A. Fabrication of new synthetic routes for functionalized Si-MCM-41 materials as effective adsorbents for water remediation. Ind. Eng. Chem. Res. 2016 55 38 10084 10094 10.1021/acs.iecr.6b02241
    [Google Scholar]
  117. Zhao D. Huo Q. Feng J. Chmelka B.F. Stucky G.D. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J. Am. Chem. Soc. 1998 120 24 6024 6036 10.1021/ja974025i
    [Google Scholar]
  118. Chaudhuri H. Gupta R. Dash S. Efficient synthesis of branched polyamine based thermally stable heterogeneous catalyst for Knoevenagel condensation at room temperature. Catal. Lett. 2018 148 6 1703 1713 10.1007/s10562‑018‑2368‑6
    [Google Scholar]
  119. Chouyyok W. Fryxell G.E. Addleman R.S. Yantasee W. Koonsiripaiboon V. Pattamakomsan K. Sukwarotwat V. Raymond K.N. Sorbent functionalization by calcination and refluxing for selective sorption of actinides. ACS Appl. Mater. Interf. 2010 2 11 3354 3361
    [Google Scholar]
  120. Gupta R. Layek S. Pathak D.D. Synthesis and characterization of guanine-functionalized mesoporous silica [SBA-16-G]: a metal-free and recyclable heterogeneous solid base catalyst for synthesis of pyran-annulated heterocyclic compounds. Res. Chem. Intermed. 2019 45 3 1619 1637 10.1007/s11164‑018‑3693‑5
    [Google Scholar]
  121. Zhang C. Hao R. Liao H. Hou Y. Synthesis of amino-functionalized graphene as metal-free catalyst and exploration of the roles of various nitrogen states in oxygen reduction reaction. Nano Energy 2013 2 1 88 97 10.1016/j.nanoen.2012.07.021
    [Google Scholar]
  122. Ganesan N.S Suresh P. Nitrogen‐doped graphene oxide as a sustainable carbonaceous catalyst for greener synthesis: benign and solvent‐free synthesis of pyranopyrazoles. ChemistrySelect 2020 5 16 4988 4993 10.1002/slct.202000748
    [Google Scholar]
  123. Maddila S. Rana S. Pagadala R. Kankala S. Maddila S. Jonnalagadda S.B. Synthesis of pyrazole-4-carbonitrile derivatives in aqueous media with CuO/ZrO2 as recyclable catalyst. Catal. Commun. 2015 61 26 30 10.1016/j.catcom.2014.12.005
    [Google Scholar]
  124. Safaei-Ghomi J. Khojastehbakht-Koopaei B. Shahbazi-Alavi H. Pseudo five-component process for the synthesis of 4,4′-(arylmethylene)bis(3-methyl-1H-pyrazol-5-ol) derivatives using ZnAl 2 O 4 nanoparticles in aqueous media. RSC Adv 2014 4 86 46106 46113 10.1039/C4RA07584F
    [Google Scholar]
  125. Xu C. Bartley J.K. Enache D.I. High surface area MgO as a highly effective heterogeneous base catalyst for michael addition and knoevenagel condensation reactions. Synthesis 2005 2005 19 3468 3476
    [Google Scholar]
  126. Xiang‐shan W. Synthesis of 2‐aminochromene derivatives catalyzed by KF/Al2O3. Synthe. commun. 2004 34 3 509 514
    [Google Scholar]
  127. Gilchrist T.L. Heterocyclic Chemistry 3rd ed.; Harlow, Essex, England: Longman, 1997 Available From: https://archive.org/details/heterocyclicchem0000gilc_l5n2
  128. Joule J.A. Heterocyclic chemistry. London 3rd Ed.; CRC Press 1995 10.1201/9781003072850
    [Google Scholar]
  129. Ahamed M. Anis A. Antimicrobial and cytotoxic activities of novel pyrimidine-2, 4-dione connected with 2H-thiopyran derivatives. J. King Saud Univer.-Sci. 2023 35 4 102588 10.1016/j.jksus.2023.102588
    [Google Scholar]
  130. Wang T. Wu F. Luo L. Zhang Y. Ma J. Hu Y. Efficient synthesis and cytotoxic activity of polysubstituted thieno[2,3-d]pyrimidine derivatives. J. Mol. Struct. 2022 1256 132497 10.1016/j.molstruc.2022.132497
    [Google Scholar]
  131. Rani N.V. Kunta R. PEG-400 promoted a simple, efficient and eco-friendly synthesis of functionalized novel isoxazolyl pyrido[2,3-d] pyrimidines and their antimicrobial and anti-inflammatory activity. Synth. Commun. 2021 51 8 1 13 10.1080/00397911.2021.1871759
    [Google Scholar]
  132. Radwan M.A.A. Alshubramy M.A. Abdel-Motaal M. Synthesis, molecular docking and antimicrobial activity of new fused pyrimidine and pyridine derivatives. Bioorg. Chem. 2020 96 103516 10.1016/j.bioorg.2019.103516 31991322
    [Google Scholar]
  133. Wang H. Cui E. Li J. Ma X. Jiang X. Du S. Qian S. Du L. Design and synthesis of novel indole and indazole-piperazine pyrimidine derivatives with anti-inflammatory and neuroprotective activities for ischemic stroke treatment. Eur. J. Med. Chem. 2022 241 114597 10.1016/j.ejmech.2022.114597 35931005
    [Google Scholar]
  134. Mohire P.P. Chandam D.R. Patravale A.A. Choudhari P. Karande V. Ghosh J.S. Deshmukh M.B. An expedient four component synthesis of substituted pyrido-pyrimidine heterocycles in glycerol: proline based low transition temperature mixture and their antioxidant activity with molecular docking studies. Polycycl. Aromat. Compd. 2022 42 1 137 155 10.1080/10406638.2020.1720749
    [Google Scholar]
  135. Dastmard S. Mamaghani M. Farahnak L. Rassa M. Facile synthesis of polyfunctional indole-pyrido[2,3-d] pyrimidine hybrids using nickel-incorporated fluorapatite encapsulated iron oxide nanocatalyst and study of their antibacterial activities. Polycycl. Aromat. Compd. 2022 42 4 1747 1760 10.1080/10406638.2020.1804413
    [Google Scholar]
  136. Ahmadi N. Sayyed-Alangi S.Z. Varasteh-Moradi A. Cu@ KF/clinoptilolite nanoparticles promoted green synthesis of pyrimidine derivatives: study of antioxidant activity. Polycycl. Aromat. Compd. 2022 42 7 4019 4033 10.1080/10406638.2021.1912124
    [Google Scholar]
  137. Al-Joboury W.M. Al-Badrany K.A. Asli N.J. Preface: 1st samarra international conference for pure and applied sciences (SICPS2021). AIP Conf. Proc. 2022 2394 010001 10.1063/12.0013654
    [Google Scholar]
  138. Saleh J.N. Khalid A. Synthesis, characterization and biological activity evaluation of some new pyrimidine derivatives by solid base catalyst AL2O3-OBa. Cent. Asi. J. Med. Nat. Sci. 2023 4 4 231 239
    [Google Scholar]
  139. Nimkar A. Ramana M.M. Betkar R. Ranade P. Mundhe B. CsOH/γ-Al2 O3: a heterogeneous reusable basic catalyst for one-pot synthesis of 2-amino-4,6-diaryl pyrimidines. New J. Chem. 2016 40 3 2541 2546 10.1039/C5NJ03565A
    [Google Scholar]
  140. Fan W.Q. Katritzky A.R. Rees C.W. Scriven E.F. Comprehensive heterocyclic chemistry II : a review of the literature 1982-1995 : the structure, reactions, synthesis, and uses of heterocyclic compounds. 1st Ed. Oxford New York 1996 11 12 28
    [Google Scholar]
  141. Varela J.A. Saá C. Construction of pyridine rings by metal-mediated [2 + 2 + 2] cycloaddition. Chem. Rev. 2003 103 9 3787 3802 10.1021/cr030677f 12964884
    [Google Scholar]
  142. Rajesh U.C. Manohar S. Rawat D.S. Hydromagnesite as an efficient recyclable heterogeneous solid base catalyst for the synthesis of flavanones, flavonols and 1,4‐dihydropyridines in water. Adv. Synth. Catal. 2013 355 16 3170 3178 10.1002/adsc.201300555
    [Google Scholar]
  143. Pagadala R. Maddila S. Dasireddy V.D.B.C. Jonnalagadda S.B. Zn-VCO3 hydrotalcite: A highly efficient and reusable heterogeneous catalyst for the Hantzsch dihydropyridine reaction. Catal. Commun. 2014 45 148 152 10.1016/j.catcom.2013.11.012
    [Google Scholar]
  144. Jain S.L. Prasad V.V.D.N. Sain B. Alumina supported MoO3: An efficient and reusable heterogeneous catalyst for synthesis of 3,4-dihydropyridine-2(1H)-ones under solvent free conditions. Catal. Commun. 2008 9 4 499 503 10.1016/j.catcom.2007.04.021
    [Google Scholar]
  145. Alinezhad H. Tavakkoli S.M. Biparva P. Cu-doped ZnO nanocrystalline powder catalyzed one-pot synthesis of fully substituted new indeno[1,2-b]pyridines at room temperature by a multi-component reaction. Chin. J. Catal. 2014 35 4 560 564 10.1016/S1872‑2067(14)60034‑6
    [Google Scholar]
  146. Shabalala S. Maddila S. van Zyl W.E. Jonnalagadda S.B. A facile, efficacious and reusable Sm2O3/ZrO2 catalyst for the novel synthesis of functionalized 1,4-dihydropyridine derivatives. Catal. Commun. 2016 79 21 25 10.1016/j.catcom.2016.02.017
    [Google Scholar]
  147. Kale S.R. Surve S.K. One-pot multicomponent synthesis of highly substituted pyridines using hydrotalcite as a solid base and reusable catalyst. Current Chemistry Letters 2021 10 3 169 174 10.5267/j.ccl.2021.1.001
    [Google Scholar]
  148. Negi A. Alex J.M. Amrutkar S.M. Baviskar A.T. Joshi G. Singh S. Banerjee U.C. Kumar R. Imine/amide–imidazole conjugates derived from 5-amino-4-cyano- N 1-substituted benzyl imidazole: Microwave-assisted synthesis and anticancer activity via selective topoisomerase-II-α inhibition. Bioorg. Med. Chem. 2015 23 17 5654 5661 10.1016/j.bmc.2015.07.020 26216018
    [Google Scholar]
  149. Schemeth D. Kappacher C. Rainer M. Thalinger R. Bonn G. Automated sample preparation for LC-MS using a novel 3d-printed device. Analyt. Chim. Acta. 2016 153 177 185 10.1016/j.aca.2024.343552
    [Google Scholar]
  150. Wen S.Q. Jeyakkumar P. Avula S.R. Zhang L. Zhou C.H. Discovery of novel berberine imidazoles as safe antimicrobial agents by down regulating ROS generation. Bioorg. Med. Chem. Lett. 2016 26 12 2768 2773 10.1016/j.bmcl.2016.04.070 27156777
    [Google Scholar]
  151. Navarrete-Vázquez G. Hidalgo-Figueroa S. Torres-Piedra M. Vergara-Galicia J. Rivera-Leyva J.C. Estrada-Soto S. León-Rivera I. Aguilar-Guardarrama B. Rios-Gómez Y. Villalobos-Molina R. Ibarra-Barajas M. Synthesis, vasorelaxant activity and antihypertensive effect of benzo[d]imidazole derivatives. Bioorg. Med. Chem. 2010 18 11 3985 3991 10.1016/j.bmc.2010.04.027 20451399
    [Google Scholar]
  152. Khiratkar A.G. Balinge K.R. Patle D.S. Krishnamurthy M. Cheralathan K.K. Bhagat P.R. Transesterification of castor oil using benzimidazolium based Brønsted acid ionic liquid catalyst. Fuel 2018 231 458 467 10.1016/j.fuel.2018.05.127
    [Google Scholar]
  153. Mallakpour S. Rafiee Z. Ionic liquids as environmentally friendly solvents in macromolecules chemistry and technology, Part I. J. Polym. Environ. 2011 19 2 447 484 10.1007/s10924‑011‑0287‑3
    [Google Scholar]
  154. Binnemans K. Ionic liquid crystals. Chem. Rev. 2005 105 11 4148 4204 10.1021/cr0400919 16277373
    [Google Scholar]
  155. Anderson E.B. Long T.E. Imidazole- and imidazolium-containing polymers for biology and material science applications. Polymer (Guildf.) 2010 51 12 2447 2454 10.1016/j.polymer.2010.02.006
    [Google Scholar]
  156. Yin K. Zhang Z. Yang L. Hirano S.I. An imidazolium-based polymerized ionic liquid via novel synthetic strategy as polymer electrolytes for lithium ion batteries. J. Power Sour. 2014 258 150 154 10.1016/j.jpowsour.2014.02.057
    [Google Scholar]
  157. Kerru N. Gummidi L. Maddila S.N. Bhaskaruni S.V.H.S. Maddila S. Jonnalagadda S.B. Green synthesis and characterisation of novel [1,3,4]thiadiazolo/benzo[4,5]thiazolo[3,2-a] pyrimidines via multicomponent reaction using vanadium oxide loaded on fluorapatite as a robust and sustainable catalyst. RSC Adv 2020 10 34 19803 19810 10.1039/D0RA02298E 35520453
    [Google Scholar]
  158. Kiumars B. Mohammad M.K. Akbar N. One-pot synthesis of 1,2,4,5-tetrasubstituted and 2,4,5-trisubstituted imidazoles by zinc oxide as efficient and reusable catalyst Monatsh Chem. 2011 142 159 162 10.1007/s00706‑010‑0428‑8
    [Google Scholar]
  159. Thimmaraju N. Shamshuddin S.Z.M. Synthesis of 2,4,5-trisubstituted imidazoles, quinoxalines and 1,5-benzodiazepines over an eco-friendly and highly efficient ZrO 2 –Al 2 O 3 catalyst. RSC Adv. 2016 6 65 60231 60243 10.1039/C6RA13956F
    [Google Scholar]
  160. Safari J. Gandomi-Ravandi S. Akbari Z. Sonochemical synthesis of 1,2,4,5-tetrasubstituted imidazoles using nanocrystalline MgAl2O4 as an effective catalyst. J. Adv. Res. 2013 4 6 509 514 10.1016/j.jare.2012.09.001 25685459
    [Google Scholar]
  161. Prasad N.A. Reddy M.B. Heterogeneous catalysts for biodiesel production: a comprehensive review. Curr. Catal. 2013 2 3 159 172
    [Google Scholar]
  162. Schmidt A. Beutler A. Snovydovych B. Recent advances in the chemistry of indazoles. Eur. J. Org. Chem. 2008 2008 24 4073 4095 10.1002/ejoc.200800227
    [Google Scholar]
  163. Clutterbuck L.A. Posada C.G. Visintin C. Riddall D.R. Lancaster B. Gane P.J. Garthwaite J. Selwood D.L. Oxadiazolylindazole sodium channel modulators are neuroprotective toward hippocampal neurones. J. Med. Chem. 2009 52 9 2694 2707 10.1021/jm801180p 19341281
    [Google Scholar]
  164. Elguero J. Tautomerism in Heterocyclic Compounds. Comprehensive Heterocyclic Chemistry Oxford New York 1984 5 167
    [Google Scholar]
  165. Prasad A. Reddy B. Cascade synthesis of N-heterocyclic compounds through one-pot MCR over CuII−hydrotalcite catalyst. Curr. Catal. 2013 2 3 159 172 10.2174/22115447113029990002
    [Google Scholar]
  166. Kerru N. Gummidi M.L. Gangu K.K. Maddila S. Jonnalagadda S.B. Synthesis of novel Furo [3, 2‐c] coumarin derivatives through multicomponent [4+ 1] cycloaddition reaction using ZnO/Fap as a sustainable catalyst. ChemistrySelect 2020 5 13 4104 4110 10.1002/slct.202000796
    [Google Scholar]
/content/journals/coc/10.2174/0113852728364378250403062328
Loading
/content/journals/coc/10.2174/0113852728364378250403062328
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: pyridines ; pyrans ; multicomponent reactions ; Heterocyclic compounds ; imidazoles ; pyrimidine
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test