Skip to content
2000
image of Synthesis, DNA Binding Studies and Molecular Docking of Tetrahydroquinoline-3-Carbonitrile Derivatives

Abstract

In this study, a series of 2-amino-4-(substituted phenyl)-5,6,7,8-tetrahydroquinoline -3-carbonitrile derivatives () was synthesized using a one-pot process. The titled compounds were successfully synthesized by employing aromatic aldehydes with satisfactory yields. Docking studies were directed to explore the DNA-binding interactions of the synthesized compounds. These studies involved docking the compounds with B-DNA (PDB ID: 1BNA) to investigate the preferred binding sites, interaction modes, and binding affinities.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728348571250221054127
2025-03-19
2025-09-16
Loading full text...

Full text loading...

References

  1. Sjakste N. Djelić N. Dzintare M. Živković L. DNA-binding and DNA-protecting activities of small natural organic molecules and food extracts. Chem. Biol. Interact. 2020 323 109030 10.1016/j.cbi.2020.109030 32205154
    [Google Scholar]
  2. Muhamadejevs R. Živković L. Dzintare M. Sjakste N. DNA-binding activities of compounds acting as enzyme inhibitors, ion channel blockers and receptor binders. Chem. Biol. Interact. 2021 348 109638 10.1016/j.cbi.2021.109638 34508711
    [Google Scholar]
  3. Gillyard T. Davis J. DNA double-strand break repair in cancer: A path to achieving precision medicine. Int. Rev. Cell Mol. Biol. 2021 364 111 137 10.1016/bs.ircmb.2021.06.003 34507781
    [Google Scholar]
  4. Liu W. Yuan J.S. Stewart C.N. Jr Advanced genetic tools for plant biotechnology. Nat. Rev. Genet. 2013 14 11 781 793 10.1038/nrg3583 24105275
    [Google Scholar]
  5. Bischoff G. Hoffmann S. DNA-binding of drugs used in medicinal therapies. Curr. Med. Chem. 2002 9 3 321 348 10.2174/0929867023371085
    [Google Scholar]
  6. Waring M.J. DNA-targeting molecules as therapeutic agents, ed. M.J. Waring. Royal Society of Chemistry 2018 P005 P006
    [Google Scholar]
  7. Strekowski L. Wilson B. Noncovalent interactions with DNA: An overview. Mutat. Res. 2007 623 1-2 3 13 10.1016/j.mrfmmm.2007.03.008
    [Google Scholar]
  8. Khan G.S. Shah A. Barker D. Journal of photochemistry and photobiology B: Biology, 115, 105-118 (2012). Yu, Y. Zhou, T. Shen, W. Mao, K. Chen, Q. Song. J. Chem. Res. 2013 368 1888
    [Google Scholar]
  9. Sheng J. Gan J. Huang Z. Structure-based DNA-targeting strategies with small molecule ligands for drug discovery. Med. Res. Rev. 2013 33 5 1119 1173 10.1002/med.21278 23633219
    [Google Scholar]
  10. Hurley L.H. DNA and associated targets for drug design. J. Med. Chem. 1989 32 9 2027 2033 10.1021/jm00129a001 2671370
    [Google Scholar]
  11. Meng F. Liang Z. Zhao K. Luo C. Drug design targeting active posttranslational modification protein isoforms. Med. Res. Rev. 2021 41 3 1701 1750 10.1002/med.21774 33355944
    [Google Scholar]
  12. Pagadala R. Kasi V. Shabalala N.G. Jonnalagadda S.B. Ultrasound-assisted multicomponent synthesis of heterocycles in water – A review. Arab. J. Chem. 2022 15 1 103544 103564 10.1016/j.arabjc.2021.103544
    [Google Scholar]
  13. Koduri R.G. Pagadala R. Boodida S. Varala R. Ultrasound promoted synthesis of 2-Amino-4-H-pyranoquinolines using sulphated tin oxide as a catalyst. Polycycl. Aromat. Compd. 2022 42 10 6908 6916 10.1080/10406638.2021.1992456
    [Google Scholar]
  14. Sridharan V. Suryavanshi P.A. Menéndez J.C. Advances in the chemistry of tetrahydroquinolines. Chem. Rev. 2011 111 11 7157 7259 10.1021/cr100307m 21830756
    [Google Scholar]
  15. Giustra Z.X. Ishibashi J.S.A. Liu S.Y. Homogeneous metal catalysis for conversion between aromatic and saturated compounds. Coord. Chem. Rev. 2016 314 134 181 10.1016/j.ccr.2015.11.006
    [Google Scholar]
  16. Diaz G. Miranda I.L. Diaz M.A.N. Phytochemicals-isolation, characterisation and role in human health. IntechOpen 2015
    [Google Scholar]
  17. Shang X.F. Morris‐natschke S.L. Liu Y.Q. Biologically active quinoline and quinazoline alkaloids part I. Med. Res. Rev. 2018 38 775 828 10.1002/med.21466 28902434
    [Google Scholar]
  18. Faheem B. 1,2,3,4-Tetrahydroisoquinoline (THIQ) as privileged scaffold for anticancer de novo drug design. Expert Opin. Drug Discov. 2021 16 1119 1147 10.1080/17460441.2021.1916464 33908322
    [Google Scholar]
  19. Payne M. Synthesis and biological evaluation of tetrahydroisoquinoline-derived antibacterial compounds. Bioorg. Med. Chem. 2022 57 116648 10.1016/j.bmc.2022.116648 35124457
    [Google Scholar]
  20. K.D. Paiva Ferreira Laércia. MHTP, a synthetic alkaloid, attenuates combined allergic rhinitis and asthma syndrome through downregulation of the p38/ERK1/2 MAPK signaling pathway in mice. Immunopharmacol. Immunotoxicol. 2015 37 400 412
    [Google Scholar]
  21. 2D chemometrics analyses of tetrahydroquinoline and ethylenediamine derivatives with antimalarial activity . Med. Chem. 2012 8 252 265
    [Google Scholar]
  22. Senerovic L. Opsenica D. Moric I. Aleksic I. Spasić M. Vasiljevic B. Quinolines and quinolones as antibacterial, antifungal, anti-virulence, antiviral and anti-parasitic agents. Adv Exp Med Biol. 2020 14 37 69
    [Google Scholar]
  23. Drew H.R. Wing R.M. Takano T. Broka C. Tanaka S. Itakura K. Dickerson R.E. Structure of a B-DNA dodecamer: Conformation and dynamics. Proc. Natl. Acad. Sci. USA 1981 78 4 2179 2183 10.1073/pnas.78.4.2179 6941276
    [Google Scholar]
  24. Norgan A.P. Coffman P.K. Kocher J.P.A. Katzmann D.J. Sosa C.P. Multilevel parallelization of AutoDock 4.2. J. Cheminfor. 2011 3 1 9
    [Google Scholar]
/content/journals/coc/10.2174/0113852728348571250221054127
Loading
/content/journals/coc/10.2174/0113852728348571250221054127
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s web site along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test