Skip to content
2000
Volume 29, Issue 14
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

Chitosan is a natural biopolymer derived from chitin present in the exoskeletons of crustaceans. Its diverse applications span biomedical products, agriculture, and cosmetics. Notably, chitosan has been effectively utilized for chemical modifications and stabilizing homogeneous catalysts. Among these modifications, doping with acids or inorganic salts stands out. In some cases, acid chitosan exhibits superior catalytic activity compared to the unmodified form. This review aimed to elucidate recent advancements in acidic chitosan as a renewable and recoverable catalyst for various reactions. The discussion encompasses different doping methods using organic acids and inorganic salts to highlight the development in this field.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728332274241104114316
2025-01-07
2025-08-13
Loading full text...

Full text loading...

References

  1. AbidN. MarchesaniF. CeciF. MasciarelliF. AhmadF. Cities trajectories in the digital era: Exploring the impact of technological advancement and institutional quality on environmental and social sustainability.J. Clean. Prod.202237713437813439210.1016/j.jclepro.2022.134378
    [Google Scholar]
  2. (a LiA.Y. MooresA. Carbonyl reduction and biomass: A case study of sustainable catalysis.ACS Sustain. Chem. Eng.2019712101821019710.1021/acssuschemeng.9b00811
    [Google Scholar]
  3. (b HutchingsG.J. Heterogeneous gold catalysis.ACS Cent. Sci.2018491095110110.1021/acscentsci.8b0030630276242
    [Google Scholar]
  4. (c LambA.C. LeeA.F. WilsonK. Recent advances in heterogeneous catalyst design for biorefining.Aust. J. Chem.202073832852
    [Google Scholar]
  5. MousaviH. A comprehensive survey upon diverse and prolific applications of chitosan-based catalytic systems in one-pot multi-component synthesis of heterocyclic rings.Int. J. Biol. Macromol.20211861003116610.1016/j.ijbiomac.2021.06.12334174311
    [Google Scholar]
  6. LanzafameP. PerathonerS. CentiG. GrossS. HensenE.J.M. Grand challenges for catalysis in the science and technology roadmap on catalysis for europe: Moving ahead for a sustainable future.Catal. Sci. Technol.20177225182519410.1039/C7CY01067B
    [Google Scholar]
  7. (a PuginB. BlaserH.U. Immobilized complexes for enantioselective catalysis: When will they be used in industry?Top. Catal.20105313-1495396210.1007/s11244‑010‑9514‑8
    [Google Scholar]
  8. (b ChaudharyA. PasrichaS. KaurH. AvasthiN. Applications of functionalized chitosan in catalysis.J. Iranian Chem. Soc.2022192191225310.1007/s13738‑021‑02477‑5
    [Google Scholar]
  9. BhatiaS. Zeolite Catalysts: Principles and Applications19891st edCRC PressBoca Raton
    [Google Scholar]
  10. PinesH. ManassenJ. The mechanism of dehydration of alcohols over alumina catalysts.Advances in CatalysisAmsterdam, NetherlandsElsevier196616499310.1016/S0360‑0564(08)60351‑X
    [Google Scholar]
  11. ChenY.Z. ZhangR. JiaoL. JiangH-L. Metal–organic framework-derived porous materials for catalysis.Coord. Chem. Rev.201836212310.1016/j.ccr.2018.02.008
    [Google Scholar]
  12. (a OgawaC. SugiuraM. KobayashiS. Polymer-supported formamides as reusable organocatalysts for allylation of aldehydes with allyltrichlorosilane.Chem. Commun. (Camb.)20032219219310.1039/b210826g12585386
    [Google Scholar]
  13. (b HowardI.C. HammondC. BuchardA. Polymer-supported metal catalysts for the heterogeneous polymerisation of lactones.Polym. Chem.201910435894590410.1039/C9PY01472A
    [Google Scholar]
  14. (a GandiniA. Polymers from renewable resources: A challenge for the future of macromolecular materials.Macromolecules200841249491950410.1021/ma801735u
    [Google Scholar]
  15. (b KadibA. Chitosan as a sustainable organocatalyst: A concise overview.ChemSusChem20158221724410.1002/cssc.20140271825470553
    [Google Scholar]
  16. (c PapageorgiouG.Z. Thinking green: Sustainable polymers from renewable resources.Polymers (Basel)201810995295710.3390/polym1009095230960877
    [Google Scholar]
  17. GallezotP. Conversion of biomass to selected chemical products.Chem. Soc. Rev.20124141538155810.1039/C1CS15147A21909591
    [Google Scholar]
  18. PetroniS. TagliaroI. AntoniniC. D’ArienzoM. OrsiniS. ManoJ. BrancatoV. BorgesJ. CipollaL. Chitosan-based biomaterials: Insights into chemistry, properties, devices, and their biomedical applications.Mar. Drugs202321314720310.3390/md2103014736976196
    [Google Scholar]
  19. SheldonR.A. Green and sustainable manufacture of chemicals from biomass: State of the art.Green Chem.201416395096310.1039/C3GC41935E
    [Google Scholar]
  20. (a MotahharifarN. NasrollahzadehM. Taheri-KafraniA. VarmaR.S. ShokouhimehrM. Magnetic chitosan-copper nanocomposite: A plant assembled catalyst for the synthesis of amino- and N-sulfonyl tetrazoles in eco-friendly media.Carbohydr. Polym.202023211581910.1016/j.carbpol.2019.11581931952615
    [Google Scholar]
  21. (b NasrollahzadehM. ShafieiN. NezafatZ. Soheili BidgoliN.S. SoleimaniF. Recent progresses in the application of cellulose, starch, alginate, gum, pectin, chitin and chitosan based (nano)catalysts in sustainable and selective oxidation reactions: A review.Carbohydr. Polym.202024111635310.1016/j.carbpol.2020.11635332507224
    [Google Scholar]
  22. (c ObireddyS.R. LaiW.F. ROS-generating amine-functionalized magnetic nanoparticles coupled with carboxymethyl chitosan for pH-responsive release of doxorubicin.Int. J. Nanomedicine20221758960110.2147/IJN.S33889735173432
    [Google Scholar]
  23. PochanavanichP. SuntornsukW. Fungal chitosan production and its characterization.Lett. Appl. Microbiol.2002351172110.1046/j.1472‑765X.2002.01118.x12081543
    [Google Scholar]
  24. MouynaI. DellièreS. BeauvaisA. GravelatF. SnarrB. LehouxM. ZachariasC. SunY. de Jesus CarrionS. PearlmanE. SheppardD.C. LatgéJ.P. What are the functions of chitin deacetylases in Aspergillus fumigatus? Front. Cell. Infect. Microbiol.202010282810.3389/fcimb.2020.0002832117802
    [Google Scholar]
  25. BofM.J. BordagarayV.C. LocasoD.E. GarcíaM.A. Chitosan molecular weight effect on starch-composite film properties.Food Hydrocoll.20155128129410.1016/j.foodhyd.2015.05.018
    [Google Scholar]
  26. PandaP.K. DashP. ChangY.H. YangJ.M. Improvement of chitosan water solubility by fumaric acid modification.Mater. Lett.202231613204610.1016/j.matlet.2022.132046
    [Google Scholar]
  27. LiuZ. GeX. LuY. DongS. ZhaoY. ZengM. Effects of chitosan molecular weight and degree of deacetylation on the properties of gelatine-based films.Food Hydrocoll.201226131131710.1016/j.foodhyd.2011.06.008
    [Google Scholar]
  28. Chitosan market size, share & trends analysis report by application.Available from: https://www.grandviewresearch.com/industry-analysis/global-chitosan-market (Accessed on: Sept 12, 2023)
  29. AgnihotriS.A. MallikarjunaN.N. AminabhaviT.M. Recent advances on chitosan-based micro- and nanoparticles in drug delivery.J. Control. Release2004100152810.1016/j.jconrel.2004.08.01015491807
    [Google Scholar]
  30. FeltO. BuriP. GurnyR. Chitosan: A unique polysaccharide for drug delivery.Drug Dev. Ind. Pharm.1998241197999310.3109/036390498090899429876553
    [Google Scholar]
  31. DodaneV. VilivalamV.D. Pharmaceutical applications of chitosan.Pharm. Sci. Technol. Today19981624625310.1016/S1461‑5347(98)00059‑5
    [Google Scholar]
  32. De CamposA.M. SánchezA. AlonsoM.J. Chitosan nanoparticles: A new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to cyclosporin A.Int. J. Pharm.20012241-215916810.1016/S0378‑5173(01)00760‑811472825
    [Google Scholar]
  33. KaşH.S. Chitosan: Properties, preparations and application to microparticulate systems.J. Microencapsul.199714668971110.3109/026520497090068209394251
    [Google Scholar]
  34. TripathiS. MehrotraG.K. DuttaP.K. Physicochemical and bioactivity of cross-linked chitosan–PVA film for food packaging applications.Int. J. Biol. Macromol.200945437237610.1016/j.ijbiomac.2009.07.00619643129
    [Google Scholar]
  35. DuttaP.K. TripathiS. MehrotraG.K. DuttaJ. Perspectives for chitosan based antimicrobial films in food applications.Food Chem.200911441173118210.1016/j.foodchem.2008.11.047
    [Google Scholar]
  36. OuyangZ. YuH.Y. SongM. ZhuJ. WangD. Ultrasensitive and robust self-healing composite films with reinforcement of multi-branched cellulose nanocrystals.Compos. Sci. Technol.202019810830010.1016/j.compscitech.2020.108300
    [Google Scholar]
  37. ShiC. ZhuY. RanX. WangM. SuY. ChengT. Therapeutic potential of chitosan and its derivatives in regenerative medicine.J. Surg. Res.2006133218519210.1016/j.jss.2005.12.01316458923
    [Google Scholar]
  38. (a YangR. LiH. HuangM. YangH. LiA. A review on chitosan-based flocculants and their applications in water treatment.Water Res.201695598910.1016/j.watres.2016.02.06826986497
    [Google Scholar]
  39. (b Leandro-SilvaE.L. SilveiraM.L.D.C. PipiA.R.F. Piacenti-SilvaM. MagdalenaA.G. Metal removal using Fe3O4-chitosan Na-noparticles for environmental applications.Rev. Virtual Quim.2024169810510.21577/1984‑6835.20230053
    [Google Scholar]
  40. MaJ. SahaiY. Chitosan biopolymer for fuel cell applications.Carbohydr. Polym.201392295597510.1016/j.carbpol.2012.10.01523399116
    [Google Scholar]
  41. OnoK. IshiharaM. OzekiY. DeguchiH. SatoM. SaitoY. YuraH. SatoM. KikuchiM. KuritaA. MaeharaT. Experimental evaluation of photocrosslinkable chitosan as a biologic adhesive with surgical applications.Surgery2001130584485010.1067/msy.2001.11719711685194
    [Google Scholar]
  42. PandaP.K. SadeghiK. SeoJ. Recent advances in poly (vinyl alcohol)/natural polymer based films for food packaging applications: A review.Food Packag. Shelf Life20223310090410.1016/j.fpsl.2022.100904
    [Google Scholar]
  43. AhmadM.Z. RizwanullahM. AhmadJ. AlasmaryM.Y. AkhterM.H. Abdel-WahabB.A. WarsiM.H. HaqueA. Progress in nanomedicine-based drug delivery in designing of chitosan nanoparticles for cancer therapy.Int. J. Polym. Mater.202271860262310.1080/00914037.2020.1869737
    [Google Scholar]
  44. AzizianS. HadjizadehA. NiknejadH. Chitosan-gelatin porous scaffold incorporated with Chitosan nanoparticles for growth factor delivery in tissue engineering.Carbohydr. Polym.201820231532210.1016/j.carbpol.2018.07.02330287006
    [Google Scholar]
  45. Gomez-MaldonadoD. FilpponenI. Hernandez-DíazJ.A. WatersM.N. AuadM.L. JohanssonL.S. Vega-ErramuspeI.B. PeresinM.S. Simple functionalization of cellulose beads with pre-propargylated chitosan for clickable scaffold substrates.Cellulose202128106073608710.1007/s10570‑021‑03905‑8
    [Google Scholar]
  46. KomarovB.A. BaskakovS.A. BaskakovaY.V. LesnichayaV.A. KabachkovE.N. Shul’gaY.M. Mechanical properties of films of graphene oxide doped with chitosan.Russ. J. Phys. Chem. A. Focus Chem.201993353854110.1134/S0036024419030105
    [Google Scholar]
  47. PandaP.K. DashP. BiswalA.K. ChangY.H. MisraP.K. YangJ.M. Synthesis and characterization of modified poly (vinyl alcohol) membrane and study of its enhanced water-induced shape-memory behavior.J. Polym. Environ.20223083409341910.1007/s10924‑022‑02454‑w
    [Google Scholar]
  48. ValieyE. DekaminM.G. AlirezvaniZ. Melamine-modified chitosan materials: An efficient and recyclable bifunctional organocatalyst for green synthesis of densely functionalized bioactive dihydropyrano[2,3-c]pyrazole and benzylpyrazolyl coumarin derivatives.Int. J. Biol. Macromol.201912940742110.1016/j.ijbiomac.2019.01.02730658146
    [Google Scholar]
  49. AranazI. AlcántaraA.R. CiveraM.C. AriasC. ElorzaB. Heras CaballeroA. AcostaN. Chitosan: An overview of its properties and applications.Polymers (Basel)20211319325610.3390/polym1319325634641071
    [Google Scholar]
  50. HuaytragulJ. ChalitangkoonJ. MonvisadeP. ChotsaengN. Enhancing chitosan solubility in alcohol: Water mixtures for film-forming systems releasing with turmeric extracts.J. Taiwan Inst. Chem. Eng.202112329330110.1016/j.jtice.2021.05.020
    [Google Scholar]
  51. KandileN.G. MohamedM.I. ZakyH.T. NasrA.S. AliY.G. Quinoline anhydride derivatives cross-linked chitosan hydrogels for potential use in biomedical and metal ions adsorption.Polym. Bull.20227942461248610.1007/s00289‑021‑03633‑w
    [Google Scholar]
  52. PandaP.K. ParkK. SeoJ. SeoJ. Development of poly (vinyl alcohol)/regenerated chitosan blend film with superior barrier, antioxidant, and antibacterial properties.Prog. Org. Coat.202318310774910.1016/j.porgcoat.2023.107749
    [Google Scholar]
  53. PandaP.K. SadeghiK. ParkK. SeoJ. Regeneration approach to enhance the antimicrobial and antioxidant activities of chitosan for biomedical applications.Polymers (Basel)202215113210.3390/polym1501013236616481
    [Google Scholar]
  54. (a HasanK. Methyl salicylate functionalized magnetic chitosan immobilized palladium nano-particles: an efficient catalyst for the Suzuki and Heck coupling reactions in water.ChemistrySelect20205237129714010.1002/slct.202001933
    [Google Scholar]
  55. (b BehrouzS. Soltani RadM.N. PiltanM.A. Chitosan–silica sulfate nanohybrid: A highly efficient and green heterogeneous nanocatalyst for the regioselective synthesis of N-alkyl purine, pyrimidine and related N-heterocycles via presilylated method.Chem. Pap.202074111312410.1007/s11696‑019‑00863‑1
    [Google Scholar]
  56. (c AnbuN. HariharanS. DhakshinamoorthyA. Knoevenagel-Doebner condensation promoted by chitosan as a reusable solid base catalyst.Molecular Catalysis202048411074411074410.1016/j.mcat.2019.110744
    [Google Scholar]
  57. Al-MatarH.M. KhalilK.D. MeierH. KolshornH. ElnagdiM.H. Chitosan as heterogeneous catalyst in Michael additions: The reaction of cinnamonitriles with active methyls, active methylenes and phenols.ARKIVOC200820081628830110.3998/ark.5550190.0009.g27
    [Google Scholar]
  58. Nageswara RaoS. Chandra MohanD. AdimurthyS. Chitosan: an efficient recyclable catalyst for transamidation of carboxamides with amines under neat conditions.Green Chem.20141694122412610.1039/C4GC01402B
    [Google Scholar]
  59. DekaminM.G. AzimoshanM. RamezaniL. Chitosan: A highly efficient renewable and recoverable bio-polymer catalyst for the expeditious synthesis of α-amino nitriles and imines under mild conditions.Green Chem.201315381182010.1039/c3gc36901c
    [Google Scholar]
  60. GhozlanS.A.S. MohamedM.H. AbdelmoniemA.M. AbdelhamidI.A. Synthesis of pyri-dazines and fused pyridazines via [3+3] atom combination using chitosan as a green catalyst.ARKIVOC2009x30231110.3998/ark.5550190.0010.a27
    [Google Scholar]
  61. ZarnegarZ. SafariJ. Fe3O4 @chitosan nanoparticles: A valuable heterogeneous nanocatalyst for the synthesis of 2,4,5-trisubstituted imidazoles.RSC Advances2014440209322093910.1039/C4RA03176H
    [Google Scholar]
  62. SafariJ. JavadianL. Fe3O4-chitosan nanoparticles as a robust magnetic catalyst for efficient synthesis of 5-substituted hydantoins using zinc cyanide.Iran J Catal.201665764
    [Google Scholar]
  63. ZarnegarZ. SafariJ. The novel synthesis of magnetically chitosan/carbon nanotube composites and their catalytic applications.Int. J. Biol. Macromol.201575213110.1016/j.ijbiomac.2015.01.01325597431
    [Google Scholar]
  64. (a ZhaoX.N. HuG.F. TangM. ShiT.T. GuoX.L. LiT.T. ZhangZ.H. A highly efficient and recyclable cobalt ferrite chitosan sulfonic acid magnetic nanoparticle for one-pot, four-component synthesis of 2H-indazolo[2,1-b]phthalazine-triones.RSC Adv.2014493510895109710.1039/C4RA09984B
    [Google Scholar]
  65. (b Safaei-GhomiJ. TavazoM. VakiliM.R. Shahbazi-AlaviH. Chitosan functionalized by citric acid: An efficient catalyst for one-pot synthesis of 2,4-diamino-5 H -[1]benzopyrano[2,3- b ]pyridine-3-carbonitriles 5-(arylthio) or 5-[(arylmethyl)thio] substituted.J. Sulfur Chem.201738323624810.1080/17415993.2016.1275633
    [Google Scholar]
  66. (a BeiranvandR. DekaminM.G. Trimesic acid-functionalized chitosan: A novel and efficient multifunctional organocatalyst for green synthesis of polyhydroquinolines and acridinediones under mild conditions.Heliyon202396e1631510.1016/j.heliyon.2023.e1631537260895
    [Google Scholar]
  67. (b SourkouhiR.P. DekaminM.G. ValieyE. DohendouM. Magnetic decorated 5-sulfosalicylic acid grafted to chitosan: A solid acid organocatalyst for green synthesis of quinazoline derivatives.Carbohydr. Polym. Technol. Appl.2024710042010.1016/j.carpta.2023.100420
    [Google Scholar]
  68. (a XiaoY. XiangY. XiuR. LuS. Development of cesium phosphotungstate salt and chitosan composite membrane for direct methanol fuel cells.Carbohydr. Polym.201398123324010.1016/j.carbpol.2013.06.01723987340
    [Google Scholar]
  69. (b WanY. CreberK.A.M. PeppleyB. BuiV.T. Ionic conductivity of chitosan membranes.Polymer (Guildf.)20034441057106510.1016/S0032‑3861(02)00881‑9
    [Google Scholar]
  70. ChaudharyA. PasrichaS. KaurH. AvasthiN. Multicomponent reactions through pristine and modified chitosans: Current status and future prospects.J. Indian Chem. Soc.20221921912253
    [Google Scholar]
  71. SmithaB. SridharS. KhanA.A. Chitosan–poly(vinyl pyrrolidone) blends as membranes for direct methanol fuel cell applications.J. Power Sources2006159284685410.1016/j.jpowsour.2005.12.032
    [Google Scholar]
  72. OsifoP.O. MasalaA. Characterization of direct methanol fuel cell (DMFC) applications with H2SO4 modified chitosan membrane.J. Power Sources2010195154915492210.1016/j.jpowsour.2009.12.093
    [Google Scholar]
  73. VijayalekshmiV. KhastgirD. Eco-friendly methanesulfonic acid and sodium salt of dodecylbenzene sulfonic acid doped cross-linked chitosan based green polymer electrolyte membranes for fuel cell applications.J. Membr. Sci.2017523455910.1016/j.memsci.2016.09.058
    [Google Scholar]
  74. (a BoukisA.C. ReiterK. FrölichM. HofheinzD. MeierM.A.R. Multicomponent reactions provide key molecules for secret communication.Nat. Commun.201891143910.1038/s41467‑018‑03784‑x29651145
    [Google Scholar]
  75. (b ZhiS. MaX. ZhangW. Consecutive multicomponent reactions for the synthesis of complex molecules.Org. Biomol. Chem.201917337632765010.1039/C9OB00772E31339143
    [Google Scholar]
  76. (a FerouaniG. AmeurN. BachirR. Preparation and characterization of supported bimetallic gold–iron nanoparticles, and its potential for heterogeneous catalysis.Res. Chem. Intermed.20204621373138710.1007/s11164‑019‑04039‑0
    [Google Scholar]
  77. (b KhazaeeA. JahanshahiR. SobhaniS. SkibstedJ. SansanoJ.M. Immobilized piperazine on the surface of graphene oxide as a heterogeneous bifunctional acid–base catalyst for the multicomponent synthesis of 2-amino-3-cyano-4 H -chromenes.Green Chem.202022144604461610.1039/D0GC01274B
    [Google Scholar]
  78. (c NikooeiN. DekaminM.G. ValieyE. Benzene-1,3,5-tricarboxylic acid-functionalized MCM-41 as a novel and recoverable hybrid catalyst for expeditious and efficient synthesis of 2,3-dihydroquinazolin-4(1H)-ones via one-pot three-component reaction.Res. Chem. Intermed.20204683891390910.1007/s11164‑020‑04179‑8
    [Google Scholar]
  79. (a WangP.L. DingS.Y. ZhangZ.C. WangZ.P. WangW. Constructing robust covalent organic frameworks via multicomponent reactions.J. Am. Chem. Soc.201914145180041800810.1021/jacs.9b1062531682437
    [Google Scholar]
  80. (b NazeriM.T. FarhidH. MohammadianR. ShaabaniA. Cyclic imines in ugi and ugi-type reactions.ACS Comb. Sci.202022836140010.1021/acscombsci.0c0004632574488
    [Google Scholar]
  81. KhanK. SiddiquiZ.N. An efficient synthesis of tri- and tetrasubstituted imidazoles from benzils using functionalized chitosan as biodegradable solid acid catalyst.Ind. Eng. Chem. Res.201554266611661810.1021/acs.iecr.5b00511
    [Google Scholar]
  82. SafariJ. ZarnegarZ. SadeghiM. AziziF. Chitosan-SO3H: An efficient and biodegradable catalyst for the green syntheses of 1,4-dihydropyridines.Curr. Org. Synth.20162029262932
    [Google Scholar]
  83. PerumalR. BathrinarayananB. GhashangM. MansoorS.S. An efficient one‐pot synthesis of 7,7‐dimethyl‐2‐(2‐oxo‐2 H ‐chromen‐3‐yl)‐4‐aryl‐7,8‐dihydroquinolin‐5(6 H )‐one derivatives using chitosan–SO3H as biodegradable organocatalyst.J. Heterocycl. Chem.201956394795510.1002/jhet.3473
    [Google Scholar]
  84. SahibaN. SethiyaA. SoniJ. TeliP. GargA. AgarwalS. A facile biodegradable chitosan‐SO3H catalyzed acridine‐1,8‐dione synthesis with molecular docking, molecular dynamics simulation and density functional theory against human topoisomerase II beta and Staphylococcus aureus tyrosyl‐tRNA synthetase.J. Mol. Struct.2022126813367610.1016/j.molstruc.2022.133676
    [Google Scholar]
  85. ValieyE. DekaminM.G. BondarianS. Sulfamic acid grafted to cross-linked chitosan by dendritic units: A bio-based, highly efficient and heterogeneous organocatalyst for green synthesis of 2,3-dihydroquinazoline derivatives.RSC Adv.202213132033410.1039/D2RA07319F36605675
    [Google Scholar]
  86. (a FriedlaenderP. Ueber o‐amidobenzaldehyd.Ber. Dtsch. Chem. Ges.18821522572257510.1002/cber.188201502219
    [Google Scholar]
  87. (b Marco-ContellesJ. Pérez-MayoralE. SamadiA. CarreirasM.C. SorianoE. Recent advances in the Friedländer reaction.Chem. Rev.200910962652267110.1021/cr800482c19361199
    [Google Scholar]
  88. (a ChenY.L. FangK.C. SheuJ.Y. HsuS.L. TzengC.C. Synthesis and antibacterial evaluation of certain quinolone derivatives.J. Med. Chem.200144142374237710.1021/jm010033511428933
    [Google Scholar]
  89. (b RomaG. Di BraccioM. GrossiG. MattioliF. GhiaM. 1,8-naphthyridines IV. 9-substituted N,N-dialkyl-5-(alkylamino or cycloalkylamino) [1,2,4]triazolo[4,3-a][1,8]naphthyridine-6-carboxamides, new compounds with anti-aggressive and potent anti-inflammatory activities.Eur. J. Med. Chem.200035111021103510.1016/S0223‑5234(00)01175‑211137230
    [Google Scholar]
  90. (c KallurayaB. SreenivasaS. Synthesis and pharmacological properties of some quinoline derivatives.Farmaco199853639940410.1016/S0014‑827X(98)00037‑89764472
    [Google Scholar]
  91. WangL-E. ZhangS. JinR-S. PengY-Y. DingQ-P. ZengX-P. Catalytic asymmetric Friedländer condensation to construct cyclobutanone-fused quinolines with a quaternary stereogenic centre.Org. Chem. Front.2024115363536710.1039/D4QO01177E
    [Google Scholar]
  92. ReddyB.V.S. VenkateswarluA. ReddyG.N. ReddyY.V.R. Chitosan-SO3H: an efficient, biodegradable, and recyclable solid acid for the synthesis of quinoline derivatives via Friedländer annulation.Tetrahedron Lett.201354435767577010.1016/j.tetlet.2013.07.165
    [Google Scholar]
  93. (a BernatchezJ.A. TranL.T. LiJ. LuanY. Siqueira-NetoJ.L. LiR. Drugs for the treatment of Zika virus infection.J. Med. Chem.202063247048910.1021/acs.jmedchem.9b0077531549836
    [Google Scholar]
  94. (b FlickA.C. LeverettC.A. DingH.X. McInturffE. FinkS.J. HelalC.J. DeForestJ.C. MorseP.D. MahapatraS. O’DonnellC.J. Synthetic approaches to new drugs approved during 2018.J. Med. Chem.20206319106521070410.1021/acs.jmedchem.0c0034532338902
    [Google Scholar]
  95. (c PillaiyarT. MeenakshisundaramS. ManickamM. SankaranarayananM. A medicinal chemistry perspective of drug repositioning: Recent advances and challenges in drug discovery.Eur. J. Med. Chem.202019511227510.1016/j.ejmech.2020.11227532283298
    [Google Scholar]
  96. (a WaldmanA.J. NgT.L. WangP. BalskusE.P. Heteroatom–heteroatom bond formation in natural product biosynthesis.Chem. Rev.201711785784586310.1021/acs.chemrev.6b0062128375000
    [Google Scholar]
  97. (b LiL. ChenZ. ZhangX. JiaY. Divergent strategy in natural product total synthesis.Chem. Rev.201811873752383210.1021/acs.chemrev.7b0065329516724
    [Google Scholar]
  98. (c ZhuM. ZhangX. HuangX. WangH. AnjumK. GuQ. ZhuT. ZhangG. LiD. Irregularly bridged epipolythiodioxopiperazines and related analogues: Sources, structures, and biological activi-ties.J. Nat. Prod.20208362045205310.1021/acs.jnatprod.9b0128332543845
    [Google Scholar]
  99. (d WangZ. LiuJ. All-carbon [3+2] cycloaddition in natural product synthesis.Beilstein J. Org. Chem.2020163015303110.3762/bjoc.16.25133363670
    [Google Scholar]
  100. (a WangL. SarafianosS.G. WangZ. Cutting into the substrate dominance: Pharmacophore and structure-based approaches toward inhibiting human immunodeficiency virus reverse transcriptase-associated ribonuclease H.Acc. Chem. Res.202053121823010.1021/acs.accounts.9b0045031880912
    [Google Scholar]
  101. (b MashayekhK. ShiriP. An overview of recent advances in the applications of click chemistry in the synthesis of bioconju-gates with anticancer activities.ChemistrySelect2019446134591347810.1002/slct.201902362
    [Google Scholar]
  102. (c PandaP. ChakrobortyS. Navigating the synthesis of quinoline hybrid molecules as promising anticancer agents.ChemistrySelect2020533101871019910.1002/slct.202002790
    [Google Scholar]
  103. (d BaloutakiB.A. SayahiM.H. NikpassandM. KefayatiH. An efficient method for the synthesis of new derivatives of 2,4,6-triarylpyridines as cytotoxic agents.Res. Chem. Intermed.20204621153116310.1007/s11164‑019‑04025‑6
    [Google Scholar]
  104. (e SathyanarayanaR. PoojaryB. Exploring recent developments on 1,2,4‐triazole: Synthesis and biological applications.J. Chin. Chem. Soc. (Taipei)202067445947710.1002/jccs.201900304
    [Google Scholar]
  105. (a MahmoudH.K. KassabR.M. GomhaS.M. Synthesis and characterization of some novel bisthiazoles.J. Heterocycl. Chem.201956113157316310.1002/jhet.3717
    [Google Scholar]
  106. (b MakarovM.V. TrammellS.A.J. MigaudM.E. The chemistry of the vitamin B3 metabolome.Biochem. Soc. Trans.201947113114710.1042/BST2018042030559273
    [Google Scholar]
  107. HedgesJ.B. RyanK.S. Biosynthetic pathways to nonproteinogenic α-amino acids.Chem. Rev.202012063161320910.1021/acs.chemrev.9b0040831869221
    [Google Scholar]
  108. ElattarK.M. El-MekabatyA. Heterocyclic steroids: Synthetic routes and biological characteristics of steroidal fused bicyclic pyrimidines.J. Heterocycl. Chem.202158238941410.1002/jhet.4174
    [Google Scholar]
  109. González-CuestaM. Ortiz MelletC. García FernándezJ.M. Carbohydrate supramolecular chemistry: Beyond the multivalent effect.Chem. Commun. (Camb.)202056395207522210.1039/D0CC01135E32322844
    [Google Scholar]
  110. (a LamberthC. Pyridazine chemistry in crop protection.J. Heterocycl. Chem.20175462974298410.1002/jhet.2945
    [Google Scholar]
  111. (b LamberthC. Oxazole and isoxazole chemistry in crop protection.J. Heterocycl. Chem.20185592035204510.1002/jhet.3252
    [Google Scholar]
  112. MonteiroE.R. JuniorA.R. AssisH.M.Q. CampagnolD. QuitzanJ.G. Comparative study on the sedative effects of morphine, methadone, butorphanol or tramadol, in combination with acepromazine, in dogs.Vet. Anaesth. Analg.2009361253310.1111/j.1467‑2995.2008.00424.x19121156
    [Google Scholar]
  113. (a ShindyH.A. Synthesis of different classes of five/six membered heterocyclic cyanine dyes: A review.Chem. Int.202065674
    [Google Scholar]
  114. (b TaoT. ZhaoX.L. WangY.Y. QianH.F. HuangW. 5-Hydroxy-1-phenyl-1H-pyrazole-3-carboxylic acid based heterocyclic dyes.Dyes Pigments201916622623210.1016/j.dyepig.2019.03.046
    [Google Scholar]
  115. (c KhattabT. RehanM. A review on synthesis of nitrogen-containing heterocyclic dyes for textile fibers - Part 2: Fused heterocycles.Egypt. J. Chem.2018616989101810.21608/ejchem.2018.4131.1363
    [Google Scholar]
  116. QuarishiM.A. ChouhanD.S. SajiV.S. Heterocyclic Organic Corrosion Inhibitors Principles and ApplicationsElsevier1st ed2020
    [Google Scholar]
  117. (a ArmaninoN. CharpentierJ. FlachsmannF. GoekeA. LinigerM. KraftP. What’s hot, what’s not: The trends of the past 20 years in the chemistry of odorants.Angew. Chem. Int. Ed.20205938163101634410.1002/anie.20200571932453472
    [Google Scholar]
  118. (b HallJ.B. Alkadienyl pyridines and pyrazines as perfumes.US Patent 3669908A1972
  119. (a SisB.E. ZirakM. AkbariA. Arylglyoxals in synthesis of heterocyclic compounds.Chem. Rev.201311329583043
    [Google Scholar]
  120. (b Eftekhari-SisB. ZirakM. Chemistry of α-oxoesters: A powerful tool for the synthesis of heterocycles.Chem. Rev.2015115115126410.1021/cr500421625423283
    [Google Scholar]
  121. BathulaS.B. KhaggaM. VenkatasubramanianH. Chitosan-SO3H: A green approach to 2-aryl/heteroaryl benzothiazoles under solvent-free conditions at room temperature.Asian J. Chem.20183071512151610.14233/ajchem.2018.21209
    [Google Scholar]
  122. KumarA. PatelC. PatilP. VyasS. SharmaA. Chemoselective synthesis of bis(indolyl)methanes using sulfonic acid-functionalized chitosan.Chem. Pap.201973123095310410.1007/s11696‑019‑00846‑2
    [Google Scholar]
  123. ShelkeP.B. MaliS.N. ChaudhariH.K. PratapA.P. Chitosan hydrochloride mediated efficient, green catalysis for the synthesis of perimidine derivatives.J. Heterocycl. Chem.201956113048305410.1002/jhet.3700
    [Google Scholar]
  124. PatilP.G. SehlangiaS. MoreD.H. Chitosan-SO3H (CTSA) an efficient and biodegradable polymeric catalyst for the synthesis of 4,4′-(arylmethylene)bis(1 H -pyrazol-5-ol) and α-amidoalkyl-β-naphthol’s.Synth. Commun.202050111696171110.1080/00397911.2020.1753078
    [Google Scholar]
  125. (a ArandaD.A.G. SantosR.T.P. TapanesN.C.O. RamosA.L.D. AntunesO.A.C. Acid-catalyzed homogeneous esterification reaction for biodiesel production from palm fatty acids.Catal. Lett.20081221-2202510.1007/s10562‑007‑9318‑z
    [Google Scholar]
  126. (b SivasamyA. CheahK.Y. FornasieroP. KemausuorF. ZinovievS. MiertusS. Catalytic applications in the production of biodiesel from vegetable oils.ChemSusChem20092427830010.1002/cssc.20080025319360707
    [Google Scholar]
  127. (a MaF. HannaM.A. Biodiesel production: A review.Bioresour. Technol.199970111510.1016/S0960‑8524(99)00025‑5
    [Google Scholar]
  128. (b FurutaS. MatsuhashiH. ArataK. Biodiesel fuel production with solid superacid catalysis in fixed bed reactor under atmospheric pressure.Catal. Commun.200451272172310.1016/j.catcom.2004.09.001
    [Google Scholar]
  129. CaetanoC.S. CaiadoM. FarinhaJ. FonsecaI.M. RamosA.M. VitalJ. CastanheiroJ.E. Esterification of free fatty acids over chitosan with sulfonic acid groups.Chem. Eng. J.201323056757210.1016/j.cej.2013.06.050
    [Google Scholar]
  130. CastanheiroJ. Chitosan with sulfonic groups: A catalyst for the esterification of caprylic acid with methanol.Polymers (Basel)20211322392410.3390/polym1322392434833223
    [Google Scholar]
  131. (a WangD. AstrucD. Fast-growing field of magnetically recyclable nanocatalysts.Chem. Rev.2014114146949698510.1021/cr500134h24892491
    [Google Scholar]
  132. (b GawandeM.B. LuqueR. ZborilR. The rise of magnetically recyclable nanocatalysts.ChemCatChem20146123312331310.1002/cctc.201402663
    [Google Scholar]
  133. (a XieH.Y. ZhenR. WangB. FengY.J. ChenP. HaoJ. Fe 3 O 4 /Au core/shell nanoparticles modified with Ni 2+ −nitrilotriacetic acid specific to histidine-tagged proteins.J. Phys. Chem. C2010114114825483010.1021/jp910753f
    [Google Scholar]
  134. (b GelbrichT. FeyenM. SchmidtA.M. Magnetic thermoresponsive core-shell nanoparticles.Macromolecules20063993469347210.1021/ma060006u
    [Google Scholar]
  135. SepehrmansourieH. ZareiM. TaghaviR. ZolfigolM.A. Mesoporous ionically tagged cross-linked poly(vinyl imidazole)s as novel and reusable catalysts for the preparation of n-heterocycle spiropyrans.ACS Omega2019417173791739210.1021/acsomega.9b0213531656911
    [Google Scholar]
  136. (a BaeK.H. ParkM. DoM.J. LeeN. RyuJ.H. KimG.W. KimC. ParkT.G. HyeonT. Chitosan oligosaccharide-stabilized ferrimagnetic iron oxide nanocubes for magnetically modulated cancer hyperthermia.ACS Nano2012665266527310.1021/nn301046w22588093
    [Google Scholar]
  137. (b ZhangX. NiuH. PanY. ShiY. CaiY. Chitosan-coated octadecyl-functionalized magnetite nanoparticles: Preparation and application in extraction of trace pollutants from environmental water samples.Anal. Chem.20108262363237110.1021/ac902589t20155948
    [Google Scholar]
  138. MohammadiR. KassaeeM.Z. Sulfochitosan encapsulated nano-Fe3O4 as an efficient and reusable magnetic catalyst for green synthesis of 2-amino-4H-chromen-4-yl phosphonates.J. Mol. Catal. Chem.201338015215810.1016/j.molcata.2013.09.027
    [Google Scholar]
  139. LahoutiS. NaeimiH. Chitosan-encapsulated manganese ferrite particles bearing sulfonic acid group catalyzed efficient synthesis of spiro indenoquinoxalines.RSC Adv.20201055333343334310.1039/D0RA04925E35515027
    [Google Scholar]
  140. Masteri-FarahaniM. ShahsavarifarS. Chemical functionalization of chitosan biopolymer and chitosan-magnetite nanocomposite with sulfonic acid for acid-catalyzed reactions.Chin. J. Chem. Eng.20213915416110.1016/j.cjche.2021.04.037
    [Google Scholar]
  141. KamalzareM. AhghariM.R. BayatM. MalekiA. Fe3O4@chitosan-tannic acid bionanocomposite as a novel nanocatalyst for the synthesis of pyranopyrazoles.Sci. Rep.20211112002110.1038/s41598‑021‑99121‑234625599
    [Google Scholar]
/content/journals/coc/10.2174/0113852728332274241104114316
Loading
/content/journals/coc/10.2174/0113852728332274241104114316
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test