Skip to content
2000
Volume 3, Issue 3
  • ISSN: 2665-9786
  • E-ISSN: 2665-9794

Abstract

Prebiotic compounds are used by the host microbiome and confer health benefits to the host. Food intake affects the composition of the gut microbiome. The number and composition of gut flora have been linked to metabolic diseases. Diabetes is a chronic condition that alters blood sugar levels. The main form of energy for the body is blood glucose, which is produced from food. Nutritional interventions can be used to manage blood sugar levels. There are different types of compounds that can be used as prebiotics, such as inulin-type fructans, trans-galactooligosaccharides, lactulose, isomalto-oligosaccharide, lactosucrose, xylooligosaccharides, soybean oligosaccharide, and glucooligosaccharides. Research evidence suggests that prebiotic consumption supports or improves the gut microbiome, inhibits reactive oxygen species production (ROS), reduces serum glutamic pyruvic transaminase (SGPT) levels, decreases oxidative stress, inhibits NF-κB activation process, reduces inflammation, improves dysfunction, improves insulin resistance, decreases malondialdehyde levels in serum, improves glucose tolerance, decreases intestinal permeability, inhibits α-glucosidase, and improves glycemic control. This review focuses on the potential of prebiotic use as adjuvant therapy in diabetes.

Loading

Article metrics loading...

/content/journals/cnt/10.2174/2665978603666220818085437
2022-08-01
2025-10-15
Loading full text...

Full text loading...

References

  1. DavaniD.D. NegahdaripourM. KarimzadehI. SeifanM. MohkamM. MasoumiS.J. BerenjianA. GhasemiY. Prebiotics: Definition, types, sources, mechanisms, and clinical applications.Foods2019839210.3390/foods8030092 30857316
    [Google Scholar]
  2. CollinsS. ReidG. Distant site effects of ingested prebiotics.Nutrients20168952310.3390/nu8090523 27571098
    [Google Scholar]
  3. LouisP. FlintH.J. MichelC. How to manipulate the microbiota: Prebiotics.Microbiota human body20161194210.1007/978‑3‑319‑31248‑4_9
    [Google Scholar]
  4. WalkerA.W. InceJ. DuncanS.H. WebsterL.M. HoltropG. ZeX. BrownD. StaresM.D. ScottP. BergeratA. LouisP. McIntoshF. JohnstoneA.M. LobleyG.E. ParkhillJ. FlintH.J. Dominant and diet responsive groups of bacteria within the human colonic microbiota.ISME J.20115222023010.1038/ismej.2010.118 20686513
    [Google Scholar]
  5. GibsonG.R. RoberfroidM.B. Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics.J. Nutr.199512561401141210.1093/jn/125.6.1401 7782892
    [Google Scholar]
  6. GibsonG.R. ProbertH.M. LooJ.V. RastallR.A. RoberfroidM.B. Dietary modulation of the human colonic microbiota: Updating the concept of prebiotics.Nutr. Res. Rev.200417225927510.1079/NRR200479 19079930
    [Google Scholar]
  7. BouhnikY. RaskineL. SimoneauG. VicautE. NeutC. FlouriéB. BrounsF. BornetF.R. The capacity of nondigestible carbohydrates to stimulate fecal bifidobacteria in healthy humans: A double blind, randomized, placebo controlled, parallel group, dose response relation study.Am. J. Clin. Nutr.20048061658166410.1093/ajcn/80.6.1658
    [Google Scholar]
  8. FlintH.J. ScottK.P. LouisP. DuncanS.H. The role of the gut microbiota in nutrition and health.Nat. Rev. Gastroenterol. Hepatol.201291057758910.1038/nrgastro.2012.156 22945443
    [Google Scholar]
  9. TurroniF. VenturaM. ButtóL.F. DurantiS. O’TooleP.W. MotherwayM.O. van SinderenD. Molecular dialogue between the human gut microbiota and the host: A Lactobacillus and Bifidobacterium perspective.Cell. Mol. Life Sci.201471218320310.1007/s00018‑013‑1318‑0 23516017
    [Google Scholar]
  10. RoberfroidM.B. Health benefits of non digestible oligosaccharides.Adv. Exp. Med. Biol.199742721121910.1007/978‑1‑4615‑5967‑2_22 9361846
    [Google Scholar]
  11. MorowvatM.H. NezafatN. GhasemiY. ZareM.H. MohkamM. Probiotic potential of five lactobacillus strains isolated from traditional persian yoghurt in fars province, Iran: Viewing through the window of phylogenetics.Biosci. Biotechnol. Res. Asia2015121265127210.13005/bbra/1780
    [Google Scholar]
  12. ShokriD. KhorasganiM.R. MohkamM. FatemiS.M. GhasemiY. TaheriK.A. The inhibition effect of lactobacilli against growth and biofilm formation of Pseudomonas aeruginosa.Probiotics Antimicrob. Proteins2018101344210.1007/s12602‑017‑9267‑9 28293865
    [Google Scholar]
  13. StinsonL.F. PayneM.S. KeelanJ.A. Planting the seed: Origins, composition, and postnatal health significance of the fetal gastrointestinal microbiota.Crit. Rev. Microbiol.201743335236910.1080/1040841X.2016.1211088 27931152
    [Google Scholar]
  14. TrompetteA. GollwitzerE.S. YadavaK. SichelstielA.K. SprengerN. Ngom-BruC. BlanchardC. JuntT. NicodL.P. HarrisN.L. MarslandB.J. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis.Nat. Med.201420215916610.1038/nm.3444 24390308
    [Google Scholar]
  15. HernotD.C. BoileauT.W. BauerL.L. MiddelbosI.S. MurphyM.R. SwansonK.S. FaheyG.C.Jr In vitro fermentation profiles, gas production rates, and microbiota modulation as affected by certain fructans, galactooligosaccharides, and polydextrose.J. Agric. Food Chem.20095741354136110.1021/jf802484j 19199596
    [Google Scholar]
  16. ZhouZ. ZhangY. ZhengP. ChenX. YangY. Starch structure modulates metabolic activity and gut microbiota profile.Anaerobe201324717810.1016/j.anaerobe.2013.09.012 24113693
    [Google Scholar]
  17. ClarkeT.B. DavisK.M. LysenkoE.S. ZhouA.Y. YuY. WeiserJ.N. Recognition of peptidoglycan from the microbiota by nod1 enhances systemic innate immunity.Nat. Med.201016222823110.1038/nm.2087 20081863
    [Google Scholar]
  18. den BestenG. van EunenK. GroenA.K. VenemaK. ReijngoudD.J. BakkerB.M. The role of short chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism.J. Lipid Res.20135492325234010.1194/jlr.R036012 23821742
    [Google Scholar]
  19. PineiroM. AspN.G. ReidG. MacfarlaneS. MorelliL. BrunserO. TuohyK. FAO technical meeting on prebiotics.J. Clin. Gastroenterol.200842Suppl. 3 Pt 2S156S15910.1097/MCG.0b013e31817f184e 18685504
    [Google Scholar]
  20. GibsonG.R. ScottK.P. RastallR.A. TuohyK.M. HotchkissA. Dubert-FerrandonA. GareauM. MurphyE.F. SaulnierD. LohG. MacfarlaneS. DelzenneN. RingelY. KozianowskiG. DickmannR. Lenoir-WijnkoopI. WalkerC. BuddingtonR. Dietary prebiotics: Current status and new definition. Food Sci. Technol. Bul. Function.Foods20107119
    [Google Scholar]
  21. BindelsL.B. DelzenneN.M. CaniP.D. WalterJ. Towards a more comprehensive concept for prebiotics.Nat. Rev. Gastroenterol. Hepatol.201512530331010.1038/nrgastro.2015.47 25824997
    [Google Scholar]
  22. KolidaS. TuohyK. GibsonG.R. Prebiotic effects of inulin and oligofructose.Br. J. Nutr.2002872S193S19710.1079/BJN/2002537 12088518
    [Google Scholar]
  23. ManningT.S. GibsonG.R. Microbial gut interactions in health and disease.Prebiotics. Best Pract. Res. Clin. Gastroenterol.200418228729810.1016/j.bpg.2003.10.008 15123070
    [Google Scholar]
  24. GibsonG.R. BeattyE.R. WangX. CummingsJ.H. Selective stimulation of bifidobacteria in the human colon by oligofructose and inulin.Gastroenterology1995108497598210.1016/0016‑5085(95)90192‑2 7698613
    [Google Scholar]
  25. CoppaG.V. BruniS. ZampiniL. GaleazziT. GabrielliO. Prebiotics in infant formulas: Biochemical characterisation by thin layer chromatography and high performance anion exchange chromatography.Dig. Liver Dis.20023434Suppl. 2S124S12810.1016/S1590‑8658(02)80179‑7 12408455
    [Google Scholar]
  26. FranckA. Technological functionality of inulin and oligofructose.Br. J. Nutr.2002872S287S29110.1079/BJN/2002550 12088531
    [Google Scholar]
  27. RoberfroidM.B. Functional foods: Concepts and application to inulin and oligofructose.Br. J. Nutr.2002872S139S14310.1079/BJN/2002529 12088510
    [Google Scholar]
  28. RoberfroidM. The digestive functions: Inulin-type fructans as nondigestible obligosaccharides.Inulin Type Fructans200489100
    [Google Scholar]
  29. BouhnikY. FlouriéB. D’AgayL. PochartP. GrametG. DurandM. RambaudJ.C. Administration of transgalacto-oligosaccharides increases fecal bifidobacteria and modifies colonic fermentation metabolism in healthy humans.Nutr. J.1997127344444810.1093/jn/127.3.444
    [Google Scholar]
  30. CrittendenR.G. MartinJ. Playne Production, properties and applications of food-grade oligosaccharides.Trends Food Sci. Technol.1996735336110.1016/S0924‑2244(96)10038‑8
    [Google Scholar]
  31. VandenplasY. Oligosaccharides in infant formula.Br. J. Nutr.200287Suppl. 2S293S29610.1079/BJN/2002551 12088532
    [Google Scholar]
  32. BallongueJ. SchumannC. QuignonP. Effects of lactulose and lactitol on colonic microflora and enzymatic activity.Scand. J. Gastroenterol. Suppl.1997222414410.1080/00365521.1997.11720716 9145445
    [Google Scholar]
  33. GibsonG. AngusF. Ingredients Handbook: Prebiotics and Probiotics.Bonston, LondonLeatherhead Publishing2000
    [Google Scholar]
  34. KanekoT. YokoyamaA. SuzukiM. Digestibility characteristics of isomaltooligosaccharides in comparison with several saccharides using the rat jejunum loop method.Biosci. Biotechnol. Biochem.19955971190119410.1271/bbb.59.1190
    [Google Scholar]
  35. KohmotoT. FukuiF. TakakuH. MitsuokaT. Dose-response test of isomaltooligosaccharides for increasing fecal bifidobacteria.Agric. Biol. Chem.19915582157215910.1080/00021369.1991.10870921
    [Google Scholar]
  36. OhkusaT. OzakiY. SatoC. MikuniK. IkedaH. Long-term ingestion of lactosucrose increases Bifidobacterium sp. in human fecal flora.Digestion199556541542010.1159/000201269 8549886
    [Google Scholar]
  37. PlayneM.J. CrittendenR. Commercially available oligosaccharides.International Dairy Federation19963131022
    [Google Scholar]
  38. CrittendenR.G. PlayneM.J. Purification of food-grade oligosaccharides using immobilised cells of Zymomonas mobilis.Appl. Microbiol. Biotechnol.200258329730210.1007/s00253‑001‑0886‑3 11935179
    [Google Scholar]
  39. YamadaH. ItohK. MorishitaY. TaniguchiH. Structure and properties of oligosaccharides from wheat bran.Cereal Foods World1993387490492
    [Google Scholar]
  40. HayakawaK. MizutaniJ. WadaK. MasaiT. YoshiharaI. Mitsuoka & T. Effects of soybean oligosaccharides on human faecal flora.Microb. Ecol. Health Dis.1990329330310.3109/08910609009140252
    [Google Scholar]
  41. JaskariJ. KontulaP. SiitonenA. Jousimies-SomerH. Mattila-SandholmT. PoutanenK. Oat β-glucan and xylan hydrolysates as selective substrates for Bifidobacterium and Lactobacillus strains.Appl. Microbiol. Biotechnol.199849217518110.1007/s002530051155 9534257
    [Google Scholar]
  42. ChungC.H. DayD.F. Glucooligosaccharides from Leuconostoc mesenteroides B-742 (ATCC 13146): A potential prebiotic.J. Ind. Microbiol. Biotechnol.200229419619910.1038/sj.jim.7000269 12355319
    [Google Scholar]
  43. DjouziZ. AndrieuxC. PelencV. SomarribaS. PopotF. PaulF. MonsanP. SzylitO. Degradation and fermentation of α-gluco-oligosaccharides by bacterial strains from human colon: In vitro and in vivo studies in gnotobiotic rats.J. Appl. Bacteriol.199579211712710.1111/j.1365‑2672.1995.tb00924.x 7592106
    [Google Scholar]
  44. KanauchiO. SerizawaI. ArakiY. SuzukiA. AndohA. FujiyamaY. MitsuyamaK. TakakiK. ToyonagaA. SataM. BambaT. Germinated barley foodstuff, a prebiotic product, ameliorates inflammation of colitis through modulation of the enteric environment.J. Gastroenterol.200338213414110.1007/s005350300022 12640526
    [Google Scholar]
  45. MurphyO. Non polyol low digestible carbohydrates: Food applications and functional benefits.Br. J. Nutr.200185S1Suppl. 1S47S5310.1079/BJN2000261 11321026
    [Google Scholar]
  46. OlanoM.E. MountzourisK.C. GibsonG.R. RastallR.A. In vitro fermentability of dextran, oligodextran and maltodextrin by human gut bacteria.Br. J. Nutr.200083324725510.1017/S0007114500000325 10884713
    [Google Scholar]
  47. SzilagyiA. Review article: Lactose a potential prebiotic.Aliment. Pharmacol. Ther.20021691591160210.1046/j.1365‑2036.2002.01321.x 12197838
    [Google Scholar]
  48. Van LaereK.M.J. HarteminkR. BeldmanG. PitsonS. DijkemaC. ScholsH.A. VoragenA.G. Transglycosidase activity of Bifidobacterium adolescentis DSM 20083 α-galactosidase.Appl. Microbiol. Biotechnol.199952568168810.1007/s002530051579 10570815
    [Google Scholar]
  49. L’hommeC. ArbelotM. PuigserverA. BiaginiA. Kinetics of hydrolysis of fructooligosaccharides in mineral-buffered aqueous solutions: Influence of pH and temperature.J. Agric. Food Chem.200351122422810.1021/jf0204699 12502412
    [Google Scholar]
  50. LosadaM.A. OllerosT. Towards a healthier diet for the colon: The influence of fructooligosaccharides and lactobacilli on intestinal health.Nutr. Res.2002221-2718410.1016/S0271‑5317(01)00395‑5
    [Google Scholar]
  51. AlanderM. MättöJ. KneifelW. JohanssonM. KöglerB. CrittendenR. Mattila-SandholmT. SaarelaM. Effect of galacto-oligosaccharide supplementation on human faecal microflora and on survival and persistence of Bifidobacterium lactis Bb-12 in the gastrointestinal tract.Int. Dairy J.2001111081782510.1016/S0958‑6946(01)00100‑5
    [Google Scholar]
  52. ZieglerE. VanderhoofJ.A. PetschowB. MitmesserS.H. StolzS.I. HarrisC.L. BersethC.L. Term infants fed formula supplemented with selected blends of prebiotics grow normally and have soft stools similar to those reported for breast fed infants.J. Pediatr. Gastroenterol. Nutr.200744335936410.1097/MPG.0b013e31802fca8c 17325558
    [Google Scholar]
  53. Alves-SantosA.M. SugizakiC.S. LimaG.C. NavesM.M. Prebiotic effect of dietary polyphenols: A systematic review.J. Funct. Foods20207410416910.1016/j.jff.2020.104169
    [Google Scholar]
  54. KernerW. BrückelJ. Definition, classification and diagnosis of diabetes mellitus.Exp. Clin. Endocrinol. Diabetes2014122738438610.1055/s‑0034‑1366278 25014088
    [Google Scholar]
  55. EganA.M. DinneenS.F. What is diabetes?Medicine (United Kingdom)20144267968110.1016/j.mpmed.2014.09.005
    [Google Scholar]
  56. Diabetes Risk FactorsCDC. 2021Available from: https://www.cdc.gov/diabetes/basics/risk-factors.html (Accessed December 22, 2021).
  57. QinJ. LiR. RaesJ. ArumugamM. BurgdorfK.S. ManichanhC. NielsenT. PonsN. LevenezF. YamadaT. MendeD.R. LiJ. XuJ. LiS. LiD. CaoJ. WangB. LiangH. ZhengH. XieY. TapJ. LepageP. BertalanM. BattoJ.M. HansenT. Le PaslierD. LinnebergA. NielsenH.B. PelletierE. RenaultP. Sicheritz-PontenT. TurnerK. ZhuH. YuC. LiS. JianM. ZhouY. LiY. ZhangX. LiS. QinN. YangH. WangJ. BrunakS. DoréJ. GuarnerF. KristiansenK. PedersenO. ParkhillJ. WeissenbachJ. BorkP. EhrlichS.D. WangJ. A human gut microbial gene catalogue established by metagenomic sequencing.Nature20104647285596510.1038/nature08821 20203603
    [Google Scholar]
  58. DiamantM. BlaakE.E. de VosW.M. Do nutrient gut microbiota interactions play a role in human obesity, insulin resistance and type 2 diabetes?Obes. Rev.201112427228110.1111/j.1467‑789X.2010.00797.x 20804522
    [Google Scholar]
  59. SalisS. VirmaniA. PriyambadaL. MohanM. HansdaK. BeaufortC. ‘old Is gold’: How traditional Indian dietary practices can support pediatric diabetes management.Nutrients20211312442710.3390/nu13124427 34959978
    [Google Scholar]
  60. TaylorH.B. VasuC. Impact of prebiotic β-glucan treatment at juvenile age on the gut microbiota composition and the eventual type 1 diabetes onset in non-obese diabetic mice.Front. Nutr.2021876934110.3389/fnut.2021.769341 34805251
    [Google Scholar]
  61. SongX. DongH. ZangZ. WuW. ZhuW. ZhangH. GuanY. Kudzu resistant starch: An effective regulator of type 2 diabetes Mellitus.Oxid. Med. Cell. Longev.20212021444804810.1155/2021/4448048 34691353
    [Google Scholar]
  62. AzziD.V. de Jesus PereiraA.N. de Oliveira SilvaV. de Carvalho FoureauxR. LimaA.R.V. BarducciR.S. AlbuquerqueA.S. ReisG.L. de OliveiraR.R. AndradeE.F. ZangeronimoM.G. Chalfun-JúniorA. PereiraL.J. Dose-response effect of prebiotic ingestion (β-glucans isolated from Saccharomyces cerevisiae) in diabetic rats with periodontal disease.Diabetol. Metab. Syndr.202113111110.1186/s13098‑021‑00729‑1 34663444
    [Google Scholar]
  63. GaoY. YangR. GuoL. WangY. LiuW.J. AiS. WoonT.H. WangZ. ZhaiY. WangZ. PengL. QingR.X.Z. Formula modulates gut microbiota and inhibits inflammation in mice with diabetic kidney disease.Front. Med.2021871995010.3389/fmed.2021.719950 34604258
    [Google Scholar]
  64. SahaM.R. DeyP. Pharmacological benefits of Acacia against metabolic diseases: Intestinal level bioactivities and favorable modulation of gut microbiota.Arch. Physiol. Biochem.20211811710.1080/13813455.2021.1966475 34411504
    [Google Scholar]
  65. WuG.D. ChenJ. HoffmannC. BittingerK. ChenY.Y. KeilbaughS.A. BewtraM. KnightsD. WaltersW.A. KnightR. SinhaR. GilroyE. GuptaK. BaldassanoR. NesselL. LiH. BushmanF.D. LewisJ.D. Linking long term dietary patterns with gut microbial enterotypes.Science2011334605210510810.1126/science.1208344 21885731
    [Google Scholar]
  66. OudatQ. AlqudahM. AbabnehD. The relationship between a rich diet with probiotics/prebiotics and the gestational health conditions.AcademiaEdu201939910910.26440/IHRJ/0303.06240
    [Google Scholar]
  67. ThursbyE. JugeN. Introduction to the human gut microbiota.Biochem. J.2017474111823183610.1042/BCJ20160510 28512250
    [Google Scholar]
  68. TanakaM. NakayamaJ. Development of the gut microbiota in infancy and its impact on health in later life.Allergol. Int.201766451552210.1016/j.alit.2017.07.010 28826938
    [Google Scholar]
  69. OriachC.S. RobertsonR.C. StantonC. CryanJ.F. DinanT.G. Food for thought: The role of nutrition in the microbiota-gut–brain axis.Clin. Nutr. Exp.20166253810.1016/j.yclnex.2016.01.003
    [Google Scholar]
  70. WuH.J. WuE. The role of gut microbiota in immune homeostasis and autoimmunity.Gut Microbes20123141410.4161/gmic.19320 22356853
    [Google Scholar]
  71. NatividadJ.M. VerduE.F. Modulation of intestinal barrier by intestinal microbiota: Pathological and therapeutic implications.Pharmacol. Res.2013691425110.1016/j.phrs.2012.10.007 23089410
    [Google Scholar]
  72. PanwarH. RashmiH.M. BatishV.K. GroverS. Probiotics as potential biotherapeutics in the management of type 2 diabetes - prospects and perspectives.Diabetes Metab. Res. Rev.201329210311210.1002/dmrr.2376 23225499
    [Google Scholar]
  73. WangB. YaoM. LvL. LingZ. LiL. The human microbiota in health and disease.Engineering201731718210.1016/J.ENG.2017.01.008
    [Google Scholar]
  74. JangiS. GandhiR. CoxL.M. LiN. von GlehnF. YanR. PatelB. MazzolaM.A. LiuS. GlanzB.L. CookS. TankouS. StuartF. MeloK. NejadP. SmithK. TopçuoluB.D. HoldenJ. KivisäkkP. ChitnisT. De JagerP.L. QuintanaF.J. GerberG.K. BryL. WeinerH.L. Alterations of the human gut microbiome in multiple sclerosis.Nat. Commun.2016711201510.1038/ncomms12015 27352007
    [Google Scholar]
  75. DelzenneN.M. CaniP.D. EverardA. NeyrinckA.M. BindelsL.B. Gut microorganisms as promising targets for the management of type 2 diabetes.Diabetologia201558102206221710.1007/s00125‑015‑3712‑7 26224102
    [Google Scholar]
  76. FriedmanJ.E. Obesity and gestational diabetes mellitus pathways for programming in mouse, monkey, and man where do we go next? The 2014 Norbert Freinkel Award Lecture.Diabetes Care20153881402141110.2337/dc15‑0628 26207051
    [Google Scholar]
  77. MallappaR.H. RokanaN. DuaryR.K. PanwarH. BatishV.K. GroverS. Management of metabolic syndrome through probiotic and prebiotic interventions.Indian J. Endocrinol. Metab.2012161202710.4103/2230‑8210.91178 22276249
    [Google Scholar]
  78. NadalI. SantacruzA. MarcosA. WarnbergJ. GaragorriJ.M. MorenoL.A. Martin-MatillasM. CampoyC. MartíA. MoleresA. DelgadoM. VeigaO.L. García-FuentesM. RedondoC.G. SanzY. Shifts in clostridia, bacteroides and immunoglobulin coating fecal bacteria associated with weight loss in obese adolescents.Int. J. Obes.200933775876710.1038/ijo.2008.260 19050675
    [Google Scholar]
  79. ColladoM.C. IsolauriE. LaitinenK. SalminenS. Distinct composition of gut microbiota during pregnancy in overweight and normal weight women.Am. J. Clin. Nutr.200888489489910.1093/ajcn/88.4.894 18842773
    [Google Scholar]
  80. HotamisligilG.S. Inflammation and metabolic disorders.Nature2006444712186086710.1038/nature05485 17167474
    [Google Scholar]
  81. BoestenR.J. de VosW.M. Interactomics in the human intestine: Lactobacilli and Bifidobacteria make a difference.J. Clin. Gastroenterol.200842Suppl. 3S163S16710.1097/MCG.0b013e31817dbd62 18685514
    [Google Scholar]
  82. TurroniF. MarchesiJ.R. ForoniE. GueimondeM. ShanahanF. MargollesA. Microbiomic analysis of the bifidobacterial population in the human distal gut.The ISME J.2009374575110.1038/ismej.2009.19
    [Google Scholar]
  83. SuhreK. MeisingerC. DöringA. AltmaierE. BelcrediP. GiegerC. ChangD. MilburnM.V. GallW.E. WeinbergerK.M. MewesH.W. Hrabé de AngelisM. WichmannH.E. KronenbergF. AdamskiJ. IlligT. Metabolic footprint of diabetes: A multiplatform metabolomics study in an epidemiological setting.PLoS One2010511e1395310.1371/journal.pone.0013953 21085649
    [Google Scholar]
  84. CaniP.D. LecourtE. DewulfE.M. SohetF.M. PachikianB.D. NaslainD. De BackerF. NeyrinckA.M. DelzenneN.M. Gut microbiota fermentation of prebiotics increases satietogenic and incretin gut peptide production with consequences for appetite sensation and glucose response after a meal.Am. J. Clin. Nutr.20099051236124310.3945/ajcn.2009.28095 19776140
    [Google Scholar]
  85. RoberfroidM. GibsonG.R. HoylesL. McCartneyA.L. RastallR. RowlandI. WolversD. WatzlB. SzajewskaH. StahlB. GuarnerF. RespondekF. WhelanK. CoxamV. DaviccoM.J. LéotoingL. WittrantY. DelzenneN.M. CaniP.D. NeyrinckA.M. MeheustA. Prebiotic effects: Metabolic and health benefits.Br. J. Nutr.2010104Suppl. 2S1S6310.1017/S0007114510003363 20920376
    [Google Scholar]
  86. CaniP.D. KnaufC. IglesiasM.A. DruckerD.J. DelzenneN.M. BurcelinR. Improvement of glucose tolerance and hepatic insulin sensitivity by oligofructose requires a functional glucagon like peptide 1 receptor.Diabetes20065551484149010.2337/db05‑1360 16644709
    [Google Scholar]
  87. DelzenneN.M. NeyrinckA.M. BäckhedF. CaniP.D. Targeting gut microbiota in obesity: Effects of prebiotics and probiotics.Nat. Rev. Endocrinol.201171163964610.1038/nrendo.2011.126 21826100
    [Google Scholar]
  88. JuliousS.A. Sample size of 12 per group rule of thumb for a pilot study.Pharm. Stat.2005428729110.1002/pst.185
    [Google Scholar]
  89. EverardA. LazarevicV. DerrienM. GirardM. MuccioliG.G. NeyrinckA.M. PossemiersS. Van HolleA. FrançoisP. de VosW.M. DelzenneN.M. SchrenzelJ. CaniP.D. Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet induced leptin resistant mice.Diabetes201160112775278610.2337/db11‑0227 21933985
    [Google Scholar]
  90. ParnellJ.A. ReimerR.A. Prebiotic fibres dose-dependently increase satiety hormones and alter Bacteroidetes and Firmicutes in lean and obese JCR:LA-CP rats.Br. J. Nutr.2012107460161310.1017/S0007114511003163 21767445
    [Google Scholar]
  91. KellowN.J. CoughlanM.T. ReidC.M. Metabolic benefits of dietary prebiotics in human subjects: A systematic review of randomised controlled trials.Br. J. Nutr.201411171147116110.1017/S0007114513003607 24230488
    [Google Scholar]
  92. ChenJ. WangR. LiX.F. WangR.L. Bifidobacterium adolescentis supplementation ameliorates visceral fat accumulation and insulin sensitivity in an experimental model of the metabolic syndrome.Br. J. Nutr.2012107101429143410.1017/S0007114511004491 21914236
    [Google Scholar]
  93. HoJ. NicolucciA.C. VirtanenH. SchickA. MeddingsJ. ReimerR.A. HuangC. Effect of prebiotic on microbiota, intestinal permeability, and glycemic control in children with type 1 diabetes.J. Clin. Endocrinol. Metab.2019104104427444010.1210/jc.2019‑00481 31188437
    [Google Scholar]
  94. MitchellC.M. DavyB.M. PonderM.A. McMillanR.P. HughesM.D. HulverM.W. NeilsonA.P. DavyK.P. Prebiotic inulin supplementation and peripheral insulin sensitivity in adults at elevated risk for type 2 diabetes: A pilot randomized controlled Trial.Nutrients2021139323510.3390/nu13093235 34579112
    [Google Scholar]
  95. ThotaR.N. AcharyaS.H. GargM.L. Curcumin and/or omega-3 polyunsaturated fatty acids supplementation reduces insulin resistance and blood lipids in individuals with high risk of type 2 diabetes: A randomised controlled trial.Lipids Health Dis.20191813110.1186/s12944‑019‑0967‑x 30684965
    [Google Scholar]
  96. WeitkunatK. SchumannS. NickelD. HornemannS. PetzkeK.J. SchulzeM.B. PfeifferA.F. KlausS. Odd chain fatty acids as a biomarker for dietary fiber intake: A novel pathway for endogenous production from propionate.Am. J. Clin. Nutr.201710561544155110.3945/ajcn.117.152702 28424190
    [Google Scholar]
  97. DiaoY. XinY. ZhouY. LiN. PanX. QiS. QiZ. XuY. LuoL. WanH. LanL. YinZ. Extracellular polysaccharide from Bacillus sp. strain LBP32 prevents LPS-induced inflammation in RAW 264.7 macrophages by inhibiting NF-κB and MAPKs activation and ROS production.Int. Immunopharmacol.2014181121910.1016/j.intimp.2013.10.021 24201081
    [Google Scholar]
  98. ChenC. ZengY. XuJ. ZhengH. LiuJ. FanR. ZhuW. YuanL. QinY. ChenS. ZhouY. WuY. WanJ. MiM. WangJ. Therapeutic effects of soluble dietary fiber consumption on type 2 diabetes mellitus.Exp. Ther. Med.20161221232124210.3892/etm.2016.3377 27446349
    [Google Scholar]
  99. ConnollyM.L. LovegroveJ.A. TuohyK.M. In vitro fermentation characteristics of whole grain wheat flakes and the effect of toasting on prebiotic potential.J. Med. Food2012151334310.1089/jmf.2011.0006 21877952
    [Google Scholar]
  100. YanF. DaiG. ZhengX. Mulberry anthocyanin extract ameliorates insulin resistance by regulating PI3K/AKT pathway in HepG2 cells and db/db mice.J. Nutr. Biochem.201636688010.1016/j.jnutbio.2016.07.004 27580020
    [Google Scholar]
  101. PutriI.R. HaskitoA.E.P. PermanaD.A.O.A. PutriI.R. HaskitoA.E.P. PermanaD.A.O.A. Effect of goat milk yogurt fortified with red rice bran flour on SGPT levels of rats (Rattus norvegicus) model diabetes mellitus induced streptozotocin.J. Phys. Conf. Ser.2020143001200810.1088/1742‑6596/1430/1/012008
    [Google Scholar]
  102. DuX. MyracleA.D. Fermentation alters the bioaccessible phenolic compounds and increases the alpha glucosidase inhibitory effects of aronia juice in a dairy matrix following in vitro digestion.Food Funct.2018952998300710.1039/C8FO00250A 29774337
    [Google Scholar]
  103. ChiuH.F. LinT.Y. ShenY.C. VenkatakrishnanK. WangC.K. Improvement of green tea polyphenol with milk on skin with respect to antioxidation in healthy adults: A double blind placebo controlled randomized crossover clinical trial.Food Funct.20167289390110.1039/C5FO01271F 26686527
    [Google Scholar]
  104. XieY. Kosińska, A.; Xu, H.; Andlauer, W. Milk enhances intestinal absorption of green tea catechins in in vitro digestion/Caco-2 cells model.Food Res. Int.20135379380010.1016/j.foodres.2012.07.063
    [Google Scholar]
  105. ZhengJ. YuanX. ChengG. JiaoS. FengC. ZhaoX. YinH. DuY. LiuH. Chitosan oligosaccharides improve the disturbance in glucose metabolism and reverse the dysbiosis of gut microbiota in diabetic mice.Carbohydr. Polym.2018190778610.1016/j.carbpol.2018.02.058 29628262
    [Google Scholar]
  106. ChanC. HyslopC.M. ShrivastavaV. OchoaA. ReimerR.A. HuangC. Oligofructose as an adjunct in treatment of diabetes in NOD mice.Sci. Rep.2016613762710.1038/srep37627 27874076
    [Google Scholar]
  107. KellowN.J. CoughlanM.T. SavigeG.S. ReidC.M. Effect of dietary prebiotic supplementation on advanced glycation, insulin resistance and inflammatory biomarkers in adults with pre diabetes: A study protocol for a double blind placebo controlled randomised crossover clinical trial.BMC Endocr. Disord.2014145510.1186/1472‑6823‑14‑55 25011647
    [Google Scholar]
  108. Pourghassem GargariB. DehghanP. AliasgharzadehA. Asghari Jafar-AbadiM. Effects of high performance inulin supplementation on glycemic control and antioxidant status in women with type 2 diabetes.Diabetes Metab. J.201337214014810.4093/dmj.2013.37.2.140 23641355
    [Google Scholar]
  109. PedersenC. GallagherE. HortonF. EllisR.J. IjazU.Z. WuH. JaiyeolaE. DiribeO. DuparcT. CaniP.D. GibsonG.R. HintonP. WrightJ. La RagioneR. RobertsonM.D. Host microbiome interactions in human type 2 diabetes following prebiotic fibre (galacto-oligosaccharide) intake.Br. J. Nutr.2016116111869187710.1017/S0007114516004086 27974055
    [Google Scholar]
  110. DehghanP. Pourghassem GargariB. AsgharijafarabadiM. Effects of high performance inulin supplementation on glycemic status and lipid profile in women with type 2 diabetes: A randomized, placebo controlled clinical trial.Health Promot. Perspect.201331556310.5681/HPP.2013.007 24688953
    [Google Scholar]
  111. GirgissM.W. NicolaW.G. El-ArabA.M.E. HabibD.F. AhmedN.M. Inulin might exceed incretin based drugs in the treatment of type 2 diabetes mellitus.Biomed. Pharmacol. J.2019351033103810.13005/bpj/1732
    [Google Scholar]
  112. NicolaWG AMEE GirgissMW HabibDF MohamedNA Is there a role of inulin in the management of type 2 diabetes mellitus.Int. J. Pharmtech Res.2015810019
    [Google Scholar]
  113. PedersenC. HintonP. GallagherE. HortonF. EllisR. IjazU.Z. WuH. JaiyeolaE. DiribeO. GibsonG.R. DuparcT. Galacto Oligosaccharide has no effect on glucose tolerance, inflammatory markers or intestinal permeability in well controlled type 2 diabetes.Proceedings of the Nutrition Society201610.1017/S0029665116001191
    [Google Scholar]
  114. LiE. LongX. LiaoS. PangD. LiQ. ZouY. Effect of mulberry galacto-oligosaccharide isolated from mulberry on glucose metabolism and gut microbiota in a type 2 diabetic mice.J. Funct. Foods20218710483610.1016/j.jff.2021.104836
    [Google Scholar]
/content/journals/cnt/10.2174/2665978603666220818085437
Loading
/content/journals/cnt/10.2174/2665978603666220818085437
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): diabetes; inulin; oligosaccharides; polyphenols; Prebiotic; ROS
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test