Skip to content
2000
Volume 24, Issue 12
  • ISSN: 1871-5273
  • E-ISSN: 1996-3181

Abstract

Alzheimer's disease (AD) is a devastating neurological disorder that affects humans and is a major contributor to dementia. It is characterized by cognitive dysfunction, impairing an individual's ability to perform daily tasks. In AD, nerve cells in areas of the brain related to cognitive function are damaged. Despite extensive research, there is currently no specific therapeutic or diagnostic approach for this fatal disease. However, scientists worldwide have developed effective techniques for diagnosing and managing this challenging disorder. Among the various methods used to diagnose AD are feedback from blood relatives and observations of changes in an individual's behavioral and cognitive abilities. Biomarkers, such as amyloid beta and measures of neurodegeneration, aid in the early detection of Alzheimer's disease (AD) through cerebrospinal fluid (CSF) samples and brain imaging techniques like Magnetic Resonance Imaging (MRI). Advanced medical imaging technologies, including X-ray, CT, MRI, ultrasound, mammography, and PET, provide valuable insights into human anatomy and function. MRI, in particular, is non-invasive and useful for scanning both the structural and functional aspects of the brain. Additionally, Machine Learning (ML) and deep learning (DL) technologies, especially Convolutional Neural Networks (CNNs), have demonstrated high accuracy in diagnosing AD by detecting brain changes. However, these technologies are intended to support, rather than replace, clinical assessments by medical professionals.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/0118715273374284250519053646
2025-05-27
2025-11-13
Loading full text...

Full text loading...

References

  1. BreijyehZ. KaramanR. Comprehensive review on Alzheimer’s disease: Causes and treatment.Molecules20202524578910.3390/molecules25245789 33302541
    [Google Scholar]
  2. Crous-BouM. MinguillónC. GramuntN. MolinuevoJ.L. Alzheimer’s disease prevention: From risk factors to early intervention.Alzheimers Res. Ther.2017917110.1186/s13195‑017‑0297‑z 28899416
    [Google Scholar]
  3. MurmanD.L. The impact of age on cognition.Seminars in hearing.Thieme Medical Publishers201510.1055/s‑0035‑1555115
    [Google Scholar]
  4. 2015 Alzheimer’s disease facts and figures.Alzheimers Dement.201511333238410.1016/j.jalz.2015.02.003 25984581
    [Google Scholar]
  5. TiraboschiP. SalmonD.P. HansenL.A. HofstetterR.C. ThalL.J. Corey-BloomJ. What best differentiates Lewy body from Alzheimer’s disease in early-stage dementia?Brain2006129372973510.1093/brain/awh725 16401618
    [Google Scholar]
  6. WolfeM.S. Therapeutic strategies for Alzheimer’s disease.Nat. Rev. Drug Discov.200211185986610.1038/nrd938 12415246
    [Google Scholar]
  7. FerriC.P. PrinceM. BrayneC. Global prevalence of dementia: A Delphi consensus study.Lancet200536695032112211710.1016/S0140‑6736(05)67889‑0 16360788
    [Google Scholar]
  8. World Health Organization. Global Action Plan on the Public Health Response to Dementia 2017-2025.Available From: https://www.who.int/publications/i/item/global-action-plan-on-the-public-health-response-to-dementia-2017---2025
  9. UllahH. Natural products as bioactive agents in the prevention of dementia.CNS Neurol. Disord. Drug Targets202322446647610.2174/1871527321666220422085835 35466886
    [Google Scholar]
  10. DeTureM.A. DicksonD.W. The neuropathological diagnosis of Alzheimer’s disease.Mol. Neurodegener.20191413210.1186/s13024‑019‑0333‑5 31375134
    [Google Scholar]
  11. JackC.R. KnopmanD.S. JagustW.J. Tracking pathophysiological processes in Alzheimer’s disease: An updated hypothetical model of dynamic biomarkers.Lancet Neurol.201312220721610.1016/S1474‑4422(12)70291‑0 23332364
    [Google Scholar]
  12. BrodyH. Medical imaging.Nature20135027473S81S110.1038/502S81a 24187698
    [Google Scholar]
  13. HeidenreichA. DesgrandschampsF. TerrierF. Modern approach of diagnosis and management of acute flank pain: Review of all imaging modalities.Eur. Urol.200241435136210.1016/S0302‑2838(02)00064‑7 12074804
    [Google Scholar]
  14. LiY. MengF. ShiJ. Learning using privileged information improves neuroimaging-based CAD of Alzheimer’s disease: A comparative study.Med. Biol. Eng. Comput.20195771605161610.1007/s11517‑019‑01974‑3 31028606
    [Google Scholar]
  15. WernickM. YangY. BrankovJ. YourganovG. StrotherS. Machine learning in medical imaging.IEEE Signal Process. Mag.2010274253810.1109/MSP.2010.936730 25382956
    [Google Scholar]
  16. ZhangL. WangM. LiuM. ZhangD. A survey on deep learning for neuroimaging-based brain disorder analysis.Front. Neurosci.20201477910.3389/fnins.2020.00779 33117114
    [Google Scholar]
  17. WangX-j. ZhaoL-l. WangS. A novel SVM video object extraction technology.2012 8th International Conference on Natural Computation201210.1109/ICNC.2012.6234772
    [Google Scholar]
  18. RishI. An empirical study of the naive Bayes classifier.IJCAI 2001 workshop on empirical methods in artificial intelligence.Seattle, 4 August20014146
    [Google Scholar]
  19. DhillonA. VermaG.K. Convolutional neural network: A review of models, methodologies and applications to object detection.PAI2020928511210.1007/s13748‑019‑00203‑0
    [Google Scholar]
  20. PradeepS. JainA.S. DharmashekaraC. Alzheimer’s disease and herbal combination therapy: A comprehensive review.J. Alzheimers Dis. Rep.20204141742910.3233/ADR‑200228 33283163
    [Google Scholar]
  21. HippiusH. NeundörferG. The discovery of Alzheimer’s disease.Dialogues Clin. Neurosci.20035110110810.31887/DCNS.2003.5.1/hhippius 22034141
    [Google Scholar]
  22. CiprianiG. DolciottiC. PicchiL. BonuccelliU. Alzheimer and his disease: A brief history.Neurol. Sci.201132227527910.1007/s10072‑010‑0454‑7 21153601
    [Google Scholar]
  23. WimoA. WinbladB. Aguero-TorresH. von StraussE. The magnitude of dementia occurrence in the world.Alzheimer Dis. Assoc. Disord.2003172636710.1097/00002093‑200304000‑00002 12794381
    [Google Scholar]
  24. BrookmeyerR. JohnsonE. Ziegler-GrahamK. ArrighiH.M. Forecasting the global burden of Alzheimer’s disease.Alzheimers Dement.20073318619110.1016/j.jalz.2007.04.381 19595937
    [Google Scholar]
  25. KalariaR.N. MaestreG.E. ArizagaR. Alzheimer’s disease and vascular dementia in developing countries: Prevalence, management, and risk factors.Lancet Neurol.20087981282610.1016/S1474‑4422(08)70169‑8 18667359
    [Google Scholar]
  26. LoboA. LaunerL.J. FratiglioniL. Prevalence of dementia and major subtypes in Europe: A collaborative study of population-based cohorts.Neurology20005411S4S9 10854354
    [Google Scholar]
  27. PonjoanA. Garre-OlmoJ. BlanchJ. Is it time to use real-world data from primary care in Alzheimer’s disease?Alzheimers Res. Ther.20201216010.1186/s13195‑020‑00625‑2 32423489
    [Google Scholar]
  28. PlassmanB.L. LangaK.M. FisherG.G. Prevalence of dementia in the United States: The aging, demographics, and memory study.Neuroepidemiology2007291-212513210.1159/000109998 17975326
    [Google Scholar]
  29. PrinceM. The global prevalence of dementia: A systematic review and metaanalysis.Alzheimers Dement.2013Jan; 91637510.1016/j.jalz.2012.11.007 23305823
    [Google Scholar]
  30. QiuC. KivipeltoM. Von StraussE. Epidemiology of Alzheimer’s disease: Occurrence, determinants, and strategies toward intervention.Dialogues Clin. Neurosci.200911211112810.31887/DCNS.2009.11.2/cqiu 19585947
    [Google Scholar]
  31. AhmadA. Dementia in Pakistan: national guidelines for clinicians.PJNS2013831727
    [Google Scholar]
  32. Kumar SeetlaniN. KumarN. MubeenK.I. AliA. ShamsN. SheikhT. Alzheimer and vascular dementia in the elderly patients.Pak. J. Med. Sci.20163251286129010.12669/pjms.325.10792 27882038
    [Google Scholar]
  33. UsmanS. ChaudharyH.R. AsifA. YahyaM.I. Severity and risk factors of depression in Alzheimer’s disease.J. Coll. Physicians Surg. Pak.2010205327330 20642926
    [Google Scholar]
  34. FratiglioniL. LaunerL.J. AndersenK. Incidence of dementia and major subtypes in Europe: A collaborative study of population-based cohorts.Neurology20005411S10S15 10854355
    [Google Scholar]
  35. KawasC. GrayS. BrookmeyerR. FozardJ. ZondermanA. Age-specific incidence rates of Alzheimer’s disease.Neurology200054112072207710.1212/WNL.54.11.2072 10851365
    [Google Scholar]
  36. KukullW.A. HigdonR. BowenJ.D. Dementia and Alzheimer disease incidence: A prospective cohort study.Arch. Neurol.200259111737174610.1001/archneur.59.11.1737 12433261
    [Google Scholar]
  37. The incidence of dementia in Canada.Neurology2000551667310.1212/WNL.55.1.66 10891908
    [Google Scholar]
  38. MiechR.A. BreitnerJ.C.S. ZandiP.P. KhachaturianA.S. AnthonyJ.C. MayerL. Incidence of AD may decline in the early 90s for men, later for women.Neurology200258220921810.1212/WNL.58.2.209 11805246
    [Google Scholar]
  39. MayeuxR. SternY. Epidemiology of Alzheimer disease.Cold Spring Harb. Perspect. Med.201228a00623910.1101/cshperspect.a006239 22908189
    [Google Scholar]
  40. WhitmerR.A. GustafsonD.R. Barrett-ConnorE. HaanM.N. GundersonE.P. YaffeK. Central obesity and increased risk of dementia more than three decades later.Neurology200871141057106410.1212/01.wnl.0000306313.89165.ef 18367704
    [Google Scholar]
  41. HachinskiV. EinhäuplK. GantenD. Preventing dementia by preventing stroke: The Berlin Manifesto.Alzheimers Dement.201915796198410.1016/j.jalz.2019.06.001 31327392
    [Google Scholar]
  42. DesmondD.W. MoroneyJ.T. SanoM. SternY. Incidence of dementia after ischemic stroke: Results of a longitudinal study.Stroke20023392254226210.1161/01.STR.0000028235.91778.95 12215596
    [Google Scholar]
  43. GauthierS. ReisbergB. ZaudigM. Mild cognitive impairment.Lancet200636795181262127010.1016/S0140‑6736(06)68542‑5 16631882
    [Google Scholar]
  44. RobersonE.D. MuckeL. 100 years and counting: Prospects for defeating Alzheimer’s disease.Science2006314580078178410.1126/science.1132813 17082448
    [Google Scholar]
  45. McKhannG.M. KnopmanD.S. ChertkowH. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease.Alzheimers Dement.20117326326910.1016/j.jalz.2011.03.005 21514250
    [Google Scholar]
  46. AlbertM.S. DeKoskyS.T. DicksonD. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease.Alzheimers Dement.20117327027910.1016/j.jalz.2011.03.008 21514249
    [Google Scholar]
  47. ShuklaA. TiwariR. TiwariS. Review on Alzheimer’s disease detection methods: Automatic pipelines and machine learning techniques.Sci2023511310.3390/sci5010013
    [Google Scholar]
  48. WinbladB. AmouyelP. AndrieuS. Defeating Alzheimer’s disease and other dementias: A priority for European science and society.Lancet Neurol.201615545553210.1016/S1474‑4422(16)00062‑4 26987701
    [Google Scholar]
  49. MoloneyC.M. LoweV.J. MurrayM.E. Visualization of neurofibrillary tangle maturity in Alzheimer’s disease: A clinicopathologic perspective for biomarker research.Alzheimers Dement.20211791554157410.1002/alz.12321 33797838
    [Google Scholar]
  50. JellingerK.A. Neuropathological assessment of the Alzheimer spectrum.J. Neural Transm.202012791229125610.1007/s00702‑020‑02232‑9 32740684
    [Google Scholar]
  51. MillerK.L. Alfaro-AlmagroF. BangerterN.K. Multimodal population brain imaging in the UK Biobank prospective epidemiological study.Nat. Neurosci.201619111523153610.1038/nn.4393 27643430
    [Google Scholar]
  52. KlöppelS. AbdulkadirA. JackC.R. KoutsoulerisN. Mourão-MirandaJ. VemuriP. Diagnostic neuroimaging across diseases.Neuroimage201261245746310.1016/j.neuroimage.2011.11.002 22094642
    [Google Scholar]
  53. FurtnerJ. PrayerD. Neuroimaging in dementia.Wien. Med. Wochenschr.202117111-1227428110.1007/s10354‑021‑00825‑x 33660199
    [Google Scholar]
  54. VlaardingerbroekMT BoerJA Magnetic resonance imaging: theory and practice.2013
    [Google Scholar]
  55. GevaT. Magnetic resonance imaging: Historical perspective.J. Cardiovasc. Magn. Reson.20068457358010.1080/10976640600755302 16869310
    [Google Scholar]
  56. GinatD.T. GuptaR. Advances in computed tomography imaging technology.Annu. Rev. Biomed. Eng.201416143145310.1146/annurev‑bioeng‑121813‑113601 25014788
    [Google Scholar]
  57. GloverG.H. Overview of functional magnetic resonance imaging.Neurosurgery Clinics2011222133139vii.10.1016/j.nec.2010.11.001 21435566
    [Google Scholar]
  58. LamekaK. FarwellM.D. IchiseM. Positron emission tomography.Handb. Clin. Neurol.201613520922710.1016/B978‑0‑444‑53485‑9.00011‑8 27432667
    [Google Scholar]
  59. HollyT.A. Single photon-emission computed tomography.Springer201010.1007/s12350‑010‑9246‑y
    [Google Scholar]
  60. KattiG. AraS.A. ShireenA. Magnetic resonance imaging (MRI)-A review.Int. J. Dent. Clin.2011316570
    [Google Scholar]
  61. CornacchiaS. La TegolaL. MalderaA. Radiation protection in non-ionizing and ionizing body composition assessment procedures.Quant. Imaging Med. Surg.20201081723173810.21037/qims‑19‑1035 32742963
    [Google Scholar]
  62. PeterT. CherianD. MRI: An insight.Al-Azhar Assiut Med. J.201816321910.4103/AZMJ.AZMJ_34_17
    [Google Scholar]
  63. FemminellaG.D. ThayanandanT. CalsolaroV. Imaging and molecular mechanisms of Alzheimer’s disease: A review.Int. J. Mol. Sci.20181912370210.3390/ijms19123702 30469491
    [Google Scholar]
  64. TeipelS.J. MeindlT. GrinbergL. HeinsenH. HampelH. Novel MRI techniques in the assessment of dementia.Eur. J. Nucl. Med. Mol. Imaging200835S1586910.1007/s00259‑007‑0703‑z 18205002
    [Google Scholar]
  65. BozzaliM. CherubiniA. Diffusion tensor MRI to investigate dementias: A brief review.Magn. Reson. Imaging200725696997710.1016/j.mri.2007.03.017 17451903
    [Google Scholar]
  66. WardlawJ.M. Valdés HernándezM.C. Muñoz-ManiegaS. What are white matter hyperintensities made of? Relevance to vascular cognitive impairment.J. Am. Heart Assoc.201546e00114010.1161/JAHA.114.001140 26104658
    [Google Scholar]
  67. Chojdak-ŁukasiewiczJ. DziadkowiakE. ZimnyA. ParadowskiB. Cerebral small vessel disease: A review.Adv. Clin. Exp. Med.202130334935610.17219/acem/131216 33768739
    [Google Scholar]
  68. KhadhraouiE. MüllerS.J. HansenN. Manual and automated analysis of atrophy patterns in dementia with Lewy bodies on MRI.BMC Neurol.202222111410.1186/s12883‑022‑02642‑0 35331168
    [Google Scholar]
  69. CoupéP. ManjónJ.V. MansencalB. TourdiasT. CathelineG. PlancheV. Hippocampal-amygdalo-ventricular atrophy score: Alzheimer disease detection using normative and pathological lifespan models.Hum. Brain Mapp.202243103270328210.1002/hbm.25850 35388950
    [Google Scholar]
  70. De LeonM.J. DeSantiS. ZinkowskiR. MRI and CSF studies in the early diagnosis of Alzheimer’s disease.J. Intern. Med.2004256320522310.1111/j.1365‑2796.2004.01381.x 15324364
    [Google Scholar]
  71. BusattoG.F. DinizB.S. ZanettiM.V. Voxel-based morphometry in Alzheimer’s disease.Expert Rev. Neurother.20088111691170210.1586/14737175.8.11.1691 18986240
    [Google Scholar]
  72. YuC. LiJ. LiuY. White matter tract integrity and intelligence in patients with mental retardation and healthy adults.Neuroimage20084041533154110.1016/j.neuroimage.2008.01.063 18353685
    [Google Scholar]
  73. ChanH.P. HadjiiskiL.M. SamalaR.K. Computer-aided diagnosis in the era of deep learning.Med. Phys.2020475e218e22710.1002/mp.13764 32418340
    [Google Scholar]
  74. LiuS. Early diagnosis of Alzheimer’s disease with deep learning.2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI). Beijing, China201429 April 2014 - 02 May1015101810.1109/ISBI.2014.6868045
    [Google Scholar]
  75. LemmS. BlankertzB. DickhausT. MüllerK.R. Introduction to machine learning for brain imaging.Neuroimage201156238739910.1016/j.neuroimage.2010.11.004 21172442
    [Google Scholar]
  76. DrummondC. Machine Learning an experimental science (Revisited).AAAI workshop on evaluation methods for machine learning.2006
    [Google Scholar]
  77. WordoffaH. WangoriaE. (2012). Alzheimer's Disease Stage Prediction using Machine Learning and Multi Agent System.
    [Google Scholar]
  78. TanveerM. RichhariyaB. KhanR.U. Machine learning techniques for the diagnosis of Alzheimer’s disease: A review.ACM Trans. Multimed. Comput. Commun. Appl.2020161s13510.1145/3344998
    [Google Scholar]
  79. DasK. BeheraR.N. A survey on machine learning: Concept, algorithms and applications.IJIRCCE20175213011309
    [Google Scholar]
  80. WuestT. WeimerD. IrgensC. ThobenK-D. Machine learning in manufacturing: Advantages, challenges, and applications.Prod. Manuf. Res.201641234510.1080/21693277.2016.1192517
    [Google Scholar]
  81. RayS. A quick review of machine learning algorithms.2019 International conference on machine learning, big data, cloud and parallel computing (COMITCon). Faridabad, India201914-16 February353910.1109/COMITCon.2019.8862451
    [Google Scholar]
  82. CunninghamP. CordM. DelanyS.J. Supervised learning.Machine learning techniques for multimedia.Springer2008214910.1007/978‑3‑540‑75171‑7_2
    [Google Scholar]
  83. ZhuX. GoldbergA.B. Introduction to semi-supervised learning.ChamSpringer200910.1007/978‑3‑031‑01548‑9
    [Google Scholar]
  84. LiY. Deep reinforcement learning: An overview.arXiv: 1701072742017
    [Google Scholar]
  85. ZhaoR. YanR. ChenZ. MaoK. WangP. GaoR.X. Deep learning and its applications to machine health monitoring.Mech. Syst. Signal Process.201911521323710.1016/j.ymssp.2018.05.050
    [Google Scholar]
  86. DengL YuD. Deep learning: Methods and applications.now201410.1561/9781601988157
    [Google Scholar]
  87. AlkabawiE. Computer-Aided Diagnosis for Early Identification of Multi-Type Dementia using Deep Neural Networks.University of Waterloo2017
    [Google Scholar]
  88. EckD SchmidhuberJ. A first look at music composition using lstm recurrent neural networks200210348
    [Google Scholar]
  89. HuvalB. CoatesA. NgA. Deep learning for class-generic object detection.arXiv:131268852013
    [Google Scholar]
  90. HossainE. ChettyG. Multimodal feature learning for gait biometric based human identity recognition.International Conference on Neural Information Processing2013Berlin, Heidelberg72172810.1007/978‑3‑642‑42042‑9_89
    [Google Scholar]
  91. KlossA. Object Detection Using Deep Learning-Learning where to search using visual attention.GermanyUniversität Tübingen Tübingen2015
    [Google Scholar]
  92. PandyaM.D. ShahP.D. JardoshS. Medical image diagnosis for disease detection: A deep learning approach.U-Healthcare Monitoring Systems.Elsevier2019376010.1016/B978‑0‑12‑815370‑3.00003‑7
    [Google Scholar]
  93. SharmaA.K. Medical image classification techniques and analysis using deep learning networks: A review.Health Informatics: A Computational Perspective in Healthcare Studies in Computational Intelligence.SingaporeSpringer202110.1007/978‑981‑15‑9735‑0_13
    [Google Scholar]
  94. GautamR. SharmaM. Prevalence and diagnosis of neurological disorders using different deep learning techniques: A meta-analysis.J. Med. Syst.20204424910.1007/s10916‑019‑1519‑7 31902041
    [Google Scholar]
  95. RaoT. LiX. XuM. Learning multi-level deep representations for image emotion classification.Neural Process. Lett.20205132043206110.1007/s11063‑019‑10033‑9
    [Google Scholar]
  96. LeCunY. BengioY. HintonG. Deep learning.Nature2015521755343644410.1038/nature14539 26017442
    [Google Scholar]
  97. WangW. Medical image classification using deep learning.Deep Learning in Healthcare.Springer2020335110.1007/978‑3‑030‑32606‑7_3
    [Google Scholar]
  98. RazzakM.I. NazS. ZaibA. Deep learning for medical image processing: Overview, challenges and the future.Classification in BioApps2018323350
    [Google Scholar]
  99. KhanS. RahmaniH. ShahS.A.A. BennamounM. A guide to convolutional neural networks for computer vision.Synthesis Lectures on Computer Vision201881120710.1007/978‑3‑031‑01821‑3
    [Google Scholar]
  100. YadavS.S. JadhavS.M. Deep convolutional neural network based medical image classification for disease diagnosis.J. Big Data20196111310.1186/s40537‑019‑0276‑2
    [Google Scholar]
  101. RamprasathM. AnandM.V. HariharanS. Image classification using convolutional neural networks.Int. J. Pure Appl. Math.20181191713071319
    [Google Scholar]
  102. O’SheaK. NashR. An introduction to convolutional neural networks.arXiv:1511084582015
    [Google Scholar]
  103. ElhassounyA. SmarandacheF. Trends in deep convolutional neural Networks architectures: A review.2019 International Conference of Computer Science and Renewable Energies (ICCSRE).2019Agadir, Morocco, 22-24 July1810.1109/ICCSRE.2019.8807741
    [Google Scholar]
  104. ChauhanN.K. SinghK. A review on conventional machine learning vs deep learning.2018 International conference on computing, power and communication technologies (GUCON).2018Greater Noida, India, 28-29 September34735210.1109/GUCON.2018.8675097
    [Google Scholar]
  105. YamashitaR. NishioM. DoR.K.G. TogashiK. Convolutional neural networks: An overview and application in radiology.Insights Imaging20189461162910.1007/s13244‑018‑0639‑9 29934920
    [Google Scholar]
  106. KoushikJ. Understanding convolutional neural networks.arXiv: 1605090812016
    [Google Scholar]
  107. YangJ. LiJ. Application of deep convolution neural network.2017 14th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP)2017Chengdu, China, 15-17 December22923210.1109/ICCWAMTIP.2017.8301485
    [Google Scholar]
  108. ValanarasuJ.M.J. Medical transformer: Gated axial-attention for medical image segmentation.International Conference on Medical Image Computing and Computer-Assisted Intervention10.1007/978‑3‑030‑87193‑2_4
    [Google Scholar]
  109. SchöllM. Challenges in the practical implementation of blood biomarkers for Alzheimer’s disease.Lancet Healthy Longev.202451010063010.1016/j.lanhl.2024.07.013 39369727
    [Google Scholar]
  110. OssenkoppeleR. van der KantR. HanssonO.J.T.L.N. Tau biomarkers in Alzheimer’s disease: Towards implementation in clinical practice and trials.Lancet Neurol 2022 Aug21872673410.1016/S1474‑4422(22)00168‑5 35643092
    [Google Scholar]
  111. JackC.R. Predicting amyloid PET and tau PET stages with plasma biomarkers.Brain202314652029204410.1093/brain/awad042 36789483
    [Google Scholar]
  112. OecklP. OttoM.J.N. A review on MS-based blood biomarkers for Alzheimer’s disease.Neurol. Ther.20198Suppl. 211312710.1007/s40120‑019‑00165‑4 31833028
    [Google Scholar]
  113. PasseriE. Alzheimer’s disease: Treatment strategies and their limitations.Int. J. Mol. Sci.202223221395410.3390/ijms232213954 36430432
    [Google Scholar]
  114. AtriA. Current and future treatments in Alzheimer’s disease.Seminars in neurology.Thieme Medical Publishers201910.1055/s‑0039‑1678581
    [Google Scholar]
/content/journals/cnsnddt/10.2174/0118715273374284250519053646
Loading
/content/journals/cnsnddt/10.2174/0118715273374284250519053646
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): AD; computed tomography; deep learning; machine learning; magnetic resonance imaging
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test