Skip to content
2000
image of Advances in Diagnostic Approaches for Alzheimer’s Disease: From Biomarkers to Deep Learning Technology

Abstract

Alzheimer's disease (AD) is a devastating neurological disorder that affects humans and is a major contributor to dementia. It is characterized by cognitive dysfunction, impairing an individual's ability to perform daily tasks. In AD, nerve cells in areas of the brain related to cognitive function are damaged. Despite extensive research, there is currently no specific therapeutic or diagnostic approach for this fatal disease. However, scientists worldwide have developed effective techniques for diagnosing and managing this challenging disorder. Among the various methods used to diagnose AD are feedback from blood relatives and observations of changes in an individual's behavioral and cognitive abilities. Biomarkers, such as amyloid beta and measures of neurodegeneration, aid in the early detection of Alzheimer's disease (AD) through cerebrospinal fluid (CSF) samples and brain imaging techniques like Magnetic Resonance Imaging (MRI). Advanced medical imaging technologies, including X-ray, CT, MRI, ultrasound, mammography, and PET, provide valuable insights into human anatomy and function. MRI, in particular, is non-invasive and useful for scanning both the structural and functional aspects of the brain. Additionally, Machine Learning (ML) and deep learning (DL) technologies, especially Convolutional Neural Networks (CNNs), have demonstrated high accuracy in diagnosing AD by detecting brain changes. However, these technologies are intended to support, rather than replace, clinical assessments by medical professionals.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/0118715273374284250519053646
2025-05-27
2025-09-29
Loading full text...

Full text loading...

References

  1. Breijyeh Z. Karaman R. Comprehensive review on Alzheimer’s disease: Causes and treatment. Molecules 2020 25 24 5789 10.3390/molecules25245789 33302541
    [Google Scholar]
  2. Crous-Bou M. Minguillón C. Gramunt N. Molinuevo J.L. Alzheimer’s disease prevention: From risk factors to early intervention. Alzheimers Res. Ther. 2017 9 1 71 10.1186/s13195‑017‑0297‑z 28899416
    [Google Scholar]
  3. Murman D.L. The impact of age on cognition. Seminars in hearing. Thieme Medical Publishers 2015 10.1055/s‑0035‑1555115
    [Google Scholar]
  4. 2015 Alzheimer’s disease facts and figures. Alzheimers Dement. 2015 11 3 332 384 10.1016/j.jalz.2015.02.003 25984581
    [Google Scholar]
  5. Tiraboschi P. Salmon D.P. Hansen L.A. Hofstetter R.C. Thal L.J. Corey-Bloom J. What best differentiates Lewy body from Alzheimer’s disease in early-stage dementia? Brain 2006 129 3 729 735 10.1093/brain/awh725 16401618
    [Google Scholar]
  6. Wolfe M.S. Therapeutic strategies for Alzheimer’s disease. Nat. Rev. Drug Discov. 2002 1 11 859 866 10.1038/nrd938 12415246
    [Google Scholar]
  7. Ferri C.P. Prince M. Brayne C. Brodaty H. Fratiglioni L. Ganguli M. Hall K. Hasegawa K. Hendrie H. Huang Y. Jorm A. Mathers C. Menezes P.R. Rimmer E. Scazufca M. Global prevalence of dementia: A Delphi consensus study. Lancet 2005 366 9503 2112 2117 10.1016/S0140‑6736(05)67889‑0 16360788
    [Google Scholar]
  8. World Health Organization. Global action plan on the public health response to dementia 2017 - 2025. Available From: https://www.who.int/publications/i/item/global-action-plan-on-thepublic-health-response-to-dementia-2017---2025
    [Google Scholar]
  9. Ullah H. Natural products as bioactive agents in the prevention of dementia. CNS Neurol Disord Drug Targets 2023 22 4 466 476 10.2174/1871527321666220422085835 35466886
    [Google Scholar]
  10. DeTure M.A. Dickson D.W. The neuropathological diagnosis of Alzheimer’s disease. Mol. Neurodegener. 2019 14 1 32 10.1186/s13024‑019‑0333‑5 31375134
    [Google Scholar]
  11. Jack C.R. Knopman D.S. Jagust W.J. Petersen R.C. Weiner M.W. Aisen P.S. Shaw L.M. Vemuri P. Wiste H.J. Weigand S.D. Lesnick T.G. Pankratz V.S. Donohue M.C. Trojanowski J.Q. Tracking pathophysiological processes in Alzheimer’s disease: An updated hypothetical model of dynamic biomarkers. Lancet Neurol. 2013 12 2 207 216 10.1016/S1474‑4422(12)70291‑0 23332364
    [Google Scholar]
  12. Brody H. Medical imaging. Nature 2013 502 7473 S81 S81 10.1038/502S81a 24187698
    [Google Scholar]
  13. Heidenreich A. Desgrandschamps F. Terrier F. Modern approach of diagnosis and management of acute flank pain: Review of all imaging modalities. Eur. Urol. 2002 41 4 351 362 10.1016/S0302‑2838(02)00064‑7 12074804
    [Google Scholar]
  14. Li Y. Meng F. Shi J. Learning using privileged information improves neuroimaging-based CAD of Alzheimer’s disease: A comparative study. Med. Biol. Eng. Comput. 2019 57 7 1605 1616 10.1007/s11517‑019‑01974‑3 31028606
    [Google Scholar]
  15. Wernick M. Yang Y. Brankov J. Yourganov G. Strother S. Machine learning in medical imaging. IEEE Signal Process. Mag. 2010 27 4 25 38 10.1109/MSP.2010.936730 25382956
    [Google Scholar]
  16. Zhang L. Wang M. Liu M. Zhang D. A survey on deep learning for neuroimaging-based brain disorder analysis. Front. Neurosci. 2020 14 779 10.3389/fnins.2020.00779 33117114
    [Google Scholar]
  17. Wang X-j. Zhao L-l. Wang S. A novel SVM video object extraction technology. 2012 8th International Conference on Natural Computation 2012 10.1109/ICNC.2012.6234772
    [Google Scholar]
  18. Rish I. An empirical study of the naive Bayes classifier. IJCAI 2001 workshop on empirical methods in artificial intelligence Seattle, 4 August 2001, pp. 41-46
    [Google Scholar]
  19. Dhillon A. Verma G.K. Convolutional neural network: A review of models, methodologies and applications to object detection. PAI 2020 9 2 85 112 10.1007/s13748‑019‑00203‑0
    [Google Scholar]
  20. Pradeep S. Jain A.S. Dharmashekara C. Prasad S.K. Kollur S.P. Syed A. Shivamallu C. Alzheimer’s disease and herbal combination therapy: A comprehensive review. J. Alzheimers Dis. Rep. 2020 4 1 417 429 10.3233/ADR‑200228 33283163
    [Google Scholar]
  21. Hippius H. Neundörfer G. The discovery of Alzheimer's disease. Dialogues Clin Neurosci. 2003 5 1 101 108 10.31887/DCNS.2003.5.1/hhippius 22034141
    [Google Scholar]
  22. Cipriani G. Dolciotti C. Picchi L. Bonuccelli U. Alzheimer and his disease: A brief history. Neurol. Sci. 2011 32 2 275 279 10.1007/s10072‑010‑0454‑7 21153601
    [Google Scholar]
  23. Wimo A. Winblad B. Aguero-Torres H. von Strauss E. The magnitude of dementia occurrence in the world. Alzheimer Dis. Assoc. Disord. 2003 17 2 63 67 10.1097/00002093‑200304000‑00002 12794381
    [Google Scholar]
  24. Brookmeyer R. Johnson E. Ziegler-Graham K. Arrighi H.M. Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement. 2007 3 3 186 191 10.1016/j.jalz.2007.04.381 19595937
    [Google Scholar]
  25. Kalaria R.N. Maestre G.E. Arizaga R. Friedland R.P. Galasko D. Hall K. Luchsinger J.A. Ogunniyi A. Perry E.K. Potocnik F. Prince M. Stewart R. Wimo A. Zhang Z.X. Antuono P. Alzheimer’s disease and vascular dementia in developing countries: Prevalence, management, and risk factors. Lancet Neurol. 2008 7 9 812 826 10.1016/S1474‑4422(08)70169‑8 18667359
    [Google Scholar]
  26. Lobo A. Launer L.J. Fratiglioni L. Andersen K. Di Carlo A. Breteler M.M. Copeland J.R. Dartigues J.F. Jagger C. Martinez-Lage J. Soininen H. Hofman A. Prevalence of dementia and major subtypes in Europe: A collaborative study of population-based cohorts. Neurology 2000 54 11 S4 S9 10854354
    [Google Scholar]
  27. Ponjoan A. Garre-Olmo J. Blanch J. Fages E. Alves-Cabratosa L. Martí-Lluch R. Comas-Cufí M. Parramon D. Garcia-Gil M. Ramos R. Is it time to use real-world data from primary care in Alzheimer’s disease? Alzheimers Res. Ther. 2020 12 1 60 10.1186/s13195‑020‑00625‑2 32423489
    [Google Scholar]
  28. Plassman B.L. Langa K.M. Fisher G.G. Heeringa S.G. Weir D.R. Ofstedal M.B. Burke J.R. Hurd M.D. Potter G.G. Rodgers W.L. Steffens D.C. Willis R.J. Wallace R.B. Prevalence of dementia in the United States: The aging, demographics, and memory study. Neuroepidemiology 2007 29 1-2 125 132 10.1159/000109998 17975326
    [Google Scholar]
  29. Prince M. The global prevalence of dementia: A systematic review and metaanalysis. Alzheimers Dement 2013 Jan 9 1 63 75 10.1016/j.jalz.2012.11.007 23305823
    [Google Scholar]
  30. Qiu C. Kivipelto M. Von Strauss E. Epidemiology of Alzheimer's disease: Occurrence, determinants, and strategies toward intervention. Dialogues Clin Neurosci. 2009 11 2 111 128 10.31887/DCNS.2009.11.2/cqiu 19585947
    [Google Scholar]
  31. Ahmad A. Dementia in Pakistan: national guidelines for clinicians. PJNS 2013 8 3 17 27
    [Google Scholar]
  32. Kumar Seetlani N. Kumar N. Mubeen K.I. Ali A. Shams N. Sheikh T. Alzheimer and vascular dementia in the elderly patients. Pak. J. Med. Sci. 2016 32 5 1286 1290 10.12669/pjms.325.10792 27882038
    [Google Scholar]
  33. Usman S. Chaudhary H.R. Asif A. Yahya M.I. Severity and risk factors of depression in Alzheimer’s disease. J. Coll. Physicians Surg. Pak. 2010 20 5 327 330 20642926
    [Google Scholar]
  34. Fratiglioni L. Launer L.J. Andersen K. Breteler M.M. Copeland J.R. Dartigues J.F. Lobo A. Martinez-Lage J. Soininen H. Hofman A. Incidence of dementia and major subtypes in Europe: A collaborative study of population-based cohorts. Neurology 2000 54 11 S10 S15 10854355
    [Google Scholar]
  35. Kawas C. Gray S. Brookmeyer R. Fozard J. Zonderman A. Age-specific incidence rates of Alzheimer’s disease. Neurology 2000 54 11 2072 2077 10.1212/WNL.54.11.2072 10851365
    [Google Scholar]
  36. Kukull W.A. Higdon R. Bowen J.D. McCormick W.C. Teri L. Schellenberg G.D. van Belle G. Jolley L. Larson E.B. Dementia and Alzheimer disease incidence: A prospective cohort study. Arch. Neurol. 2002 59 11 1737 1746 10.1001/archneur.59.11.1737 12433261
    [Google Scholar]
  37. The incidence of dementia in Canada. Neurology 2000 55 1 66 73 10.1212/WNL.55.1.66 10891908
    [Google Scholar]
  38. Miech R.A. Breitner J.C.S. Zandi P.P. Khachaturian A.S. Anthony J.C. Mayer L. Incidence of AD may decline in the early 90s for men, later for women. Neurology 2002 58 2 209 218 10.1212/WNL.58.2.209 11805246
    [Google Scholar]
  39. Mayeux R. Stern Y. Epidemiology of Alzheimer disease. Cold Spring Harb. Perspect. Med. 2012 2 8 a006239 10.1101/cshperspect.a006239 22908189
    [Google Scholar]
  40. Whitmer R.A. Gustafson D.R. Barrett-Connor E. Haan M.N. Gunderson E.P. Yaffe K. Central obesity and increased risk of dementia more than three decades later. Neurology 2008 71 14 1057 1064 10.1212/01.wnl.0000306313.89165.ef 18367704
    [Google Scholar]
  41. Hachinski V. Einhäupl K. Ganten D. Alladi S. Brayne C. Stephan B.C.M. Sweeney M.D. Zlokovic B. Iturria-Medina Y. Iadecola C. Nishimura N. Schaffer C.B. Whitehead S.N. Black S.E. Østergaard L. Wardlaw J. Greenberg S. Friberg L. Norrving B. Rowe B. Joanette Y. Hacke W. Kuller L. Dichgans M. Endres M. Khachaturian Z.S. Preventing dementia by preventing stroke: The Berlin Manifesto. Alzheimers Dement. 2019 15 7 961 984 10.1016/j.jalz.2019.06.001 31327392
    [Google Scholar]
  42. Desmond D.W. Moroney J.T. Sano M. Stern Y. Incidence of dementia after ischemic stroke: Results of a longitudinal study. Stroke 2002 33 9 2254 2262 10.1161/01.STR.0000028235.91778.95 12215596
    [Google Scholar]
  43. Gauthier S. Reisberg B. Zaudig M. Petersen R.C. Ritchie K. Broich K. Belleville S. Brodaty H. Bennett D. Chertkow H. Cummings J.L. de Leon M. Feldman H. Ganguli M. Hampel H. Scheltens P. Tierney M.C. Whitehouse P. Winblad B. Mild cognitive impairment. Lancet 2006 367 9518 1262 1270 10.1016/S0140‑6736(06)68542‑5 16631882
    [Google Scholar]
  44. Roberson E.D. Mucke L. 100 years and counting: Prospects for defeating Alzheimer’s disease. Science 2006 314 5800 781 784 10.1126/science.1132813 17082448
    [Google Scholar]
  45. McKhann G.M. Knopman D.S. Chertkow H. Hyman B.T. Jack C.R. Kawas C.H. Klunk W.E. Koroshetz W.J. Manly J.J. Mayeux R. Mohs R.C. Morris J.C. Rossor M.N. Scheltens P. Carrillo M.C. Thies B. Weintraub S. Phelps C.H. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging‐Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011 7 3 263 269 10.1016/j.jalz.2011.03.005 21514250
    [Google Scholar]
  46. Albert M.S. DeKosky S.T. Dickson D. Dubois B. Feldman H.H. Fox N.C. Gamst A. Holtzman D.M. Jagust W.J. Petersen R.C. Snyder P.J. Carrillo M.C. Thies B. Phelps C.H. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging‐Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011 7 3 270 279 10.1016/j.jalz.2011.03.008 21514249
    [Google Scholar]
  47. Shukla A. Tiwari R. Tiwari S. Review on alzheimer disease detection methods: Automatic pipelines and machine learning techniques. Sci 2023 5 1 13 10.3390/sci5010013
    [Google Scholar]
  48. Winblad B. Amouyel P. Andrieu S. Ballard C. Brayne C. Brodaty H. Cedazo-Minguez A. Dubois B. Edvardsson D. Feldman H. Fratiglioni L. Frisoni G.B. Gauthier S. Georges J. Graff C. Iqbal K. Jessen F. Johansson G. Jönsson L. Kivipelto M. Knapp M. Mangialasche F. Melis R. Nordberg A. Rikkert M.O. Qiu C. Sakmar T.P. Scheltens P. Schneider L.S. Sperling R. Tjernberg L.O. Waldemar G. Wimo A. Zetterberg H. Defeating Alzheimer’s disease and other dementias: A priority for European science and society. Lancet Neurol. 2016 15 5 455 532 10.1016/S1474‑4422(16)00062‑4 26987701
    [Google Scholar]
  49. Moloney C.M. Lowe V.J. Murray M.E. Visualization of neurofibrillary tangle maturity in Alzheimer’s disease: A clinicopathologic perspective for biomarker research. Alzheimers Dement. 2021 17 9 1554 1574 10.1002/alz.12321 33797838
    [Google Scholar]
  50. Jellinger K.A. Neuropathological assessment of the Alzheimer spectrum. J. Neural Transm. 2020 127 9 1229 1256 10.1007/s00702‑020‑02232‑9 32740684
    [Google Scholar]
  51. Miller K.L. Alfaro-Almagro F. Bangerter N.K. Thomas D.L. Yacoub E. Xu J. Bartsch A.J. Jbabdi S. Sotiropoulos S.N. Andersson J.L.R. Griffanti L. Douaud G. Okell T.W. Weale P. Dragonu I. Garratt S. Hudson S. Collins R. Jenkinson M. Matthews P.M. Smith S.M. Multimodal population brain imaging in the UK Biobank prospective epidemiological study. Nat. Neurosci. 2016 19 11 1523 1536 10.1038/nn.4393 27643430
    [Google Scholar]
  52. Klöppel S. Abdulkadir A. Jack C.R. Koutsouleris N. Mourão-Miranda J. Vemuri P. Diagnostic neuroimaging across diseases. Neuroimage 2012 61 2 457 463 10.1016/j.neuroimage.2011.11.002 22094642
    [Google Scholar]
  53. Furtner J. Prayer D. Neuroimaging in dementia. Wien. Med. Wochenschr. 2021 171 11-12 274 281 10.1007/s10354‑021‑00825‑x 33660199
    [Google Scholar]
  54. Vlaardingerbroek M.T. Boer J.A. Magnetic resonance imaging: theory and practice. 2013
    [Google Scholar]
  55. Geva T. Magnetic resonance imaging: Historical perspective. J. Cardiovasc. Magn. Reson. 2006 8 4 573 580 10.1080/10976640600755302 16869310
    [Google Scholar]
  56. Ginat D.T. Gupta R. Advances in computed tomography imaging technology. Annu. Rev. Biomed. Eng. 2014 16 1 431 453 10.1146/annurev‑bioeng‑121813‑113601 25014788
    [Google Scholar]
  57. Glover G.H. Overview of functional magnetic resonance imaging. Neurosurgery Clinics 2011 22 2 133 139, vii 10.1016/j.nec.2010.11.001 21435566
    [Google Scholar]
  58. Lameka K. Farwell M.D. Ichise M. Positron emission tomography. Handb. Clin. Neurol. 2016 135 209 227 10.1016/B978‑0‑444‑53485‑9.00011‑8 27432667
    [Google Scholar]
  59. Holly T.A. Single photon-emission computed tomography. Springer 2010 10.1007/s12350‑010‑9246‑y
    [Google Scholar]
  60. Katti G. Ara S.A. Shireen A. Magnetic resonance imaging (MRI)–A review. Int. J. Dent. Clin. 2011 3 1 65 70
    [Google Scholar]
  61. Cornacchia S. La Tegola L. Maldera A. Pierpaoli E. Tupputi U. Ricatti G. Eusebi L. Salerno S. Guglielmi G. Radiation protection in non-ionizing and ionizing body composition assessment procedures. Quant. Imaging Med. Surg. 2020 10 8 1723 1738 10.21037/qims‑19‑1035 32742963
    [Google Scholar]
  62. Peter T. Cherian D. MRI: An insight. Al-Azhar Assiut Med. J. 2018 16 3 219 10.4103/AZMJ.AZMJ_34_17
    [Google Scholar]
  63. Femminella G.D. Thayanandan T. Calsolaro V. Komici K. Rengo G. Corbi G. Ferrara N. Imaging and molecular mechanisms of Alzheimer’s disease: A review. Int. J. Mol. Sci. 2018 19 12 3702 10.3390/ijms19123702 30469491
    [Google Scholar]
  64. Teipel S.J. Meindl T. Grinberg L. Heinsen H. Hampel H. Novel MRI techniques in the assessment of dementia. Eur. J. Nucl. Med. Mol. Imaging 2008 35 S1 58 69 10.1007/s00259‑007‑0703‑z 18205002
    [Google Scholar]
  65. Bozzali M. Cherubini A. Diffusion tensor MRI to investigate dementias: A brief review. Magn. Reson. Imaging 2007 25 6 969 977 10.1016/j.mri.2007.03.017 17451903
    [Google Scholar]
  66. Wardlaw J.M. Valdés Hernández M.C. Muñoz-Maniega S. What are white matter hyperintensities made of? Relevance to vascular cognitive impairment. J. Am. Heart Assoc. 2015 4 6 e001140 10.1161/JAHA.114.001140 26104658
    [Google Scholar]
  67. Chojdak-Łukasiewicz J. Dziadkowiak E. Zimny A. Paradowski B. Cerebral small vessel disease: A review. Adv. Clin. Exp. Med. 2021 30 3 349 356 10.17219/acem/131216 33768739
    [Google Scholar]
  68. Khadhraoui E. Müller S.J. Hansen N. Riedel C.H. Langer P. Timäeus C. Wiltfang J. Bouter C. Lange C. Ernst M. Manual and automated analysis of atrophy patterns in dementia with Lewy bodies on MRI. BMC Neurol. 2022 22 1 114 10.1186/s12883‑022‑02642‑0 35331168
    [Google Scholar]
  69. Coupé P. Manjón J.V. Mansencal B. Tourdias T. Catheline G. Planche V. Hippocampal‐amygdalo‐ventricular atrophy score: Alzheimer disease detection using normative and pathological lifespan models. Hum. Brain Mapp. 2022 43 10 3270 3282 10.1002/hbm.25850 35388950
    [Google Scholar]
  70. De Leon M.J. DeSanti S. Zinkowski R. Mehta P.D. Pratico D. Segal S. Clark C. Kerkman D. DeBernardis J. Li J. Lair L. Reisberg B. Tsui W. Rusinek H. MRI and CSF studies in the early diagnosis of Alzheimer’s disease. J. Intern. Med. 2004 256 3 205 223 10.1111/j.1365‑2796.2004.01381.x 15324364
    [Google Scholar]
  71. Busatto G.F. Diniz B.S. Zanetti M.V. Voxel-based morphometry in Alzheimer’s disease. Expert Rev. Neurother. 2008 8 11 1691 1702 10.1586/14737175.8.11.1691 18986240
    [Google Scholar]
  72. Yu C. Li J. Liu Y. Qin W. Li Y. Shu N. Jiang T. Li K. White matter tract integrity and intelligence in patients with mental retardation and healthy adults. Neuroimage 2008 40 4 1533 1541 10.1016/j.neuroimage.2008.01.063 18353685
    [Google Scholar]
  73. Chan H.P. Hadjiiski L.M. Samala R.K. Computer‐aided diagnosis in the era of deep learning. Med. Phys. 2020 47 5 e218 e227 10.1002/mp.13764 32418340
    [Google Scholar]
  74. Liu S. Early diagnosis of Alzheimer’s disease with deep learning. 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI) Beijing, China, 29 April 2014 - 02 May 2014, pp. 1015-1018 10.1109/ISBI.2014.6868045
    [Google Scholar]
  75. Lemm S. Blankertz B. Dickhaus T. Müller K.R. Introduction to machine learning for brain imaging. Neuroimage 2011 56 2 387 399 10.1016/j.neuroimage.2010.11.004 21172442
    [Google Scholar]
  76. Drummond C. Machine Learning an experimental science (Revisited). AAAI workshop on evaluation methods for machine learning. 2006
    [Google Scholar]
  77. Wordoffa H. Wangoria E. (2012). Alzheimer's disease stage prediction using machine learning and multi agent system. 2012
  78. Tanveer M. Richhariya B. Khan R.U. Rashid A.H. Khanna P. Prasad M. Lin C.T. Machine learning techniques for the diagnosis of Alzheimer’s disease: A review. ACM Trans. Multimed. Comput. Commun. Appl. 2020 16 1s 1 35 10.1145/3344998
    [Google Scholar]
  79. Das K. Behera R.N. A survey on machine learning: Concept, algorithms and applications. IJIRCCE 2017 5 2 1301 1309
    [Google Scholar]
  80. Wuest T. Weimer D. Irgens C. Thoben K-D. Machine learning in manufacturing: Advantages, challenges, and applications. Prod. Manuf. Res. 2016 4 1 23 45 10.1080/21693277.2016.1192517
    [Google Scholar]
  81. Ray S. A quick review of machine learning algorithms. 2019 International conference on machine learning, big data, cloud and parallel computing (COMITCon) Faridabad, India, 14-16 February 2019, pp. 35-39 10.1109/COMITCon.2019.8862451
    [Google Scholar]
  82. Cunningham P. Cord M. Delany S.J. Supervised learning. Machine learning techniques for multimedia. Springer 2008 21 49 10.1007/978‑3‑540‑75171‑7_2
    [Google Scholar]
  83. Zhu X. Goldberg A.B. Introduction to semi-supervised learning. Springer Cham 2009 10.1007/978‑3‑031‑01548‑9
    [Google Scholar]
  84. Li Y. Deep reinforcement learning: An overview. arXiv:1701.07274 2017
    [Google Scholar]
  85. Zhao R. Yan R. Chen Z. Mao K. Wang P. Gao R.X. Deep learning and its applications to machine health monitoring. Mech. Syst. Signal Process. 2019 115 213 237 10.1016/j.ymssp.2018.05.050
    [Google Scholar]
  86. Deng L. Yu D. Deep learning: Methods and applications. now 2014 10.1561/9781601988157
    [Google Scholar]
  87. Alkabawi E. Computer-Aided Diagnosis for Early Identification of Multi-Type Dementia using Deep Neural Networks. University of Waterloo 2017
    [Google Scholar]
  88. Eck D. Schmidhuber J. A first look at music composition using lstm recurrent neural networks. Dalle Molle Institute for Artificial Intelligence Studies 2002 103 48
    [Google Scholar]
  89. Huval B. Coates A. Ng A. Deep learning for class-generic object detection. arXiv:1312.6885 2013
    [Google Scholar]
  90. Hossain E. Chetty G. Multimodal feature learning for gait biometric based human identity recognition. International Conference on Neural Information Processing Berlin, Heidelberg, 2013, pp. 721-728 10.1007/978‑3‑642‑42042‑9_89
    [Google Scholar]
  91. Kloss A. Object Detection Using Deep Learning-Learning where to search using visual attention. Germany Universität Tübingen Tübingen 2015
    [Google Scholar]
  92. Pandya M.D. Shah P.D. Jardosh S. Medical image diagnosis for disease detection: A deep learning approach. U-Healthcare Monitoring Systems. Elsevier 2019 37 60 10.1016/B978‑0‑12‑815370‑3.00003‑7
    [Google Scholar]
  93. Sharma A.K. Medical image classification techniques and analysis using deep learning networks: A review. Health Informatics: A Computational Perspective in Healthcare. Studies in Computational Intelligence Springer Singapore 2021 10.1007/978‑981‑15‑9735‑0_13
    [Google Scholar]
  94. Gautam R. Sharma M. Prevalence and diagnosis of neurological disorders using different deep learning techniques: A meta-analysis. J. Med. Syst. 2020 44 2 49 10.1007/s10916‑019‑1519‑7 31902041
    [Google Scholar]
  95. Rao T. Li X. Xu M. Learning multi-level deep representations for image emotion classification. Neural Process. Lett. 2020 51 3 2043 2061 10.1007/s11063‑019‑10033‑9
    [Google Scholar]
  96. LeCun Y. Bengio Y. Hinton G. Deep learning. Nature 2015 521 7553 436 444 10.1038/nature14539 26017442
    [Google Scholar]
  97. Wang W. Medical image classification using deep learning. Deep Learning in Healthcare. Springer 2020 33 51 10.1007/978‑3‑030‑32606‑7_3
    [Google Scholar]
  98. Razzak M.I. Naz S. Zaib A. Deep learning for medical image processing: Overview, challenges and the future. Classification in BioApps 2018 323 350
    [Google Scholar]
  99. Khan S. Rahmani H. Shah S.A.A. Bennamoun M. A guide to convolutional neural networks for computer vision. Synthesis Lectures on Computer Vision 2018 8 1 1 207 10.1007/978‑3‑031‑01821‑3
    [Google Scholar]
  100. Yadav S.S. Jadhav S.M. Deep convolutional neural network based medical image classification for disease diagnosis. J. Big Data 2019 6 1 113 10.1186/s40537‑019‑0276‑2
    [Google Scholar]
  101. Ramprasath M. Anand M.V. Hariharan S. Image classification using convolutional neural networks. Int. J. Pure Appl. Math. 2018 119 17 1307 1319
    [Google Scholar]
  102. O’Shea K. Nash R. An introduction to convolutional neural networks. arXiv:1511.08458 2015
    [Google Scholar]
  103. Elhassouny A. Smarandache F. Trends in deep convolutional neural Networks architectures: A review. 2019 International Conference of Computer Science and Renewable Energies (ICCSRE) Agadir, Morocco, 22-24 July 2019, pp. 1-8 10.1109/ICCSRE.2019.8807741
    [Google Scholar]
  104. Chauhan N.K. Singh K. A review on conventional machine learning vs deep learning. 2018 International conference on computing, power and communication technologies (GUCON) Greater Noida, India, 28-29 September 2018, pp. 347-352 10.1109/GUCON.2018.8675097
    [Google Scholar]
  105. Yamashita R. Nishio M. Do R.K.G. Togashi K. Convolutional neural networks: An overview and application in radiology. Insights Imaging 2018 9 4 611 629 10.1007/s13244‑018‑0639‑9 29934920
    [Google Scholar]
  106. Koushik J. Understanding convolutional neural networks. arXiv:1605.09081 2016
    [Google Scholar]
  107. Yang J. Li J. Application of deep convolution neural network. 2017 14th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP) Chengdu, China, 15-17 December 2017, pp. 229-232 10.1109/ICCWAMTIP.2017.8301485
    [Google Scholar]
  108. Valanarasu J.M.J. Medical transformer: Gated axial-attention for medical image segmentation. International Conference on Medical Image Computing and Computer-Assisted Intervention 10.1007/978‑3‑030‑87193‑2_4
    [Google Scholar]
  109. Schöll M. Challenges in the practical implementation of blood biomarkers for Alzheimer's disease. Lancet Healthy Longev 2024 5 10 100630 10.1016/j.lanhl.2024.07.013 39369727
    [Google Scholar]
  110. Ossenkoppele R. van der Kant R. Hansson O.J.T.L.N. Tau biomarkers in Alzheimer's disease: Towards implementation in clinical practice and trials. Lancet Neurol 2022 Aug 21 8 726 734 10.1016/S1474‑4422(22)00168‑5 35643092
    [Google Scholar]
  111. Jack C.R. Predicting amyloid PET and tau PET stages with plasma biomarkers. Brain 2023 146 5 2029 2044 10.1093/brain/awad042 36789483
    [Google Scholar]
  112. Oeckl P. Otto M.J.N. A review on MS-based blood biomarkers for Alzheimer's disease. Neurol Ther 2019 8 Suppl 2 113 127 10.1007/s40120‑019‑00165‑4 31833028
    [Google Scholar]
  113. Passeri E. Alzheimer's disease: Treatment strategies and their limitations. Int J Mol Sci 2022 23 22 13954 10.3390/ijms232213954 36430432
    [Google Scholar]
  114. Atri A. Current and future treatments in Alzheimer’s disease. Seminars in neurology. Thieme Medical Publishers 2019 10.1055/s‑0039‑1678581
    [Google Scholar]
/content/journals/cnsnddt/10.2174/0118715273374284250519053646
Loading
/content/journals/cnsnddt/10.2174/0118715273374284250519053646
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: deep learning ; machine learning ; magnetic resonance imaging ; computed tomography ; AD
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test