Skip to content
2000
image of Harnessing Nature's Bounty: The Neuroprotective Potential of Phytoconstituents and Nanotechnology in Neurodegenerative Disease Therapeutics

Abstract

Investigations into the bioactive components of plant-based natural products indicate promising therapeutic potential for neurodegenerative diseases (NDs), including Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). The loss and dysfunction of neurons characterize these disorders. Effective therapeutic guidelines are still elusive despite advances in our comprehension of NDs, in part because of unanswered questions about the safety and efficacy of natural therapies. On the other hand, preclinical models have shown that natural products—such as fruits, vegetables, nuts, herbs, and phytoconstituents found in freshwater and marine flora—have neuroprotective effects. These substances have the ability to work through a variety of pathways, halting cell death and reinstating neuronal activity. According to recent research, adding these phytoconstituents to nanocarriers, such as nanoparticles, can improve their selectivity and stability, possibly boosting the effectiveness of treatment. By making these agents more specific to target sites, nanotechnology presents a promising treatment option for NDs. Clinical trials assessing the efficacy of these natural compounds in treating neurological conditions are becoming more common as research advances, underscoring their potential as neuroprotective drugs. This study primarily focuses on the therapeutic efficacy of specific natural compounds and their bioactive components, which exhibit neuroprotective benefits in conditions associated with undiagnosed depression. Several preclinical models have demonstrated better results when natural derivatives are used, which has led to an increase in the use of natural therapies for treating NDs. Overall, despite ongoing difficulties, natural products have a great deal of promise for treating and preventing NDs; however, more research is needed to determine safe and effective treatment modalities.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/0118715273370166250610152453
2025-06-24
2025-09-29
Loading full text...

Full text loading...

References

  1. Rahman M.H. Bajgai J. Fadriquela A. Sharma S. Trinh Thi T. Akter R. Goh S.H. Kim C.S. Lee K.J. Redox effects of molecular hydrogen and its therapeutic efficacy in the treatment of neurodegenerative diseases. Processes 2021 9 2 308 10.3390/pr9020308
    [Google Scholar]
  2. Rahman M.H. Bajgai J. Fadriquela A. Sharma S. Trinh T.T. Akter R. Jeong Y.J. Goh S.H. Kim C.S. Lee K.J. Therapeutic potential of natural products in treating neurodegenerative disorders and their future prospects and challenges. Molecules 2021 26 17 5327 10.3390/molecules26175327 34500759
    [Google Scholar]
  3. Salvadores N. Court F.A. The necroptosis pathway and its role in age-related neurodegenerative diseases: Will it open up new therapeutic avenues in the next decade? Expert Opin. Ther. Targets 2020 24 7 679 693 10.1080/14728222.2020.1758668 32310729
    [Google Scholar]
  4. Yildiz-Unal A. Korulu S. Karabay A. Neuroprotective strategies against calpain-mediated neurodegeneration. Neuropsychiatr. Dis. Treat. 2015 11 297 310 10.2147/NDT.S78226 25709452
    [Google Scholar]
  5. Di Paolo M. Papi L. Gori F. Turillazzi E. Natural products in neurodegenerative diseases: A great promise but an ethical challenge. Int. J. Mol. Sci. 2019 20 20 5170 10.3390/ijms20205170 31635296
    [Google Scholar]
  6. Thirupathi A. Chang Y-Z. Brain iron metabolism and CNS diseases. Brain Iron Metabolism and CNS Diseases. Advances in Experimental Medicine and Biology. Springer Singapore 2019 1 19 10.1007/978‑981‑13‑9589‑5_1
    [Google Scholar]
  7. Troncoso-Escudero P. Sepulveda D. Pérez-Arancibia R. Parra A.V. Arcos J. Grunenwald F. Vidal R.L. On the right track to treat movement disorders: Promising therapeutic approaches for Parkinson’s and Huntington’s disease. Front. Aging Neurosci. 2020 12 571185 10.3389/fnagi.2020.571185 33101007
    [Google Scholar]
  8. Harischandra D.S. Ghaisas S. Zenitsky G. Jin H. Kanthasamy A. Anantharam V. Kanthasamy A.G. Manganese-induced neurotoxicity: New insights into the triad of protein misfolding, mitochondrial impairment, and neuroinflammation. Front. Neurosci. 2019 13 654 10.3389/fnins.2019.00654 31293375
    [Google Scholar]
  9. Fu H. Hardy J. Duff K.E. Selective vulnerability in neurodegenerative diseases. Nat. Neurosci. 2018 21 10 1350 1358 10.1038/s41593‑018‑0221‑2 30250262
    [Google Scholar]
  10. Gan L. Cookson M.R. Petrucelli L. La Spada A.R. Converging pathways in neurodegeneration, from genetics to mechanisms. Nat. Neurosci. 2018 21 10 1300 1309 10.1038/s41593‑018‑0237‑7 30258237
    [Google Scholar]
  11. Singh A. Kukreti R. Saso L. Kukreti S. Oxidative stress: A key modulator in neurodegenerative diseases. Molecules 2019 24 8 1583 10.3390/molecules24081583 31013638
    [Google Scholar]
  12. Fan J. Dawson T. M. Dawson V. L. Cell death mechanisms of neurodegeneration. Neurodegenerative Diseases. Advances in Neurobiology Springer Cham 2017 15 403 425
    [Google Scholar]
  13. Cory H. Passarelli S. Szeto J. Tamez M. Mattei J. The role of polyphenols in human health and food systems: A mini-review. Front. Nutr. 2018 5 87 10.3389/fnut.2018.00087 30298133
    [Google Scholar]
  14. Li X. Chu S. Liu Y. Chen N. Neuroprotective effects of anthraquinones from rhubarb in central nervous system diseases. Evid. Based Complement. Alternat. Med. 2019 2019 1 1 12 10.1155/2019/3790728 31223328
    [Google Scholar]
  15. Lutz M. Fuentes E. Ávila F. Alarcón M. Palomo I. Roles of phenolic compounds in the reduction of risk factors of cardiovascular diseases. Molecules 2019 24 2 366 10.3390/molecules24020366 30669612
    [Google Scholar]
  16. Pham L. Wright D.K. O’Brien W.T. Bain J. Huang C. Sun M. Casillas-Espinosa P.M. Shah A.D. Schittenhelm R.B. Sobey C.G. Brady R.D. O’Brien T.J. Mychasiuk R. Shultz S.R. McDonald S.J. Behavioral, axonal, and proteomic alterations following repeated mild traumatic brain injury: Novel insights using a clinically relevant rat model. Neurobiol. Dis. 2021 148 105151 10.1016/j.nbd.2020.105151 33127468
    [Google Scholar]
  17. Bui T.T. Nguyen T.H. Natural product for the treatment of Alzheimer’s disease. J. Basic Clin. Physiol. Pharmacol. 2017 28 5 413 423 10.1515/jbcpp‑2016‑0147 28708573
    [Google Scholar]
  18. Babaei F. Mirzababaei M. Nassiri-Asl M. Quercetin in food: Possible mechanisms of its effect on memory. J. Food Sci. 2018 83 9 2280 2287 10.1111/1750‑3841.14317 30103275
    [Google Scholar]
  19. Obeso J.A. Stamelou M. Goetz C.G. Poewe W. Lang A.E. Weintraub D. Burn D. Halliday G.M. Bezard E. Przedborski S. Lehericy S. Brooks D.J. Rothwell J.C. Hallett M. DeLong M.R. Marras C. Tanner C.M. Ross G.W. Langston J.W. Klein C. Bonifati V. Jankovic J. Lozano A.M. Deuschl G. Bergman H. Tolosa E. Rodriguez-Violante M. Fahn S. Postuma R.B. Berg D. Marek K. Standaert D.G. Surmeier D.J. Olanow C.W. Kordower J.H. Calabresi P. Schapira A.H.V. Stoessl A.J. Past, present, and future of Parkinson’s disease: A special essay on the 200th Anniversary of the Shaking Palsy. Mov. Disord. 2017 32 9 1264 1310 10.1002/mds.27115 28887905
    [Google Scholar]
  20. Grieco M. Giorgi A. Gentile M.C. d’Erme M. Morano S. Maras B. Filardi T. Glucagon-like peptide-1: A focus on neurodegenerative diseases. Front. Neurosci. 2019 13 1112 10.3389/fnins.2019.01112 31680842
    [Google Scholar]
  21. Shahmoradian S.H. Lewis A.J. Genoud C. Hench J. Moors T.E. Navarro P.P. Castaño-Díez D. Schweighauser G. Graff-Meyer A. Goldie K.N. Sütterlin R. Huisman E. Ingrassia A. Gier Y. Rozemuller A.J.M. Wang J. Paepe A.D. Erny J. Staempfli A. Hoernschemeyer J. Großerüschkamp F. Niedieker D. El-Mashtoly S.F. Quadri M. Van IJcken W.F.J. Bonifati V. Gerwert K. Bohrmann B. Frank S. Britschgi M. Stahlberg H. Van de Berg W.D.J. Lauer M.E. Lewy pathology in Parkinson’s disease consists of crowded organelles and lipid membranes. Nat. Neurosci. 2019 22 7 1099 1109 10.1038/s41593‑019‑0423‑2 31235907
    [Google Scholar]
  22. Hunn B.H.M. Cragg S.J. Bolam J.P. Spillantini M.G. Wade-Martins R. Impaired intracellular trafficking defines early Parkinson’s disease. Trends Neurosci. 2015 38 3 178 188 10.1016/j.tins.2014.12.009 25639775
    [Google Scholar]
  23. Hilton J.B. White A.R. Crouch P.J. Metal-deficient SOD1 in amyotrophic lateral sclerosis. J. Mol. Med. 2015 93 5 481 487 10.1007/s00109‑015‑1273‑3 25754173
    [Google Scholar]
  24. Sirangelo I. Iannuzzi C. The role of metal binding in the amyotrophic lateral sclerosis-related aggregation of copper-zinc superoxide dismutase. Molecules 2017 22 9 1429 10.3390/molecules22091429 28850080
    [Google Scholar]
  25. Bostan A.C. Strick P.L. The basal ganglia and the cerebellum: Nodes in an integrated network. Nat. Rev. Neurosci. 2018 19 6 338 350 10.1038/s41583‑018‑0002‑7 29643480
    [Google Scholar]
  26. Gil J.M. Rego A.C. Mechanisms of neurodegeneration in Huntington’s disease. Eur. J. Neurosci. 2008 27 11 2803 2820 10.1111/j.1460‑9568.2008.06310.x 18588526
    [Google Scholar]
  27. Hsu Y.T. Chang Y.G. Chern Y. Insights into GABA A ergic system alteration in Huntington’s disease. Open Biol. 2018 8 12 180165 10.1098/rsob.180165 30518638
    [Google Scholar]
  28. Gardiner S.L. van Belzen M.J. Boogaard M.W. van Roon-Mom W.M.C. Rozing M.P. van Hemert A.M. Smit J.H. Beekman A.T.F. van Grootheest G. Schoevers R.A. Oude Voshaar R.C. Roos R.A.C. Comijs H.C. Penninx B.W.J.H. van der Mast R.C. Aziz N.A. Huntingtin gene repeat size variations affect risk of lifetime depression. Transl. Psychiatry 2017 7 12 1277 10.1038/s41398‑017‑0042‑1 29225330
    [Google Scholar]
  29. Bhat A.H. Dar K.B. Anees S. Zargar M.A. Masood A. Sofi M.A. Ganie S.A. Oxidative stress, mitochondrial dysfunction and neurodegenerative diseases; A mechanistic insight. Biomed. Pharmacother. 2015 74 101 110 10.1016/j.biopha.2015.07.025 26349970
    [Google Scholar]
  30. Golpich M. Amini E. Mohamed Z. Azman Ali R. Mohamed Ibrahim N. Ahmadiani A. Mitochondrial dysfunction and biogenesis in neurodegenerative diseases: Pathogenesis and treatment. CNS Neurosci. Ther. 2017 23 1 5 22 10.1111/cns.12655 27873462
    [Google Scholar]
  31. Ullah R. Khan M. Shah S.A. Saeed K. Kim M.O. Natural antioxidant anthocyanins—A hidden therapeutic candidate in metabolic disorders with major focus in neurodegeneration. Nutrients 2019 11 6 1195 10.3390/nu11061195 31141884
    [Google Scholar]
  32. Nita M. Grzybowski A. The role of the reactive oxygen species and oxidative stress in the pathomechanism of the age‐related ocular diseases and other pathologies of the anterior and posterior eye segments in adults. Oxid. Med. Cell. Longev. 2016 2016 1 3164734 10.1155/2016/3164734 26881021
    [Google Scholar]
  33. Buendia I. Michalska P. Navarro E. Gameiro I. Egea J. León R. Nrf2–ARE pathway: An emerging target against oxidative stress and neuroinflammation in neurodegenerative diseases. Pharmacol. Ther. 2016 157 84 104 10.1016/j.pharmthera.2015.11.003 26617217
    [Google Scholar]
  34. Gelders G. Baekelandt V. Van der Perren A. Linking neuroinflammation and neurodegeneration in Parkinson’s disease. J. Immunol. Res. 2018 2018 1 1 12 10.1155/2018/4784268 29850629
    [Google Scholar]
  35. Leszek J.; E Barreto G. Gasiorowski K. Koutsouraki E. Aliev G. Inflammatory mechanisms and oxidative stress as key factors responsible for progression of neurodegeneration: Role of brain innate immune system. CNS Neurol. Disord. Drug Targets 2016 15 3 329 336
    [Google Scholar]
  36. Stephenson J. Nutma E. van der Valk P. Amor S. Inflammation in CNS neurodegenerative diseases. Immunology 2018 154 2 204 219 10.1111/imm.12922 29513402
    [Google Scholar]
  37. Thurgur H. Pinteaux E. Microglia in the neurovascular unit: Blood–brain barrier–microglia interactions after central nervous system disorders. Neuroscience 2019 405 55 67 10.1016/j.neuroscience.2018.06.046 31007172
    [Google Scholar]
  38. Voet S. Prinz M. van Loo G. Microglia in central nervous system inflammation and multiple sclerosis pathology. Trends Mol. Med. 2019 25 2 112 123 10.1016/j.molmed.2018.11.005 30578090
    [Google Scholar]
  39. Kabba J.A. Xu Y. Christian H. Ruan W. Chenai K. Xiang Y. Zhang L. Saavedra J.M. Pang T. Microglia: housekeeper of the central nervous system. Cell. Mol. Neurobiol. 2018 38 1 53 71 10.1007/s10571‑017‑0504‑2 28534246
    [Google Scholar]
  40. Cardenas C. Lovy A. Silva-Pavez E. Urra F. Mizzoni C. Ahumada-Castro U. Bustos G. Jaňa F. Cruz P. Farias P. Mendoza E. Huerta H. Murgas P. Hunter M. Rios M. Cerda O. Georgakoudi I. Zakarian A. Molgó J. Foskett J.K. Cancer cells with defective oxidative phosphorylation require endoplasmic reticulum–to–mitochondria Ca 2+ transfer for survival. Sci. Signal. 2020 13 640 eaay1212 10.1126/scisignal.aay1212 32665411
    [Google Scholar]
  41. Panov A. Dikalov S. Shalbuyeva N. Hemendinger R. Greenamyre J.T. Rosenfeld J. Species- and tissue-specific relationships between mitochondrial permeability transition and generation of ROS in brain and liver mitochondria of rats and mice. Am. J. Physiol. Cell Physiol. 2007 292 2 C708 C718 10.1152/ajpcell.00202.2006 17050617
    [Google Scholar]
  42. Rao V.K. Carlson E.A. Yan S.S. Mitochondrial permeability transition pore is a potential drug target for neurodegeneration. Biochim. Biophys. Acta Mol. Basis Dis. 2014 1842 8 1267 1272 10.1016/j.bbadis.2013.09.003 24055979
    [Google Scholar]
  43. Gadd M.E. Broekemeier K.M. Crouser E.D. Kumar J. Graff G. Pfeiffer D.R. Mitochondrial iPLA2 activity modulates the release of cytochrome c from mitochondria and influences the permeability transition. J. Biol. Chem. 2006 281 11 6931 6939 10.1074/jbc.M510845200 16407316
    [Google Scholar]
  44. Osellame L.D. Rahim A.A. Hargreaves I.P. Gegg M.E. Richard-Londt A. Brandner S. Waddington S.N. Schapira A.H.V. Duchen M.R. Mitochondria and quality control defects in a mouse model of Gaucher disease--links to Parkinson’s disease. Cell Metab. 2013 17 6 941 953 10.1016/j.cmet.2013.04.014 23707074
    [Google Scholar]
  45. Poewe W. Seppi K. Tanner C.M. Halliday G.M. Brundin P. Volkmann J. Schrag A.E. Lang A.E. Parkinson disease. Nat. Rev. Dis. Primers 2017 3 1 17013 10.1038/nrdp.2017.13 28332488
    [Google Scholar]
  46. Kent J.A. Patel V. Varela N.A. Gender disparities in health care. Mt. Sinai J. Med. 2012 79 5 555 559 10.1002/msj.21336 22976361
    [Google Scholar]
  47. Bano D. Dinsdale D. Cabrera-Socorro A. Maida S. Lambacher N. Mccoll B. Ferrando-May E. Hengartner M.O. Nicotera P. Alteration of the nuclear pore complex in Ca2+-mediated cell death. Cell Death Differ. 2010 17 1 119 133 10.1038/cdd.2009.112 19713973
    [Google Scholar]
  48. Verma D.K. Gupta S. Biswas J. Joshi N. Sivarama Raju K. Wahajuddin M. Singh S. Metabolic enhancer piracetam attenuates the translocation of mitochondrion-specific proteins of caspase-independent pathway, poly [ADP-Ribose] polymerase 1 up-regulation and oxidative DNA fragmentation. Neurotox. Res. 2018 34 2 198 219 10.1007/s12640‑018‑9878‑2 29532444
    [Google Scholar]
  49. Srivastava P. Yadav R. S. Efficacy of natural compounds in neurodegenerative disorders. The Benefits of Natural Products for Neurodegenerative Diseases. Advances in Neurobiology Springer Cham 2016 112 107 123
    [Google Scholar]
  50. Khan H. Ullah H. Aschner M. Cheang W.S. Akkol E.K. Neuroprotective effects of quercetin in Alzheimer’s disease. Biomolecules 2019 10 1 59 10.3390/biom10010059 31905923
    [Google Scholar]
  51. Batiha G.E.S. Beshbishy A.M. Ikram M. Mulla Z.S. El-Hack M.E.A. Taha A.E. Algammal A.M. Elewa Y.H.A. The pharmacological activity, biochemical properties, and pharmacokinetics of the major natural polyphenolic flavonoid: Quercetin. Foods 2020 9 3 374 10.3390/foods9030374 32210182
    [Google Scholar]
  52. Schultke E. The flavonoid quercetin and its potential as neuroprotectant in the therapy of acute traumatic CNS injury: An experimental study. University of Saskatchewan 2004
    [Google Scholar]
  53. Jurcau A. The role of natural antioxidants in the prevention of dementia—Where do we stand and future perspectives. Nutrients 2021 13 2 282 10.3390/nu13020282 33498262
    [Google Scholar]
  54. Kumar G.P. Anilakumar K.R. Naveen S. Phytochemicals having neuroprotective properties from dietary sources and medicinal herbs. Pharmacogn. J. 2015 7 1 01 17 10.5530/pj.2015.1.1
    [Google Scholar]
  55. Costa L.G. Garrick J.M. Roquè P.J. Pellacani C. Mechanisms of neuroprotection by quercetin: Counteracting oxidative stress and more. Oxid. Med. Cell. Longev. 2016 2016 1 2986796 10.1155/2016/2986796 26904161
    [Google Scholar]
  56. Faria A. Pestana D. Teixeira D. Azevedo J. Freitas V. Mateus N. Calhau C. Flavonoid transport across RBE4 cells: A blood-brain barrier model. Cell. Mol. Biol. Lett. 2010 15 2 234 241 10.2478/s11658‑010‑0006‑4 20140760
    [Google Scholar]
  57. Ishisaka A. Ichikawa S. Sakakibara H. Piskula M.K. Nakamura T. Kato Y. Ito M. Miyamoto K. Tsuji A. Kawai Y. Terao J. Accumulation of orally administered quercetin in brain tissue and its antioxidative effects in rats. Free Radic. Biol. Med. 2011 51 7 1329 1336 10.1016/j.freeradbiomed.2011.06.017 21741473
    [Google Scholar]
  58. Ferri P. Angelino D. Gennari L. Benedetti S. Ambrogini P. Del Grande P. Ninfali P. Enhancement of flavonoid ability to cross the blood–brain barrier of rats by co-administration with α-tocopherol. Food Funct. 2015 6 2 394 400 10.1039/C4FO00817K 25474041
    [Google Scholar]
  59. Wang Y. Wang Q. Bao X. Ding Y. Shentu J. Cui W. Chen X. Wei X. Xu S. Taxifolin prevents β-amyloid-induced impairments of synaptic formation and deficits of memory via the inhibition of cytosolic phospholipase A2/prostaglandin E2 content. Metab. Brain Dis. 2018 33 4 1069 1079 10.1007/s11011‑018‑0207‑5 29542038
    [Google Scholar]
  60. Yang P. Xu F. Li H.F. Wang Y. Li F.C. Shang M.Y. Liu G.X. Wang X. Cai S.Q. Detection of 191 taxifolin metabolites and their distribution in rats using HPLC-ESI-IT-TOF-MSn. Molecules 2016 21 9 1209 10.3390/molecules21091209 27649117
    [Google Scholar]
  61. Saito S. Yamamoto Y. Maki T. Hattori Y. Ito H. Mizuno K. Harada-Shiba M. Kalaria R.N. Fukushima M. Takahashi R. Ihara M. Taxifolin inhibits amyloid-β oligomer formation and fully restores vascular integrity and memory in cerebral amyloid angiopathy. Acta Neuropathol. Commun. 2017 5 1 26 10.1186/s40478‑017‑0429‑5 28376923
    [Google Scholar]
  62. Akter R. Chowdhury M.A.R. Rahman M.H. Flavonoids and polyphenolic compounds as potential talented agents for the treatment of Alzheimer’s disease and their antioxidant activities. Curr. Pharm. Des. 2021 27 3 345 356 10.2174/18734286MTExrMDYa2 33138754
    [Google Scholar]
  63. Wang B. Lu Y. Wang R. Liu S. Hu X. Wang H. Transport and metabolic profiling studies of amentoflavone in Caco-2 cells by UHPLC-ESI-MS/MS and UHPLC-ESI-Q-TOF-MS/MS. J. Pharm. Biomed. Anal. 2020 189 113441 10.1016/j.jpba.2020.113441 32615340
    [Google Scholar]
  64. Williamson G. Kay C.D. Crozier A. The bioavailability, transport, and bioactivity of dietary flavonoids: A review from a historical perspective. Compr. Rev. Food Sci. Food Saf. 2018 17 5 1054 1112 10.1111/1541‑4337.12351 33350159
    [Google Scholar]
  65. Nabavi S.F. Braidy N. Gortzi O. Sobarzo-Sanchez E. Daglia M. Skalicka-Woźniak K. Nabavi S.M. Luteolin as an anti-inflammatory and neuroprotective agent: A brief review. Brain Res. Bull. 2015 119 Pt A 1 11 10.1016/j.brainresbull.2015.09.002 26361743
    [Google Scholar]
  66. Yulyana Y. Tovmasyan A. Ho I.A.W. Sia K.C. Newman J.P. Ng W.H. Guo C.M. Hui K.M. Batinic-Haberle I. Lam P.Y.P. Redox-active Mn porphyrin-based potent SOD mimic, MnTnBuOE-2-PyP 5+, enhances carbenoxolone-mediated TRAIL-induced apoptosis in glioblastoma multiforme. Stem Cell Rev. 2016 12 1 140 155 10.1007/s12015‑015‑9628‑2 26454429
    [Google Scholar]
  67. Zheng H. Koo E.H. The amyloid precursor protein: Beyond amyloid. Mol. Neurodegener. 2006 1 1 5 10.1186/1750‑1326‑1‑5 16930452
    [Google Scholar]
  68. Uddin M.S. Hossain M.F. Mamun A.A. Shah M.A. Hasana S. Bulbul I.J. Sarwar M.S. Mansouri R.A. Ashraf G.M. Rauf A. Abdel-Daim M.M. Bin-Jumah M.N. Exploring the multimodal role of phytochemicals in the modulation of cellular signaling pathways to combat age-related neurodegeneration. Sci. Total Environ. 2020 725 138313 10.1016/j.scitotenv.2020.138313 32464743
    [Google Scholar]
  69. Calis Z. Mogulkoc R. Baltaci A.K. The roles of flavonols/flavonoids in neurodegeneration and neuroinflammation. Mini Rev. Med. Chem. 2020 20 15 1475 1488 10.2174/1389557519666190617150051 31288717
    [Google Scholar]
  70. Popović M. Caballero-Bleda M. Benavente-García O. Castillo J. The flavonoid apigenin delays forgetting of passive avoidance conditioning in rats. J. Psychopharmacol. 2014 28 5 498 501 10.1177/0269881113512040 24284476
    [Google Scholar]
  71. Ganai A.A. Farooqi H. Bioactivity of genistein: A review of in vitro and in vivo studies. Biomed. Pharmacother. 2015 76 30 38 10.1016/j.biopha.2015.10.026 26653547
    [Google Scholar]
  72. Rahman M. H. Akter R. Kamal M. A. Prospective function of different antioxidant containing natural products in the treatment of neurodegenerative diseases. CNS Neurol. Disord. Drug Targets 2021 20 8 694 703
    [Google Scholar]
  73. Malar D. Devi K. Dietary polyphenols for treatment of Alzheimer’s disease--future research and development. Curr. Pharm. Biotechnol. 2014 15 4 330 342 10.2174/1389201015666140813122703 25312617
    [Google Scholar]
  74. You F. Li Q. Jin G. Zheng Y. Chen J. Yang H. Genistein protects against Aβ25–35 induced apoptosis of PC12 cells through JNK signaling and modulation of Bcl-2 family messengers. BMC Neurosci. 2017 18 1 12 10.1186/s12868‑016‑0329‑9 28081713
    [Google Scholar]
  75. Bagheri M. Joghataei M.T. Mohseni S. Roghani M. Genistein ameliorates learning and memory deficits in amyloid β(1–40) rat model of Alzheimer’s disease. Neurobiol. Learn. Mem. 2011 95 3 270 276 10.1016/j.nlm.2010.12.001 21144907
    [Google Scholar]
  76. Kim K.H. Dodsworth C. Paras A. Burton B.K. High dose genistein aglycone therapy is safe in patients with mucopolysaccharidoses involving the central nervous system. Mol. Genet. Metab. 2013 109 4 382 385 10.1016/j.ymgme.2013.06.012 23845234
    [Google Scholar]
  77. Rahman M.H. Akter R. Bhattacharya T. Abdel-Daim M.M. Alkahtani S. Arafah M.W. Al-Johani N.S. Alhoshani N.M. Alkeraishan N. Alhenaky A. Abd-Elkader O.H. El-Seedi H.R. Kaushik D. Mittal V. Resveratrol and neuroprotection: Impact and its therapeutic potential in Alzheimer’s disease. Front. Pharmacol. 2020 11 619024 10.3389/fphar.2020.619024 33456444
    [Google Scholar]
  78. Bastianetto S. Ménard C. Quirion R. Neuroprotective action of resveratrol. Biochim. Biophys. Acta Mol. Basis Dis. 2015 1852 6 1195 1201 10.1016/j.bbadis.2014.09.011
    [Google Scholar]
  79. Hou Y. Wang K. Wan W. Cheng Y. Pu X. Ye X. Resveratrol provides neuroprotection by regulating the JAK2/STAT3/PI3K/AKT/mTOR pathway after stroke in rats. Genes Dis. 2018 5 3 245 255 10.1016/j.gendis.2018.06.001 30320189
    [Google Scholar]
  80. Koushki M. Amiri-Dashatan N. Ahmadi N. Abbaszadeh H.A. Rezaei-Tavirani M. Resveratrol: A miraculous natural compound for diseases treatment. Food Sci. Nutr. 2018 6 8 2473 2490 10.1002/fsn3.855 30510749
    [Google Scholar]
  81. Iside C. Scafuro M. Nebbioso A. Altucci L. SIRT1 activation by natural phytochemicals: An overview. Front. Pharmacol. 2020 11 1225 10.3389/fphar.2020.01225 32848804
    [Google Scholar]
  82. Durazzo A. Lucarini M. Souto E.B. Cicala C. Caiazzo E. Izzo A.A. Novellino E. Santini A. Polyphenols: A concise overview on the chemistry, occurrence, and human health. Phytother. Res. 2019 33 9 2221 2243 10.1002/ptr.6419 31359516
    [Google Scholar]
  83. Ferreira P.E.B. Beraldi E.J. Borges S.C. Natali M.R.M. Buttow N.C. Resveratrol promotes neuroprotection and attenuates oxidative and nitrosative stress in the small intestine in diabetic rats. Biomed. Pharmacother. 2018 105 724 733 10.1016/j.biopha.2018.06.030 29906751
    [Google Scholar]
  84. Ma T. Tan M.S. Yu J.T. Tan L. Resveratrol as a therapeutic agent for Alzheimer’s disease. BioMed Res. Int. 2014 2014 1 1 13 10.1155/2014/350516 25525597
    [Google Scholar]
  85. Fereidoon S. Han P. Bioaccessibility and bioavailability of phenolic compounds. J. Food Bioact. 2018 4 0
    [Google Scholar]
  86. Davidov-Pardo G. McClements D.J. Resveratrol encapsulation: Designing delivery systems to overcome solubility, stability and bioavailability issues. Trends Food Sci. Technol. 2014 38 2 88 103 10.1016/j.tifs.2014.05.003
    [Google Scholar]
  87. Sathya M. Moorthi P. Premkumar P. Kandasamy M. Jayachandran K.S. Anusuyadevi M. Resveratrol intervenes cholesterol- and isoprenoid-mediated amyloidogenic processing of AβPP in familial alzheimer’s disease. J. Alzheimers Dis. 2017 60 s1 S3 S23 10.3233/JAD‑161034 28059793
    [Google Scholar]
  88. Lopez M.S. Dempsey R.J. Vemuganti R. Resveratrol neuroprotection in stroke and traumatic CNS injury. Neurochem. Int. 2015 89 75 82 10.1016/j.neuint.2015.08.009 26277384
    [Google Scholar]
  89. Zhang G. Liu Y. Xu L. Sha C. Zhang H. Xu W. Resveratrol alleviates lipopolysaccharide-induced inflammation in PC-12 cells and in rat model. BMC Biotechnol. 2019 19 1 10 10.1186/s12896‑019‑0502‑1 30691440
    [Google Scholar]
  90. Hou Y. Zhang Y. Mi Y. Wang J. Zhang H. Xu J. Yang Y. Liu J. Ding L. Yang J. Chen G. Wu C. A novel quinolyl‐substituted analogue of resveratrol inhibits lps‐induced inflammatory responses in microglial cells by blocking the NF‐κB/MAPK signaling pathways. Mol. Nutr. Food Res. 2019 63 20 1801380 10.1002/mnfr.201801380 31378007
    [Google Scholar]
  91. Salehi B. Mishra A.P. Nigam M. Sener B. Kilic M. Sharifi-Rad M. Fokou P.V.T. Martins N. Sharifi-Rad J. Resveratrol: A double-edged sword in health benefits. Biomedicines 2018 6 3 91 10.3390/biomedicines6030091 30205595
    [Google Scholar]
  92. Deane R. Wu Z. Sagare A. Davis J. Du Yan S. Hamm K. Xu F. Parisi M. LaRue B. Hu H.W. Spijkers P. Guo H. Song X. Lenting P.J. Van Nostrand W.E. Zlokovic B.V. LRP/amyloid beta-peptide interaction mediates differential brain efflux of Abeta isoforms. Neuron 2004 43 3 333 344 10.1016/j.neuron.2004.07.017 15294142
    [Google Scholar]
  93. Saha A. Sarkar C. Singh S.P. Zhang Z. Munasinghe J. Peng S. Chandra G. Kong E. Mukherjee A.B. The blood-brain barrier is disrupted in a mouse model of infantile neuronal ceroid lipofuscinosis: Amelioration by resveratrol. Hum. Mol. Genet. 2012 21 10 2233 2244 10.1093/hmg/dds038 22331300
    [Google Scholar]
  94. Moussa C. Hebron M. Huang X. Ahn J. Rissman R.A. Aisen P.S. Turner R.S. Resveratrol regulates neuro-inflammation and induces adaptive immunity in Alzheimer’s disease. J. Neuroinflammation 2017 14 1 1 10.1186/s12974‑016‑0779‑0 28086917
    [Google Scholar]
  95. Nabavi S.F. Khan H. D’onofrio G. Šamec D. Shirooie S. Dehpour A.R. Argüelles S. Habtemariam S. Sobarzo-Sanchez E. Apigenin as neuroprotective agent: Of mice and men. Pharmacol. Res. 2018 128 359 365 10.1016/j.phrs.2017.10.008 29055745
    [Google Scholar]
  96. Yan X. Qi M. Li P. Zhan Y. Shao H. Apigenin in cancer therapy: Anti-cancer effects and mechanisms of action. Cell Biosci. 2017 7 1 50 10.1186/s13578‑017‑0179‑x 29034071
    [Google Scholar]
  97. Wu J.J. Ai C.Z. Liu Y. Zhang Y.Y. Jiang M. Fan X.R. Lv A.P. Yang L. Interactions between phytochemicals from traditional Chinese medicines and human cytochrome P450 enzymes. Curr. Drug Metab. 2012 13 5 599 614 10.2174/1389200211209050599 22475333
    [Google Scholar]
  98. Sánchez-Marzo N. Pérez-Sánchez A. Ruiz-Torres V. Martínez-Tébar A. Castillo J. Herranz-López M. Barrajón-Catalán E. Antioxidant and photoprotective activity of apigenin and its potassium salt derivative in human keratinocytes and absorption in caco-2 cell monolayers. Int. J. Mol. Sci. 2019 20 9 2148 10.3390/ijms20092148 31052292
    [Google Scholar]
  99. Siddique Y. Jyoti S. Naz F. Afzal M. Protective effect of apigenin in transgenic Drosophila melanogaster model of Parkinson’s disease. Pharmacologyonline 2011 3
    [Google Scholar]
  100. Balez R. Steiner N. Engel M. Muñoz S.S. Lum J.S. Wu Y. Wang D. Vallotton P. Sachdev P. O’Connor M. Sidhu K. Münch G. Ooi L. Neuroprotective effects of apigenin against inflammation, neuronal excitability and apoptosis in an induced pluripotent stem cell model of Alzheimer’s disease. Sci. Rep. 2016 6 1 31450 10.1038/srep31450 27514990
    [Google Scholar]
  101. Xian Y-F. Lin Z-X. Mao Q-Q. Hu Z. Zhao M. Che C-T. Ip S-P. Bioassay-guided isolation of neuroprotective compounds from Uncaria rhynchophylla against beta-amyloid-induced neurotoxicity. Evid. Based Complement. Alternat. Med. 2012 2012 1 802625 22778778
    [Google Scholar]
  102. Ling L.Z. Zhang S.D. The complete chloroplast genome of the traditional Chinese herb, Uncaria rhynchophylla (Rubiaceae). Mitochondrial DNA B Resour. 2020 5 1 424 425 10.1080/23802359.2019.1703597 33366585
    [Google Scholar]
  103. Wang Y.L. Dong P.P. Liang J.H. Li N. Sun C.P. Tian X.G. Huo X.K. Zhang B.J. Ma X.C. Lv C.Z. Phytochemical constituents from Uncaria rhynchophylla in human carboxylesterase 2 inhibition: Kinetics and interaction mechanism merged with docking simulations. Phytomedicine 2018 51 120 127 10.1016/j.phymed.2018.10.006 30466609
    [Google Scholar]
  104. Yang W. Ip S.P. Liu L. Xian Y.F. Lin Z.X. Uncaria rhynchophylla and its major constituents on central nervous system: A review on their pharmacological actions. Curr. Vasc. Pharmacol. 2020 18 4 346 357 10.2174/1570161117666190704092841 31272356
    [Google Scholar]
  105. Shim J.S. Kim H.G. Ju M.S. Choi J.G. Jeong S.Y. Oh M.S. Effects of the hook of Uncaria rhynchophylla on neurotoxicity in the 6-hydroxydopamine model of Parkinson’s disease. J. Ethnopharmacol. 2009 126 2 361 365 10.1016/j.jep.2009.08.023 19703534
    [Google Scholar]
  106. Biswajit Pal S.S.K. Evaluation of anti-Parkinson’s activity of Uncaria rhynchophylla in 6-hydroxy dopamine lesioned rat model. Int. J. Appl. Res. 2015 1 6 203 206
    [Google Scholar]
  107. Lan Y.L. Zhou J.J. Liu J. Huo X.K. Wang Y.L. Liang J.H. Zhao J.C. Sun C.P. Yu Z.L. Fang L.L. Tian X.G. Feng L. Ning J. Zhang B.J. Wang C. Zhao X.Y. Ma X.C. Uncaria rhynchophylla Ameliorates Parkinson’s disease by inhibiting HSP90 expression: Insights from quantitative proteomics. Cell. Physiol. Biochem. 2018 47 4 1453 1464 10.1159/000490837 29940559
    [Google Scholar]
  108. Zhang Y.N. Yang Y.F. Xu W. Yang X.W. The blood-brain barrier permeability of six indole alkaloids from Uncariae ramulus cum uncis in the MDCK-pHaMDR cell monolayer model. Molecules 2017 22 11 1944 10.3390/molecules22111944 29125571
    [Google Scholar]
  109. Zhang C. Wu X. Xian Y. Zhu L. Lin G. Lin Z.X. Evidence on integrating pharmacokinetics to find truly therapeutic agent for Alzheimer’s disease: Comparative pharmacokinetics and disposition kinetics profiles of stereoisomers isorhynchophylline and rhynchophylline in rats. Evid. Based Complement. Alternat. Med. 2019 2019 1 1 9 10.1155/2019/4016323 30854007
    [Google Scholar]
  110. Hajialyani M. Hosein Farzaei M. Echeverría J. Nabavi S.M. Uriarte E. Sobarzo-Sánchez E. Hesperidin as a neuroprotective agent: A review of animal and clinical evidence. Molecules 2019 24 3 648 10.3390/molecules24030648 30759833
    [Google Scholar]
  111. Bhadbhade A. Cheng D. W. Amyloid precursor protein processing in alzheimer's disease. 2012
    [Google Scholar]
  112. Zhang Y. Huang N. Yan F. Jin H. Zhou S. Shi J. Jin F. Diabetes mellitus and Alzheimer’s disease: GSK-3β as a potential link. Behav. Brain Res. 2018 339 57 65 10.1016/j.bbr.2017.11.015 29158110
    [Google Scholar]
  113. Khan A. Jahan S. Imtiyaz Z. Alshahrani S. Antar Makeen H. Mohammed Alshehri B. Kumar A. Arafah A. Rehman M. Neuroprotection: Targeting multiple pathways by naturally occurring phytochemicals. Biomedicines 2020 8 8 284 10.3390/biomedicines8080284 32806490
    [Google Scholar]
  114. Justin Thenmozhi A. William Raja T.R. Manivasagam T. Janakiraman U. Essa M.M. Hesperidin ameliorates cognitive dysfunction, oxidative stress and apoptosis against aluminium chloride induced rat model of Alzheimer’s disease. Nutr. Neurosci. 2017 20 6 360 368 10.1080/1028415X.2016.1144846 26878879
    [Google Scholar]
  115. Kim J. Wie M.B. Ahn M. Tanaka A. Matsuda H. Shin T. Benefits of hesperidin in central nervous system disorders: A review. Anat. Cell Biol. 2019 52 4 369 377 10.5115/acb.19.119 31949974
    [Google Scholar]
  116. Cao Z. Wang F. Xiu C. Zhang J. Li Y. Hypericum perforatum extract attenuates behavioral, biochemical, and neurochemical abnormalities in Aluminum chloride-induced Alzheimer’s disease rats. Biomed. Pharmacother. 2017 91 931 937 10.1016/j.biopha.2017.05.022 28514831
    [Google Scholar]
  117. Kumar A. Lalitha S. Mishra J. Hesperidin potentiates the neuroprotective effects of diazepam and gabapentin against pentylenetetrazole-induced convulsions in mice: Possible behavioral, biochemical and mitochondrial alterations. Indian J. Pharmacol. 2014 46 3 309 315 10.4103/0253‑7613.132180 24987179
    [Google Scholar]
  118. Chang C.Y. Lin T.Y. Lu C.W. Huang S.K. Wang Y.C. Chou S.S.P. Wang S.J. Hesperidin inhibits glutamate release and exerts neuroprotection against excitotoxicity induced by kainic acid in the hippocampus of rats. Neurotoxicology 2015 50 157 169 10.1016/j.neuro.2015.08.014 26342684
    [Google Scholar]
  119. Singh R. Parihar P. Singh M. Bajguz A. Kumar J. Singh S. Singh V.P. Prasad S.M. Uncovering potential applications of cyanobacteria and algal metabolites in biology, agriculture and medicine: current status and future prospects. Front. Microbiol. 2017 8 515 10.3389/fmicb.2017.00515 28487674
    [Google Scholar]
  120. Kiuru P. DʼAuria M. Muller C. Tammela P. Vuorela H. Yli-Kauhaluoma J. Exploring marine resources for bioactive compounds. Planta Med. 2014 80 14 1234 1246 10.1055/s‑0034‑1383001 25203732
    [Google Scholar]
  121. Moradi-Kor N. Ghanbari A. Rashidipour H. Bandegi A.R. Yousefi B. Barati M. Kokhaei P. Rashidy-Pour A. Therapeutic effects of spirulina platensis against adolescent stress-induced oxidative stress, brain-derived neurotrophic factor alterations and morphological remodeling in the amygdala of adult female rats. J. Exp. Pharmacol. 2020 12 75 85 10.2147/JEP.S237378 32256126
    [Google Scholar]
  122. Zhang F. Xie J. Lu J. Zhang J. Protective effects of a polysaccharide from Spirulina platensis on dopaminergic neurons in an MPTP-induced Parkinson′s disease model in C57BL/6J mice. Neural Regen. Res. 2015 10 2 308 313 10.4103/1673‑5374.152387 25883632
    [Google Scholar]
  123. Huang C. Zhang Z. Cui W. Marine-derived natural compounds for the treatment of Parkinson’s disease. Mar. Drugs 2019 17 4 221 10.3390/md17040221 30978965
    [Google Scholar]
  124. Koh E.J. Kim K.J. Song J.H. Choi J. Lee H. Kang D.H. Heo H. Lee B.Y. Spirulina maxima extract ameliorates learning and memory impairments via inhibiting GSK-3β phosphorylation induced by intracerebroventricular injection of amyloid-β 1–42 in mice. Int. J. Mol. Sci. 2017 18 11 2401 10.3390/ijms18112401 29137190
    [Google Scholar]
  125. Chamorro G. Pérez-Albiter M. Serrano-García N. Mares-Sámano J.J. Rojas P. Spirulina maxima pretreatment partially protects against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity. Nutr. Neurosci. 2006 9 5-6 207 212 10.1080/10284150600929748 17263087
    [Google Scholar]
  126. Buono S. Langellotti A.L. Martello A. Rinna F. Fogliano V. Functional ingredients from microalgae. Food Funct. 2014 5 8 1669 1685 10.1039/C4FO00125G 24957182
    [Google Scholar]
  127. Choi W.Y. Kang D.H. Lee H.Y. Effect of fermented Spirulina maxima extract on cognitive‐enhancing activities in mice with scopolamine‐induced dementia. Evid. Based Complement. Alternat. Med. 2018 2018 1 7218504 10.1155/2018/7218504 30598686
    [Google Scholar]
  128. Rimbau V. Camins A. Romay C. González R. Pallàs M. Protective effects of C-phycocyanin against kainic acid-induced neuronal damage in rat hippocampus. Neurosci. Lett. 1999 276 2 75 78 10.1016/S0304‑3940(99)00792‑2 10624795
    [Google Scholar]
  129. Thomas N. Kim S.K. Beneficial effects of marine algal compounds in cosmeceuticals. Mar. Drugs 2013 11 1 146 164 10.3390/md11010146 23344156
    [Google Scholar]
  130. Øverland M. Mydland L.T. Skrede A. Marine macroalgae as sources of protein and bioactive compounds in feed for monogastric animals. J. Sci. Food Agric. 2019 99 1 13 24 10.1002/jsfa.9143 29797494
    [Google Scholar]
  131. Dawczynski C. Schäfer U. Leiterer M. Jahreis G. Nutritional and toxicological importance of macro, trace, and ultra-trace elements in algae food products. J. Agric. Food Chem. 2007 55 25 10470 10475 10.1021/jf0721500 17994690
    [Google Scholar]
  132. Silva J. Alves C. Pinteus S. Mendes S. Pedrosa R. Neuroprotective effects of seaweeds against 6-hydroxidopamine-induced cell death on an in vitro human neuroblastoma model. BMC Complement. Altern. Med. 2018 18 1 58 10.1186/s12906‑018‑2103‑2 29444677
    [Google Scholar]
  133. Cunha L. Grenha A. Sulfated seaweed polysaccharides as multifunctional materials in drug delivery applications. Mar. Drugs 2016 14 3 42 10.3390/md14030042 26927134
    [Google Scholar]
  134. Barbosa A.I. Coutinho A.J. Costa Lima S.A. Reis S. Marine polysaccharides in pharmaceutical applications: Fucoidan and chitosan as key players in the drug delivery match field. Mar. Drugs 2019 17 12 654 10.3390/md17120654 31766498
    [Google Scholar]
  135. Zhang L. Hao J. Zheng Y. Su R. Liao Y. Gong X. Liu L. Wang X. Fucoidan protects dopaminergic neurons by enhancing the mitochondrial function in a rotenone-induced rat model of Parkinson’s disease. Aging Dis. 2018 9 4 590 604 10.14336/AD.2017.0831 30090649
    [Google Scholar]
  136. Wei H. Gao Z. Zheng L. Zhang C. Liu Z. Yang Y. Teng H. Hou L. Yin Y. Zou X. Protective effects of fucoidan on Aβ25–35 and d-Gal-induced neurotoxicity in PC12 cells and d-Gal-induced cognitive dysfunction in mice. Mar. Drugs 2017 15 3 77 10.3390/md15030077 28300775
    [Google Scholar]
  137. Mohd Sairazi N.S. Sirajudeen K.N.S. Natural products and their bioactive compounds: Neuroprotective potentials against neurodegenerative diseases. Evid. Based Complement. Alternat. Med. 2020 2020 1 6565396 10.1155/2020/6565396 32148547
    [Google Scholar]
  138. Pal S. Paul S. Conformational deviation of Thrombin binding G-quadruplex aptamer (TBA) in presence of divalent cation Sr2+: A classical molecular dynamics simulation study. Int. J. Biol. Macromol. 2019 121 350 363 10.1016/j.ijbiomac.2018.09.102 30308284
    [Google Scholar]
  139. Hannan M.A. Dash R. Haque M.N. Mohibbullah M. Sohag A.A.M. Rahman M.A. Uddin M.J. Alam M. Moon I.S. Neuroprotective potentials of Marine algae and their bioactive metabolites: pharmacological insights and therapeutic advances. Mar. Drugs 2020 18 7 347 10.3390/md18070347 32630301
    [Google Scholar]
  140. Koh E.J. Seo Y.J. Choi J. Lee H.Y. Kang D.H. Kim K.J. Lee B.Y. Spirulina maxima extract prevents neurotoxicity via promoting activation of BDNF/CREB signaling pathways in neuronal cells and mice. Molecules 2017 22 8 1363 10.3390/molecules22081363 28817076
    [Google Scholar]
  141. Angeloni C. Vauzour D. Natural products and neuroprotection. Int. J. Mol. Sci. 2019 20 22 5570 10.3390/ijms20225570 31703472
    [Google Scholar]
  142. Durrenberger P.F. Fernando F.S. Kashefi S.N. Bonnert T.P. Seilhean D. Nait-Oumesmar B. Schmitt A. Gebicke-Haerter P.J. Falkai P. Grünblatt E. Palkovits M. Arzberger T. Kretzschmar H. Dexter D.T. Reynolds R. Common mechanisms in neurodegeneration and neuroinflammation: A brainnet europe gene expression microarray study. J. Neural Transm. 2015 122 7 1055 1068 10.1007/s00702‑014‑1293‑0 25119539
    [Google Scholar]
  143. Schetters S.T.T. Gomez-Nicola D. Garcia-Vallejo J.J. Van Kooyk Y. Neuroinflammation: Microglia and T cells get ready to tango. Front. Immunol. 2018 8 1905 10.3389/fimmu.2017.01905 29422891
    [Google Scholar]
  144. Shan C.S. Zhang H.F. Xu Q.Q. Shi Y.H. Wang Y. Li Y. Lin Y. Zheng G.Q. Herbal medicine formulas for parkinson’s disease: A systematic review and meta-analysis of randomized double-blind placebo-controlled clinical trials. Front. Aging Neurosci. 2018 10 349 10.3389/fnagi.2018.00349 30467472
    [Google Scholar]
  145. Panda S.S. Jhanji N. Natural products as potential anti-alzheimer agents. Curr. Med. Chem. 2020 27 35 5887 5917 10.2174/0929867326666190618113613 31215372
    [Google Scholar]
  146. Leonoudakis D. Rane A. Angeli S. Lithgow G.J. Andersen J.K. Chinta S.J. Anti-inflammatory and neuroprotective role of natural product securinine in activated glial cells: Implications for parkinson’s disease. Mediators Inflamm. 2017 2017 1 11 10.1155/2017/8302636 28473732
    [Google Scholar]
  147. Martínez-Huélamo M. Rodríguez-Morató J. Boronat A. De la Torre R. Modulation of Nrf2 by olive oil and wine polyphenols and neuroprotection. Antioxidants 2017 6 4 73 10.3390/antiox6040073 28954417
    [Google Scholar]
  148. Rehman M.U. Wali A.F. Ahmad A. Shakeel S. Rasool S. Ali R. Rashid S.M. Madkhali H. Ganaie M.A. Khan R. Neuroprotective strategies for neurological disorders by natural products: An update. Curr. Neuropharmacol. 2019 17 3 247 267 10.2174/1570159X16666180911124605 30207234
    [Google Scholar]
  149. Braak H. Del Tredici K. The preclinical phase of the pathological process underlying sporadic Alzheimer’s disease. Brain 2015 138 10 2814 2833 10.1093/brain/awv236 26283673
    [Google Scholar]
  150. Singh A. Deshpande P. Gogia N. Exploring the efficacy of natural products in alleviating Alzheimer’s disease. Neural Regen. Res. 2019 14 8 1321 1329 10.4103/1673‑5374.253509 30964049
    [Google Scholar]
  151. Castelli V. Grassi D. Bocale R. d’Angelo M. Antonosante A. Cimini A. Ferri C. Desideri G. Diet and brain health: Which role for polyphenols? Curr. Pharm. Des. 2018 24 2 227 238 10.2174/1381612824666171213100449 29237377
    [Google Scholar]
  152. Bagli E. Goussia A. Moschos M.M. Agnantis N. Kitsos G. Natural compounds and neuroprotection: Mechanisms of action and novel delivery systems. In Vivo 2016 30 5 535 547 27566070
    [Google Scholar]
  153. Lan J. Liu Z. Liao C. Merkler D.J. Han Q. Li J. A study for therapeutic treatment against parkinson’s disease via Chou’s 5-steps rule. Curr. Top. Med. Chem. 2019 19 25 2318 2333 10.2174/1568026619666191019111528 31629395
    [Google Scholar]
  154. Haddad F. Sawalha M. Khawaja Y. Najjar A. Karaman R. Dopamine and levodopa prodrugs for the treatment of parkinson’s disease. Molecules 2017 23 1 40 10.3390/molecules23010040 29295587
    [Google Scholar]
  155. Park J.S. Davis R.L. Sue C.M. Mitochondrial dysfunction in parkinson’s disease: New mechanistic insights and therapeutic perspectives. Curr. Neurol. Neurosci. Rep. 2018 18 5 21 10.1007/s11910‑018‑0829‑3 29616350
    [Google Scholar]
  156. Moon H.E. Paek S.H. Mitochondrial dysfunction in parkinson’s disease. Exp. Neurobiol. 2015 24 2 103 116 10.5607/en.2015.24.2.103 26113789
    [Google Scholar]
  157. Kaushik S. Cuervo A.M. Proteostasis and aging. Nat. Med. 2015 21 12 1406 1415 10.1038/nm.4001 26646497
    [Google Scholar]
  158. Wales P. Pinho R. Lázaro D.F. Outeiro T.F. Limelight on alpha-synuclein: Pathological and mechanistic implications in neurodegeneration. J. Parkinsons Dis. 2013 3 4 415 459 10.3233/JPD‑130216 24270242
    [Google Scholar]
  159. Ciulla M. Marinelli L. Cacciatore I. Stefano A.D. Role of dietary supplements in the management of parkinson’s disease. Biomolecules 2019 9 7 271 10.3390/biom9070271 31295842
    [Google Scholar]
  160. Manyam B.V. Dhanasekaran M. Hare T.A. Neuroprotective effects of the antiparkinson drug Mucuna pruriens. Phytother. Res. 2004 18 9 706 712 10.1002/ptr.1514 15478206
    [Google Scholar]
  161. Brichta L. Greengard P. Flajolet M. Advances in the pharmacological treatment of Parkinson’s disease: targeting neurotransmitter systems. Trends Neurosci. 2013 36 9 543 554 10.1016/j.tins.2013.06.003 23876424
    [Google Scholar]
  162. Manoharan S. Essa M.M. Vinoth A. Kowsalya R. Manimaran A. Selvasundaram R. Alzheimer’s disease and medicinal plants: An overview. The Benefits of Natural Products for Neurodegenerative Diseases. Essa M.M. Akbar M. Guillemin G. Cham Springer International Publishing 2016 95 105 10.1007/978‑3‑319‑28383‑8_6
    [Google Scholar]
  163. Zhang L. Zhou Z. Zhai W. Pang J. Mo Y. Yang G. Qu Z. Hu Y. Safflower yellow attenuates learning and memory deficits in amyloid β-induced Alzheimer’s disease rats by inhibiting neuroglia cell activation and inflammatory signaling pathways. Metab. Brain Dis. 2019 34 3 927 939 10.1007/s11011‑019‑00398‑0 30830599
    [Google Scholar]
  164. Xu S.S. Gao Z.X. Weng Z. Du Z.M. Xu W.A. Yang J.S. Zhang M.L. Tong Z.H. Fang Y.S. Chai X.S. Efficacy of tablet huperzine-A on memory, cognition, and behavior in Alzheimer’s disease. Chung Kuo Yao Li Hsueh Pao 1995 16 5 391 395 8701750
    [Google Scholar]
  165. Ionita R. Postu P.A. Mihasan M. Gorgan D.L. Hancianu M. Cioanca O. Hritcu L. Ameliorative effects of Matricaria chamomilla L. hydroalcoholic extract on scopolamine-induced memory impairment in rats: A behavioral and molecular study. Phytomedicine 2018 47 113 120 10.1016/j.phymed.2018.04.049 30166095
    [Google Scholar]
  166. Azmi N.H. Ismail M. Ismail N. Imam M.U. Alitheen N.B.M. Abdullah M.A. Germinated brown rice alters A β (1-42) aggregation and modulates alzheimer’s disease-related genes in differentiated human SH-SY5Y cells. Evid. Based Complement. Alternat. Med. 2015 2015 1 1 12 10.1155/2015/153684 26858770
    [Google Scholar]
  167. Hishikawa N. Takahashi Y. Amakusa Y. Tanno Y. Tuji Y. Niwa H. Murakami N. Krishna U.K. Effects of turmeric on Alzheimer′s disease with behavioral and psychological symptoms of dementia. Ayu 2012 33 4 499 504 10.4103/0974‑8520.110524 23723666
    [Google Scholar]
  168. Ali T. Yoon G.H. Shah S.A. Lee H.Y. Kim M.O. Osmotin attenuates amyloid beta-induced memory impairment, tau phosphorylation and neurodegeneration in the mouse hippocampus. Sci. Rep. 2015 5 1 11708 10.1038/srep11708 26118757
    [Google Scholar]
  169. Khongsombat O. nakdook W. ingkaninan K. Inhibitory effects of Tabernaemontana divaricata root extract on oxidative stress and neuronal loss induced by amyloid β 25 – 35 peptide in mice. J. Tradit. Complement. Med. 2018 8 1 184 189 10.1016/j.jtcme.2017.05.009 29322008
    [Google Scholar]
  170. Colović M.B. Krstić D.Z. Lazarević-Pašti T.D. Bondžić A.M. Vasić V.M. Acetylcholinesterase inhibitors: Pharmacology and toxicology. Curr. Neuropharmacol. 2013 11 3 315 335 10.2174/1570159X11311030006 24179466
    [Google Scholar]
  171. Martinez-Oliveira P. de Oliveira M.F. Alves N. Coelho R.P. Pilar B.C. Güllich A.A. Ströher D.J. Boligon A. da Costa Escobar Piccoli J. Mello-Carpes P.B. Manfredini V. Yacon leaf extract supplementation demonstrates neuroprotective effect against memory deficit related to β-amyloid-induced neurotoxicity. J. Funct. Foods 2018 48 665 675 10.1016/j.jff.2018.08.004
    [Google Scholar]
  172. de la Rubia Ortí J.E. García-Pardo M.P. Drehmer E. Sancho Cantus D. Julián Rochina M. Aguilar M.A. Hu Yang I. Improvement of main cognitive functions in patients with Alzheimer’s disease after treatment with coconut oil enriched mediterranean diet: A pilot study. J. Alzheimers Dis. 2018 65 2 577 587 10.3233/JAD‑180184 30056419
    [Google Scholar]
  173. Mori M.A. Delattre A.M. Carabelli B. Pudell C. Bortolanza M. Staziaki P.V. Visentainer J.V. Montanher P.F. Del Bel E.A. Ferraz A.C. Neuroprotective effect of omega-3 polyunsaturated fatty acids in the 6-OHDA model of Parkinson’s disease is mediated by a reduction of inducible nitric oxide synthase. Nutr. Neurosci. 2018 21 5 341 351 10.1080/1028415X.2017.1290928 28221817
    [Google Scholar]
  174. Bisht R. Joshi B.C. Kalia A.N. Prakash A. Antioxidant-rich fraction of urtica dioica mediated rescue of striatal mito-oxidative damage in mptp-induced behavioral, cellular, and neurochemical alterations in rats. Mol. Neurobiol. 2017 54 7 5632 5645 10.1007/s12035‑016‑0084‑z 27624385
    [Google Scholar]
  175. Wang Q. Kuang H. Su Y. Sun Y. Feng J. Guo R. Chan K. Naturally derived anti-inflammatory compounds from Chinese medicinal plants. J. Ethnopharmacol. 2013 146 1 9 39 10.1016/j.jep.2012.12.013 23274744
    [Google Scholar]
  176. Chonpathompikunlert P. Boonruamkaew P. Sukketsiri W. Hutamekalin P. Sroyraya M. The antioxidant and neurochemical activity of Apium graveolens L. and its ameliorative effect on MPTP-induced Parkinson-like symptoms in mice. BMC Complement. Altern. Med. 2018 18 1 103 10.1186/s12906‑018‑2166‑0 29558946
    [Google Scholar]
  177. Tomani J.C.D. Gainkam L.O.T. Nshutiyayesu S. Mukazayire M.J. Ribeiro S.O. Stevigny C. Frederich M. Muganga R. Souopgui J. An ethnobotanical survey and inhibitory effects on NLRP3 inflammasomes/Caspase-1 of herbal recipes’ extracts traditionally used in Rwanda for asthma treatment. J. Ethnopharmacol. 2018 227 29 40 10.1016/j.jep.2018.08.016 30118837
    [Google Scholar]
  178. Karbarz M. Mytych J. Solek P. Stawarczyk K. Tabecka-Lonczynska A. Koziorowski M. Luczaj L. Cereal grass juice in wound healing: Hormesis and cell-survival in normal fibroblasts, in contrast to toxic events in cancer cells. J. Physiol. Pharmacol. 2019 70 4 31741456
    [Google Scholar]
  179. Sarbishegi M. Charkhat Gorgich E.A. Khajavi O. Komeili G. Salimi S. The neuroprotective effects of hydro-alcoholic extract of olive (Olea europaea L.) leaf on rotenone-induced Parkinson’s disease in rat. Metab. Brain Dis. 2018 33 1 79 88 10.1007/s11011‑017‑0131‑0 29039078
    [Google Scholar]
  180. Kosaraju J. Chinni S. Roy P. Kannan E. Antony A.S. Kumar M.N.S. Neuroprotective effect of Tinospora cordifolia ethanol extract on 6-hydroxy dopamine induced Parkinsonism. Indian J. Pharmacol. 2014 46 2 176 180 10.4103/0253‑7613.129312 24741189
    [Google Scholar]
  181. Bhullar K.S. Rupasinghe H.P.V. Polyphenols: Multipotent therapeutic agents in neurodegenerative diseases. Oxid. Med. Cell. Longev. 2013 2013 1 1 18 10.1155/2013/891748 23840922
    [Google Scholar]
  182. Ren Z. Zhao Y. Cao T. Zhen X. Dihydromyricetin protects neurons in an MPTP-induced model of Parkinson’s disease by suppressing glycogen synthase kinase-3 beta activity. Acta Pharmacol. Sin. 2016 37 10 1315 1324 10.1038/aps.2016.42 27374489
    [Google Scholar]
  183. Nathan P.J. Clarke J. Lloyd J. Hutchison C.W. Downey L. Stough C. The acute effects of an extract of Bacopa monniera (Brahmi) on cognitive function in healthy normal subjects. Hum. Psychopharmacol. 2001 16 4 345 351 10.1002/hup.306 12404571
    [Google Scholar]
  184. Turner R.S. Thomas R.G. Craft S. van Dyck C.H. Mintzer J. Reynolds B.A. Brewer J.B. Rissman R.A. Raman R. Aisen P.S. Mintzer J. Reynolds B.A. Karlawish J. Galasko D. Heidebrink J. Aggarwal N. Graff-Radford N. Sano M. Petersen R. Bell K. Doody R. Smith A. Bernick C. Porteinsson A. Tariot P. Mulnard R. Lerner A. Schneider L. Burns J. Raskind M. Ferris S. Jicha G. Quiceno M. Obisesan T. Rosenberg P. Weintraub D. Kieburtz K. Miller B. Kryscio R. Alexopoulis G. A randomized, double-blind, placebo-controlled trial of resveratrol for Alzheimer disease. Neurology 2015 85 16 1383 1391 10.1212/WNL.0000000000002035 26362286
    [Google Scholar]
  185. Wattanathorn J. Mator L. Muchimapura S. Tongun T. Pasuriwong O. Piyawatkul N. Yimtae K. Sripanidkulchai B. Singkhoraard J. Positive modulation of cognition and mood in the healthy elderly volunteer following the administration of Centella asiatica. J. Ethnopharmacol. 2008 116 2 325 332 10.1016/j.jep.2007.11.038 18191355
    [Google Scholar]
  186. Marangoni D. Falsini B. Piccardi M. Ambrosio L. Minnella A. Savastano M. Bisti S. Maccarone R. Fadda A. Mello E. Concolino P. Capoluongo E. Functional effect of Saffron supplementation and risk genotypes in early age-related macular degeneration: A preliminary report. J. Transl. Med. 2013 11 1 228 10.1186/1479‑5876‑11‑228 24067115
    [Google Scholar]
  187. Boskabady M.H. Javan H. Sajady M. Rakhshandeh H. The possible prophylactic effect of Nigella sativa seed extract in asthmatic patients. Fundam. Clin. Pharmacol. 2007 21 5 559 566 10.1111/j.1472‑8206.2007.00509.x 17868210
    [Google Scholar]
  188. Marco F.D. Romeo S. Nandasena C. Purushothuman S. Adams C. Bisti S. Stone J. The time course of action of two neuroprotectants, dietary saffron and photobiomodulation, assessed in the rat retina. Am. J. Neurodegener. Dis. 2013 2 3 208 220 24093084
    [Google Scholar]
  189. Akhondzadeh S. Fallah-Pour H. Afkham K. Jamshidi A.H. Khalighi-Cigaroudi F. Comparison of Crocus sativus L. and imipramine in the treatment of mild to moderate depression: A pilot double-blind randomized trial [ISRCTN45683816]. BMC Complement. Altern. Med. 2004 4 1 12 10.1186/1472‑6882‑4‑12 15341662
    [Google Scholar]
  190. Zhang K. Chen M. Du Z-Y. Zheng X. Li D-L. Zhou R-P. Use of curcumin in diagnosis, prevention, and treatment of Alzheimer’s disease. Neural Regen. Res. 2018 13 4 742 752 10.4103/1673‑5374.230303 29722330
    [Google Scholar]
  191. Choudhary D. Bhattacharyya S. Bose S. Efficacy and safety of ashwagandha ( Withania somnifera (L.) Dunal ) root extract in improving memory and cognitive functions. J. Diet. Suppl. 2017 14 6 599 612 10.1080/19390211.2017.1284970 28471731
    [Google Scholar]
  192. Akhondzadeh S. Noroozian M. Mohammadi M. Ohadinia S. Jamshidi A.H. Khani M. Salvia officinalis extract in the treatment of patients with mild to moderate Alzheimer’s disease: A double blind, randomized and placebo-controlled trial. J. Clin. Pharm. Ther. 2003 28 1 53 59 10.1046/j.1365‑2710.2003.00463.x 12605619
    [Google Scholar]
  193. Mittal P. Vardhan H. Ajmal G. Bonde G.V. Kapoor R. Mittal A. Mishra B. Formulation, optimization, hemocompatibility and pharmacokinetic evaluation of PLGA nanoparticles containing paclitaxel. Drug Dev. Ind. Pharm. 2019 45 3 365 378 10.1080/03639045.2018.1542706 30394795
    [Google Scholar]
  194. Singh J. Mittal P. Vasant Bonde G. Ajmal G. Mishra B. Design, optimization, characterization and in-vivo evaluation of Quercetin enveloped Soluplus®/P407 micelles in diabetes treatment. Artif Cells Nanomed Biotechnol 2018 46 sup3 S546 S555
    [Google Scholar]
  195. Bharti K. Mittal P. Mishra B. Formulation and characterization of fast dissolving oral films containing buspirone hydrochloride nanoparticles using design of experiment. J. Drug Deliv. Sci. Technol. 2019 49 420 432 10.1016/j.jddst.2018.12.013
    [Google Scholar]
  196. Bonde G.V. Yadav S.K. Chauhan S. Mittal P. Ajmal G. Thokala S. Mishra B. Lapatinib nano-delivery systems: A promising future for breast cancer treatment. Expert Opin. Drug Deliv. 2018 15 5 495 507 10.1080/17425247.2018.1449832 29521126
    [Google Scholar]
  197. Xiao Q. Wang C. Li J. Hou Q. Li J. Ma J. Wang W. Wang Z. Ginkgolide B protects hippocampal neurons from apoptosis induced by beta-amyloid 25–35 partly via up-regulation of brain-derived neurotrophic factor. Eur. J. Pharmacol. 2010 647 1-3 48 54 10.1016/j.ejphar.2010.08.002 20709055
    [Google Scholar]
  198. Makkar R. Behl T. Bungau S. Zengin G. Mehta V. Kumar A. Uddin M.S. Ashraf G.M. Abdel-Daim M.M. Arora S. Oancea R. Nutraceuticals in neurological disorders. Int. J. Mol. Sci. 2020 21 12 4424 10.3390/ijms21124424 32580329
    [Google Scholar]
  199. Singh S. Singh T.G. Role of nuclear factor kappa B (NF-κB) signalling in neurodegenerative diseases: An mechanistic approach. Curr. Neuropharmacol. 2020 18 10 918 935 10.2174/1570159X18666200207120949 32031074
    [Google Scholar]
  200. Nouri Z. Fakhri S. El-Senduny F.F. Sanadgol N. Abd-ElGhani G.E. Farzaei M.H. Chen J.T. On the neuroprotective effects of naringenin: Pharmacological targets, signaling pathways, molecular mechanisms, and clinical perspective. Biomolecules 2019 9 11 690 10.3390/biom9110690 31684142
    [Google Scholar]
  201. Yavarpour-Bali H. Ghasemi-Kasman M. Pirzadeh M. Curcumin-loaded nanoparticles: A novel therapeutic strategy in treatment of central nervous system disorders. Int. J. Nanomedicine 2019 14 4449 4460 10.2147/IJN.S208332 31417253
    [Google Scholar]
  202. Enteshari Najafabadi R. Kazemipour N. Esmaeili A. Beheshti S. Nazifi S. Using superparamagnetic iron oxide nanoparticles to enhance bioavailability of quercetin in the intact rat brain. BMC Pharmacol. Toxicol. 2018 19 1 59 10.1186/s40360‑018‑0249‑7 30253803
    [Google Scholar]
  203. Fachel F.N.S. Schuh R.S. Veras K.S. Bassani V.L. Koester L.S. Henriques A.T. Braganhol E. Teixeira H.F. An overview of the neuroprotective potential of rosmarinic acid and its association with nanotechnology-based delivery systems: A novel approach to treating neurodegenerative disorders. Neurochem. Int. 2019 122 47 58 10.1016/j.neuint.2018.11.003 30439384
    [Google Scholar]
  204. Thapliyal S. Singh T. Handu S. Bisht M. Kumari P. Arya P. Srivastava P. Gandham R. A review on potential footprints of ferulic acid for treatment of neurological disorders. Neurochem. Res. 2021 46 5 1043 1057 10.1007/s11064‑021‑03257‑6 33547615
    [Google Scholar]
  205. Wen M.M. El-Salamouni N.S. El-Refaie W.M. Hazzah H.A. Ali M.M. Tosi G. Farid R.M. Blanco-Prieto M.J. Billa N. Hanafy A.S. Nanotechnology-based drug delivery systems for Alzheimer’s disease management: Technical, industrial, and clinical challenges. J. Control. Release 2017 245 95 107 10.1016/j.jconrel.2016.11.025 27889394
    [Google Scholar]
  206. Singh N.A. Mandal A.K.A. Khan Z.A. Potential neuroprotective properties of epigallocatechin-3-gallate (EGCG). Nutr. J. 2015 15 1 60 10.1186/s12937‑016‑0179‑4 27268025
    [Google Scholar]
  207. Di Salle A. Polyphenols nanoencapsulation for therapeutic applications. J. Biomol. Res. Ther. 2016 05 2 1 13
    [Google Scholar]
  208. Rigacci S. Stefani M. Nutraceuticals and amyloid neurodegenerative diseases: A focus on natural phenols. Expert Rev. Neurother. 2015 15 1 41 52 10.1586/14737175.2015.986101 25418871
    [Google Scholar]
  209. Zhao D. Simon J.E. Wu Q. A critical review on grape polyphenols for neuroprotection: Strategies to enhance bioefficacy. Crit. Rev. Food Sci. Nutr. 2020 60 4 597 625 10.1080/10408398.2018.1546668 30614258
    [Google Scholar]
  210. Hu S. Maiti P. Ma Q. Zuo X. Jones M.R. Cole G.M. Frautschy S.A. Clinical development of curcumin in neurodegenerative disease. Expert Rev. Neurother. 2015 15 6 629 637 10.1586/14737175.2015.1044981 26035622
    [Google Scholar]
  211. Rakotoarisoa M. Angelova A. Amphiphilic nanocarrier systems for curcumin delivery in neurodegenerative disorders. Medicines 2018 5 4 126 10.3390/medicines5040126 30477087
    [Google Scholar]
  212. Renaud J. Martinoli M.G. Considerations for the use of polyphenols as therapies in neurodegenerative diseases. Int. J. Mol. Sci. 2019 20 8 1883 10.3390/ijms20081883 30995776
    [Google Scholar]
  213. Lu Y. Kim S. Park K. In vitro–in vivo correlation: Perspectives on model development. Int. J. Pharm. 2011 418 1 142 148 10.1016/j.ijpharm.2011.01.010 21237256
    [Google Scholar]
  214. Bhattacharjee S. DLS and zeta potential – What they are and what they are not? J. Control. Release 2016 235 337 351 10.1016/j.jconrel.2016.06.017 27297779
    [Google Scholar]
  215. Ovais M. Zia N. Ahmad I. Khalil A.T. Raza A. Ayaz M. Sadiq A. Ullah F. Shinwari Z.K. Phyto-therapeutic and nanomedicinal approaches to cure alzheimer’s disease: Present status and future opportunities. Front. Aging Neurosci. 2018 10 284 10.3389/fnagi.2018.00284 30405389
    [Google Scholar]
  216. Niu X. Chen J. Gao J. Nanocarriers as a powerful vehicle to overcome blood-brain barrier in treating neurodegenerative diseases: Focus on recent advances. Asian J. Pharm. Sci. 2019 14 5 480 496 10.1016/j.ajps.2018.09.005 32104476
    [Google Scholar]
  217. Varma L.T. Singh N. Gorain B. Choudhury H. Tambuwala M.M. Kesharwani P. Shukla R. Recent advances in self-assembled nanoparticles for drug delivery. Curr. Drug Deliv. 2020 17 4 279 291 10.2174/1567201817666200210122340 32039683
    [Google Scholar]
  218. Kalepu S. Nekkanti V. Improved delivery of poorly soluble compounds using nanoparticle technology: A review. Drug Deliv. Transl. Res. 2016 6 3 319 332 10.1007/s13346‑016‑0283‑1 26891912
    [Google Scholar]
  219. Smith A. Giunta B. Bickford P.C. Fountain M. Tan J. Shytle R.D. Nanolipidic particles improve the bioavailability and α-secretase inducing ability of epigallocatechin-3-gallate (EGCG) for the treatment of Alzheimer’s disease. Int. J. Pharm. 2010 389 1-2 207 212 10.1016/j.ijpharm.2010.01.012 20083179
    [Google Scholar]
  220. Lv L. Yang F. Li H. Yuan J. Brain‐targeted co‐delivery of β‐amyloid converting enzyme 1 shRNA and epigallocatechin‐3‐gallate by multifunctional nanocarriers for Alzheimer’s disease treatment. IUBMB Life 2020 72 8 1819 1829 10.1002/iub.2330 32668504
    [Google Scholar]
  221. Bhatt R. Singh D. Prakash A. Mishra N. Development, characterization and nasal delivery of rosmarinic acid-loaded solid lipid nanoparticles for the effective management of Huntington’s disease. Drug Deliv. 2015 22 7 931 939 10.3109/10717544.2014.880860 24512295
    [Google Scholar]
  222. Del Prado-Audelo M.L. Caballero-Florán I.H. Meza-Toledo J.A. Mendoza-Muñoz N. González-Torres M. Florán B. Cortés H. Leyva-Gómez G. Formulations of curcumin nanoparticles for brain diseases. Biomolecules 2019 9 2 56 10.3390/biom9020056 30743984
    [Google Scholar]
  223. Taghizadeh M.S. Taherishirazi M. Niazi A. Afsharifar A. Moghadam A. Structure-guided design and cloning of peptide inhibitors targeting CDK9/cyclin T1 protein-protein interaction. Front. Pharmacol. 2024 15 1327820 10.3389/fphar.2024.1327820 38808256
    [Google Scholar]
  224. Taghizadeh M.S. Niazi A. Afsharifar A. Virus-like particles (VLPs): A promising platform for combating against Newcastle disease virus. Vaccine X 2024 16 100440 10.1016/j.jvacx.2024.100440 38283623
    [Google Scholar]
  225. Mirzapour-Kouhdasht A. McClements D. J. Taghizadeh M. S. Niazi A. Garcia-Vaquero M. Strategies for oral delivery of bioactive peptides with focus on debittering and masking. NPJ Sci. Food 2023 7 1 22
    [Google Scholar]
  226. Moghadam A. Foroozan E. Tahmasebi A. Taghizadeh M.S. Bolhassani M. Jafari M. System network analysis of Rosmarinus officinalis transcriptome and metabolome—Key genes in biosynthesis of secondary metabolites. PLoS One 2023 18 3 e0282316 10.1371/journal.pone.0282316 36862714
    [Google Scholar]
  227. Shahraki Z. Taghizadeh M.S. Niazi A. Rowshan V. Moghadam A. Enhancing bioactive compound production in Salvia mirzayanii through elicitor application: Insights from in vitro and in silico studies. Food Biosci. 2024 60 104185 10.1016/j.fbio.2024.104185
    [Google Scholar]
  228. Moghadam A. Taghizadeh M.S. Haghi R. Tahmasebi A. Niazi A. Ebrahimie E. Exploring novel insights: Methyl jasmonate treatment reveals novel lncRNA-mediated regulation of secondary metabolite biosynthesis pathways in Echinacea purpurea. Food Biosci. 2024 57 103457 10.1016/j.fbio.2023.103457
    [Google Scholar]
/content/journals/cnsnddt/10.2174/0118715273370166250610152453
Loading
/content/journals/cnsnddt/10.2174/0118715273370166250610152453
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test