Skip to content
2000
Volume 24, Issue 12
  • ISSN: 1871-5273
  • E-ISSN: 1996-3181

Abstract

Investigations into the bioactive components of plant-based natural products indicate promising therapeutic potential for neurodegenerative diseases (NDs), including Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). The loss and dysfunction of neurons characterize these disorders. Effective therapeutic guidelines are still elusive despite advances in our comprehension of NDs, in part because of unanswered questions about the safety and efficacy of natural therapies. On the other hand, preclinical models have shown that natural products—such as fruits, vegetables, nuts, herbs, and phytoconstituents found in freshwater and marine flora—have neuroprotective effects. These substances have the ability to work through a variety of pathways, halting cell death and reinstating neuronal activity. According to recent research, adding these phytoconstituents to nanocarriers, such as nanoparticles, can improve their selectivity and stability, possibly boosting the effectiveness of treatment. By making these agents more specific to target sites, nanotechnology presents a promising treatment option for NDs. Clinical trials assessing the efficacy of these natural compounds in treating neurological conditions are becoming more common as research advances, underscoring their potential as neuroprotective drugs. This study primarily focuses on the therapeutic efficacy of specific natural compounds and their bioactive components, which exhibit neuroprotective benefits in conditions associated with undiagnosed depression. Several preclinical models have demonstrated better results when natural derivatives are used, which has led to an increase in the use of natural therapies for treating NDs. Overall, despite ongoing difficulties, natural products have a great deal of promise for treating and preventing NDs; however, more research is needed to determine safe and effective treatment modalities.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/0118715273370166250610152453
2025-06-24
2025-12-21
Loading full text...

Full text loading...

References

  1. RahmanM.H. BajgaiJ. FadriquelaA. Redox effects of molecular hydrogen and its therapeutic efficacy in the treatment of neurodegenerative diseases.Processes20219230810.3390/pr9020308
    [Google Scholar]
  2. RahmanM.H. BajgaiJ. FadriquelaA. Therapeutic potential of natural products in treating neurodegenerative disorders and their future prospects and challenges.Molecules20212617532710.3390/molecules26175327 34500759
    [Google Scholar]
  3. SalvadoresN. CourtF.A. The necroptosis pathway and its role in age-related neurodegenerative diseases: Will it open up new therapeutic avenues in the next decade?Expert Opin. Ther. Targets202024767969310.1080/14728222.2020.1758668 32310729
    [Google Scholar]
  4. Yildiz-UnalA. KoruluS. KarabayA. Neuroprotective strategies against calpain-mediated neurodegeneration.Neuropsychiatr. Dis. Treat.20151129731010.2147/NDT.S78226 25709452
    [Google Scholar]
  5. Di PaoloM. PapiL. GoriF. TurillazziE. Natural products in neurodegenerative diseases: A great promise but an ethical challenge.Int. J. Mol. Sci.20192020517010.3390/ijms20205170 31635296
    [Google Scholar]
  6. ThirupathiA. ChangY-Z. Brain iron metabolism and CNS diseases.Brain Iron Metabolism and CNS Diseases Advances in Experimental Medicine and Biology.SingaporeSpringer201911910.1007/978‑981‑13‑9589‑5_1
    [Google Scholar]
  7. Troncoso-EscuderoP. SepulvedaD. Pérez-ArancibiaR. On the right track to treat movement disorders: Promising therapeutic approaches for Parkinson’s and Huntington’s disease.Front. Aging Neurosci.20201257118510.3389/fnagi.2020.571185 33101007
    [Google Scholar]
  8. HarischandraD.S. GhaisasS. ZenitskyG. Manganese-induced neurotoxicity: New insights into the triad of protein misfolding, mitochondrial impairment, and neuroinflammation.Front. Neurosci.20191365410.3389/fnins.2019.00654 31293375
    [Google Scholar]
  9. FuH. HardyJ. DuffK.E. Selective vulnerability in neurodegenerative diseases.Nat. Neurosci.201821101350135810.1038/s41593‑018‑0221‑2 30250262
    [Google Scholar]
  10. GanL. CooksonM.R. PetrucelliL. La SpadaA.R. Converging pathways in neurodegeneration, from genetics to mechanisms.Nat. Neurosci.201821101300130910.1038/s41593‑018‑0237‑7 30258237
    [Google Scholar]
  11. SinghA. KukretiR. SasoL. KukretiS. Oxidative stress: A key modulator in neurodegenerative diseases.Molecules2019248158310.3390/molecules24081583 31013638
    [Google Scholar]
  12. FanJ. DawsonT.M. DawsonV.L. Cell death mechanisms of neurodegeneration.Neurodegenerative Diseases Advances in Neurobiology.Cham: Springer20171540325
    [Google Scholar]
  13. CoryH. PassarelliS. SzetoJ. TamezM. MatteiJ. The role of polyphenols in human health and food systems: A mini-review.Front. Nutr.201858710.3389/fnut.2018.00087 30298133
    [Google Scholar]
  14. LiX. ChuS. LiuY. ChenN. Neuroprotective effects of anthraquinones from rhubarb in central nervous system diseases.Evid. Based Complement. Alternat. Med.20192019111210.1155/2019/3790728 31223328
    [Google Scholar]
  15. LutzM. FuentesE. ÁvilaF. AlarcónM. PalomoI. Roles of phenolic compounds in the reduction of risk factors of cardiovascular diseases.Molecules201924236610.3390/molecules24020366 30669612
    [Google Scholar]
  16. PhamL. WrightD.K. O’BrienW.T. Behavioral, axonal, and proteomic alterations following repeated mild traumatic brain injury: Novel insights using a clinically relevant rat model.Neurobiol. Dis.202114810515110.1016/j.nbd.2020.105151 33127468
    [Google Scholar]
  17. BuiT.T. NguyenT.H. Natural product for the treatment of Alzheimer’s disease.J. Basic Clin. Physiol. Pharmacol.201728541342310.1515/jbcpp‑2016‑0147 28708573
    [Google Scholar]
  18. BabaeiF. MirzababaeiM. Nassiri-AslM. Quercetin in food: Possible mechanisms of its effect on memory.J. Food Sci.20188392280228710.1111/1750‑3841.14317 30103275
    [Google Scholar]
  19. ObesoJ.A. StamelouM. GoetzC.G. Past, present, and future of Parkinson’s disease: A special essay on the 200th Anniversary of the Shaking Palsy.Mov. Disord.20173291264131010.1002/mds.27115 28887905
    [Google Scholar]
  20. GriecoM. GiorgiA. GentileM.C. Glucagon-like peptide-1: A focus on neurodegenerative diseases.Front. Neurosci.201913111210.3389/fnins.2019.01112 31680842
    [Google Scholar]
  21. ShahmoradianS.H. LewisA.J. GenoudC. Lewy pathology in Parkinson’s disease consists of crowded organelles and lipid membranes.Nat. Neurosci.20192271099110910.1038/s41593‑019‑0423‑2 31235907
    [Google Scholar]
  22. HunnB.H.M. CraggS.J. BolamJ.P. SpillantiniM.G. Wade-MartinsR. Impaired intracellular trafficking defines early Parkinson’s disease.Trends Neurosci.201538317818810.1016/j.tins.2014.12.009 25639775
    [Google Scholar]
  23. HiltonJ.B. WhiteA.R. CrouchP.J. Metal-deficient SOD1 in amyotrophic lateral sclerosis.J. Mol. Med.201593548148710.1007/s00109‑015‑1273‑3 25754173
    [Google Scholar]
  24. SirangeloI. IannuzziC. The role of metal binding in the amyotrophic lateral sclerosis-related aggregation of copper-zinc superoxide dismutase.Molecules2017229142910.3390/molecules22091429 28850080
    [Google Scholar]
  25. BostanA.C. StrickP.L. The basal ganglia and the cerebellum: Nodes in an integrated network.Nat. Rev. Neurosci.201819633835010.1038/s41583‑018‑0002‑7 29643480
    [Google Scholar]
  26. GilJ.M. RegoA.C. Mechanisms of neurodegeneration in Huntington’s disease.Eur. J. Neurosci.200827112803282010.1111/j.1460‑9568.2008.06310.x 18588526
    [Google Scholar]
  27. HsuY.T. ChangY.G. ChernY. Insights into GABA A ergic system alteration in Huntington’s disease.Open Biol.201881218016510.1098/rsob.180165 30518638
    [Google Scholar]
  28. GardinerS.L. van BelzenM.J. BoogaardM.W. Huntingtin gene repeat size variations affect risk of lifetime depression.Transl. Psychiatry2017712127710.1038/s41398‑017‑0042‑1 29225330
    [Google Scholar]
  29. BhatA.H. DarK.B. AneesS. Oxidative stress, mitochondrial dysfunction and neurodegenerative diseases; A mechanistic insight.Biomed. Pharmacother.20157410111010.1016/j.biopha.2015.07.025 26349970
    [Google Scholar]
  30. GolpichM. AminiE. MohamedZ. Azman AliR. Mohamed IbrahimN. AhmadianiA. Mitochondrial dysfunction and biogenesis in neurodegenerative diseases: Pathogenesis and treatment.CNS Neurosci. Ther.201723152210.1111/cns.12655 27873462
    [Google Scholar]
  31. UllahR. KhanM. ShahS.A. SaeedK. KimM.O. Natural antioxidant anthocyanins—A hidden therapeutic candidate in metabolic disorders with major focus in neurodegeneration.Nutrients2019116119510.3390/nu11061195 31141884
    [Google Scholar]
  32. NitaM. GrzybowskiA. The role of the reactive oxygen species and oxidative stress in the pathomechanism of the age‐related ocular diseases and other pathologies of the anterior and posterior eye segments in adults.Oxid. Med. Cell. Longev.201620161316473410.1155/2016/3164734 26881021
    [Google Scholar]
  33. BuendiaI. MichalskaP. NavarroE. GameiroI. EgeaJ. LeónR. Nrf2-ARE pathway: An emerging target against oxidative stress and neuroinflammation in neurodegenerative diseases.Pharmacol. Ther.20161578410410.1016/j.pharmthera.2015.11.003 26617217
    [Google Scholar]
  34. GeldersG. BaekelandtV. Van der PerrenA. Linking neuroinflammation and neurodegeneration in Parkinson’s disease.J. Immunol. Res.20182018111210.1155/2018/4784268 29850629
    [Google Scholar]
  35. LeszekJ.E. BarretoG. GasiorowskiK. KoutsourakiE. AlievG. Inflammatory mechanisms and oxidative stress as key factors responsible for progression of neurodegeneration: Role of brain innate immune system.CNS Neurol. Disord. Drug Targets2016153329336
    [Google Scholar]
  36. StephensonJ. NutmaE. van der ValkP. AmorS. Inflammation in CNS neurodegenerative diseases.Immunology2018154220421910.1111/imm.12922 29513402
    [Google Scholar]
  37. ThurgurH. PinteauxE. Microglia in the neurovascular unit: Blood-brain barrier-microglia interactions after central nervous system disorders.Neuroscience2019405556710.1016/j.neuroscience.2018.06.046 31007172
    [Google Scholar]
  38. VoetS. PrinzM. van LooG. Microglia in central nervous system inflammation and multiple sclerosis pathology.Trends Mol. Med.201925211212310.1016/j.molmed.2018.11.005 30578090
    [Google Scholar]
  39. KabbaJ.A. XuY. ChristianH. Microglia: housekeeper of the central nervous system.Cell. Mol. Neurobiol.2018381537110.1007/s10571‑017‑0504‑2 28534246
    [Google Scholar]
  40. CardenasC. LovyA. Silva-PavezE. Cancer cells with defective oxidative phosphorylation require endoplasmic reticulum-to-mitochondria Ca2+ transfer for survival.Sci. Signal.202013640eaay121210.1126/scisignal.aay1212 32665411
    [Google Scholar]
  41. PanovA. DikalovS. ShalbuyevaN. HemendingerR. GreenamyreJ.T. RosenfeldJ. Species- and tissue-specific relationships between mitochondrial permeability transition and generation of ROS in brain and liver mitochondria of rats and mice.Am. J. Physiol. Cell Physiol.20072922C708C71810.1152/ajpcell.00202.2006 17050617
    [Google Scholar]
  42. RaoV.K. CarlsonE.A. YanS.S. Mitochondrial permeability transition pore is a potential drug target for neurodegeneration.Biochim. Biophys. Acta Mol. Basis Dis.2014184281267127210.1016/j.bbadis.2013.09.003 24055979
    [Google Scholar]
  43. GaddM.E. BroekemeierK.M. CrouserE.D. KumarJ. GraffG. PfeifferD.R. Mitochondrial iPLA2 activity modulates the release of cytochrome c from mitochondria and influences the permeability transition.J. Biol. Chem.2006281116931693910.1074/jbc.M510845200 16407316
    [Google Scholar]
  44. OsellameL.D. RahimA.A. HargreavesI.P. Mitochondria and quality control defects in a mouse model of Gaucher disease--links to Parkinson’s disease.Cell Metab.201317694195310.1016/j.cmet.2013.04.014 23707074
    [Google Scholar]
  45. PoeweW. SeppiK. TannerC.M. Parkinson disease.Nat. Rev. Dis. Primers2017311701310.1038/nrdp.2017.13 28332488
    [Google Scholar]
  46. KentJ.A. PatelV. VarelaN.A. Gender disparities in health care.Mt. Sinai J. Med.201279555555910.1002/msj.21336 22976361
    [Google Scholar]
  47. BanoD. DinsdaleD. Cabrera-SocorroA. Alteration of the nuclear pore complex in Ca2+-mediated cell death.Cell Death Differ.201017111913310.1038/cdd.2009.112 19713973
    [Google Scholar]
  48. VermaD.K. GuptaS. BiswasJ. Metabolic enhancer piracetam attenuates the translocation of mitochondrion-specific proteins of caspase-independent pathway, poly [ADP-Ribose] polymerase 1 up-regulation and oxidative DNA fragmentation.Neurotox. Res.201834219821910.1007/s12640‑018‑9878‑2 29532444
    [Google Scholar]
  49. SrivastavaP. YadavR.S. Efficacy of natural compounds in neurodegenerative disorders.The Benefits of Natural Products for Neurodegenerative Diseases Advances in Neurobiology.Cham: Springer201611210723
    [Google Scholar]
  50. KhanH. UllahH. AschnerM. CheangW.S. AkkolE.K. Neuroprotective effects of quercetin in Alzheimer’s disease.Biomolecules20191015910.3390/biom10010059 31905923
    [Google Scholar]
  51. BatihaG.E.S. BeshbishyA.M. IkramM. The pharmacological activity, biochemical properties, and pharmacokinetics of the major natural polyphenolic flavonoid: Quercetin.Foods20209337410.3390/foods9030374 32210182
    [Google Scholar]
  52. SchultkeE. The flavonoid quercetin and its potential as neuroprotectant in the therapy of acute traumatic CNS injury: An experimental study.University of Saskatchewan2004
    [Google Scholar]
  53. JurcauA. The role of natural antioxidants in the prevention of dementia—Where do we stand and future perspectives.Nutrients202113228210.3390/nu13020282 33498262
    [Google Scholar]
  54. KumarGP AnilakumarKR NaveenS Phytochemicals having neuroprotective properties from dietary sources and medicinal herbs.Pharmacogn J201571011710.5530/pj.2015.1.1
    [Google Scholar]
  55. CostaL.G. GarrickJ.M. RoquèP.J. PellacaniC. Mechanisms of neuroprotection by quercetin: Counteracting oxidative stress and more.Oxid. Med. Cell. Longev.201620161298679610.1155/2016/2986796 26904161
    [Google Scholar]
  56. FariaA. PestanaD. TeixeiraD. Flavonoid transport across RBE4 cells: A blood-brain barrier model.Cell. Mol. Biol. Lett.201015223424110.2478/s11658‑010‑0006‑4 20140760
    [Google Scholar]
  57. IshisakaA. IchikawaS. SakakibaraH. Accumulation of orally administered quercetin in brain tissue and its antioxidative effects in rats.Free Radic. Biol. Med.20115171329133610.1016/j.freeradbiomed.2011.06.017 21741473
    [Google Scholar]
  58. FerriP. AngelinoD. GennariL. Enhancement of flavonoid ability to cross the blood-brain barrier of rats by co-administration with α-tocopherol.Food Funct.20156239440010.1039/C4FO00817K 25474041
    [Google Scholar]
  59. WangY. WangQ. BaoX. Taxifolin prevents β-amyloid-induced impairments of synaptic formation and deficits of memory via the inhibition of cytosolic phospholipase A2/prostaglandin E2 content.Metab. Brain Dis.20183341069107910.1007/s11011‑018‑0207‑5 29542038
    [Google Scholar]
  60. YangP. XuF. LiH.F. Detection of 191 taxifolin metabolites and their distribution in rats using HPLC-ESI-IT-TOF-MSn.Molecules2016219120910.3390/molecules21091209 27649117
    [Google Scholar]
  61. SaitoS. YamamotoY. MakiT. Taxifolin inhibits amyloid-β oligomer formation and fully restores vascular integrity and memory in cerebral amyloid angiopathy.Acta Neuropathol. Commun.2017512610.1186/s40478‑017‑0429‑5 28376923
    [Google Scholar]
  62. AkterR. ChowdhuryM.A.R. RahmanM.H. Flavonoids and polyphenolic compounds as potential talented agents for the treatment of Alzheimer’s disease and their antioxidant activities.Curr. Pharm. Des.202127334535610.2174/18734286MTExrMDYa2 33138754
    [Google Scholar]
  63. WangB. LuY. WangR. LiuS. HuX. WangH. Transport and metabolic profiling studies of amentoflavone in Caco-2 cells by UHPLC-ESI-MS/MS and UHPLC-ESI-Q-TOF-MS/MS.J. Pharm. Biomed. Anal.202018911344110.1016/j.jpba.2020.113441 32615340
    [Google Scholar]
  64. WilliamsonG. KayC.D. CrozierA. The bioavailability, transport, and bioactivity of dietary flavonoids: A review from a historical perspective.Compr. Rev. Food Sci. Food Saf.20181751054111210.1111/1541‑4337.12351 33350159
    [Google Scholar]
  65. NabaviSF BraidyN GortziO Luteolin as an anti-inflammatory and neuroprotective agent: A brief review.Brain Res Bull2015119Pt A11110.1016/j.brainresbull.2015.09.002 26361743
    [Google Scholar]
  66. YulyanaY. TovmasyanA. HoI.A.W. Redox-active Mn porphyrin-based potent SOD mimic, MnTnBuOE-2-PyP 5+, enhances carbenoxolone-mediated TRAIL-induced apoptosis in glioblastoma multiforme.Stem Cell Rev.201612114015510.1007/s12015‑015‑9628‑2 26454429
    [Google Scholar]
  67. ZhengH. KooE.H. The amyloid precursor protein: Beyond amyloid.Mol. Neurodegener.200611510.1186/1750‑1326‑1‑5 16930452
    [Google Scholar]
  68. UddinM.S. HossainM.F. MamunA.A. Exploring the multimodal role of phytochemicals in the modulation of cellular signaling pathways to combat age-related neurodegeneration.Sci. Total Environ.202072513831310.1016/j.scitotenv.2020.138313 32464743
    [Google Scholar]
  69. CalisZ. MogulkocR. BaltaciA.K. The roles of flavonols/flavonoids in neurodegeneration and neuroinflammation.Mini Rev. Med. Chem.202020151475148810.2174/1389557519666190617150051 31288717
    [Google Scholar]
  70. PopovićM. Caballero-BledaM. Benavente-GarcíaO. CastilloJ. The flavonoid apigenin delays forgetting of passive avoidance conditioning in rats.J. Psychopharmacol.201428549850110.1177/0269881113512040 24284476
    [Google Scholar]
  71. GanaiA.A. FarooqiH. Bioactivity of genistein: A review of in vitro and in vivo studies.Biomed. Pharmacother.201576303810.1016/j.biopha.2015.10.026 26653547
    [Google Scholar]
  72. RahmanM.H. AkterR. KamalM.A. Prospective function of different antioxidant containing natural products in the treatment of neurodegenerative diseases.CNS Neurol. Disord. Drug Targets2021208694703
    [Google Scholar]
  73. MalarD. DeviK. Dietary polyphenols for treatment of Alzheimer’s disease--future research and development.Curr. Pharm. Biotechnol.201415433034210.2174/1389201015666140813122703 25312617
    [Google Scholar]
  74. YouF. LiQ. JinG. ZhengY. ChenJ. YangH. Genistein protects against Aβ25-35 induced apoptosis of PC12 cells through JNK signaling and modulation of Bcl-2 family messengers.BMC Neurosci.20171811210.1186/s12868‑016‑0329‑9 28081713
    [Google Scholar]
  75. BagheriM. JoghataeiM.T. MohseniS. RoghaniM. Genistein ameliorates learning and memory deficits in amyloid β(1-40) rat model of Alzheimer’s disease.Neurobiol. Learn. Mem.201195327027610.1016/j.nlm.2010.12.001 21144907
    [Google Scholar]
  76. KimK.H. DodsworthC. ParasA. BurtonB.K. High dose genistein aglycone therapy is safe in patients with mucopolysaccharidoses involving the central nervous system.Mol. Genet. Metab.2013109438238510.1016/j.ymgme.2013.06.012 23845234
    [Google Scholar]
  77. RahmanM.H. AkterR. BhattacharyaT. Resveratrol and neuroprotection: Impact and its therapeutic potential in Alzheimer’s disease.Front. Pharmacol.20201161902410.3389/fphar.2020.619024 33456444
    [Google Scholar]
  78. BastianettoS. MénardC. QuirionR. Neuroprotective action of resveratrol.Biochim. Biophys. Acta Mol. Basis Dis.2015185261195120110.1016/j.bbadis.2014.09.011
    [Google Scholar]
  79. HouY. WangK. WanW. ChengY. PuX. YeX. Resveratrol provides neuroprotection by regulating the JAK2/STAT3/PI3K/AKT/mTOR pathway after stroke in rats.Genes Dis.20185324525510.1016/j.gendis.2018.06.001 30320189
    [Google Scholar]
  80. KoushkiM. Amiri-DashatanN. AhmadiN. AbbaszadehH.A. Rezaei-TaviraniM. Resveratrol: A miraculous natural compound for diseases treatment.Food Sci. Nutr.2018682473249010.1002/fsn3.855 30510749
    [Google Scholar]
  81. IsideC. ScafuroM. NebbiosoA. AltucciL. SIRT1 activation by natural phytochemicals: An overview.Front. Pharmacol.202011122510.3389/fphar.2020.01225 32848804
    [Google Scholar]
  82. DurazzoA. LucariniM. SoutoE.B. Polyphenols: A concise overview on the chemistry, occurrence, and human health.Phytother. Res.20193392221224310.1002/ptr.6419 31359516
    [Google Scholar]
  83. FerreiraP.E.B. BeraldiE.J. BorgesS.C. NataliM.R.M. ButtowN.C. Resveratrol promotes neuroprotection and attenuates oxidative and nitrosative stress in the small intestine in diabetic rats.Biomed. Pharmacother.201810572473310.1016/j.biopha.2018.06.030 29906751
    [Google Scholar]
  84. MaT. TanM.S. YuJ.T. TanL. Resveratrol as a therapeutic agent for Alzheimer’s disease.BioMed Res. Int.20142014111310.1155/2014/350516 25525597
    [Google Scholar]
  85. FereidoonS. HanP. Bioaccessibility and bioavailability of phenolic compounds.J. Food Bioact.201840
    [Google Scholar]
  86. Davidov-PardoG. McClementsD.J. Resveratrol encapsulation: Designing delivery systems to overcome solubility, stability and bioavailability issues.Trends Food Sci. Technol.20143828810310.1016/j.tifs.2014.05.003
    [Google Scholar]
  87. SathyaM. MoorthiP. PremkumarP. KandasamyM. JayachandranK.S. AnusuyadeviM. Resveratrol intervenes cholesterol- and isoprenoid-mediated amyloidogenic processing of AβPP in familial alzheimer’s disease.J. Alzheimers Dis.201760s1S3S2310.3233/JAD‑161034 28059793
    [Google Scholar]
  88. LopezM.S. DempseyR.J. VemugantiR. Resveratrol neuroprotection in stroke and traumatic CNS injury.Neurochem. Int.201589758210.1016/j.neuint.2015.08.009 26277384
    [Google Scholar]
  89. ZhangG. LiuY. XuL. ShaC. ZhangH. XuW. Resveratrol alleviates lipopolysaccharide-induced inflammation in PC-12 cells and in rat model.BMC Biotechnol.20191911010.1186/s12896‑019‑0502‑1 30691440
    [Google Scholar]
  90. HouY. ZhangY. MiY. A novel quinolyl‐substituted analogue of resveratrol inhibits lps‐induced inflammatory responses in microglial cells by blocking the NF‐κB/MAPK signaling pathways.Mol. Nutr. Food Res.20196320180138010.1002/mnfr.201801380 31378007
    [Google Scholar]
  91. SalehiB. MishraA.P. NigamM. Resveratrol: A double-edged sword in health benefits.Biomedicines2018639110.3390/biomedicines6030091 30205595
    [Google Scholar]
  92. DeaneR. WuZ. SagareA. LRP/amyloid beta-peptide interaction mediates differential brain efflux of Abeta isoforms.Neuron200443333334410.1016/j.neuron.2004.07.017 15294142
    [Google Scholar]
  93. SahaA. SarkarC. SinghS.P. The blood-brain barrier is disrupted in a mouse model of infantile neuronal ceroid lipofuscinosis: Amelioration by resveratrol.Hum. Mol. Genet.201221102233224410.1093/hmg/dds038 22331300
    [Google Scholar]
  94. MoussaC. HebronM. HuangX. Resveratrol regulates neuro-inflammation and induces adaptive immunity in Alzheimer’s disease.J. Neuroinflammation2017141110.1186/s12974‑016‑0779‑0 28086917
    [Google Scholar]
  95. NabaviS.F. KhanH. D’onofrioG. Apigenin as neuroprotective agent: Of mice and men.Pharmacol. Res.201812835936510.1016/j.phrs.2017.10.008 29055745
    [Google Scholar]
  96. YanX. QiM. LiP. ZhanY. ShaoH. Apigenin in cancer therapy: Anti-cancer effects and mechanisms of action.Cell Biosci.2017715010.1186/s13578‑017‑0179‑x 29034071
    [Google Scholar]
  97. WuJ.J. AiC.Z. LiuY. Interactions between phytochemicals from traditional Chinese medicines and human cytochrome P450 enzymes.Curr. Drug Metab.201213559961410.2174/1389200211209050599 22475333
    [Google Scholar]
  98. Sánchez-MarzoN. Pérez-SánchezA. Ruiz-TorresV. Antioxidant and photoprotective activity of apigenin and its potassium salt derivative in human keratinocytes and absorption in caco-2 cell monolayers.Int. J. Mol. Sci.2019209214810.3390/ijms20092148 31052292
    [Google Scholar]
  99. SiddiqueY. JyotiS. NazF. AfzalM. Protective effect of apigenin in transgenic Drosophila melanogaster model of Parkinson’s disease.Pharmacologyonline20113
    [Google Scholar]
  100. BalezR. SteinerN. EngelM. Neuroprotective effects of apigenin against inflammation, neuronal excitability and apoptosis in an induced pluripotent stem cell model of Alzheimer’s disease.Sci. Rep.2016613145010.1038/srep31450 27514990
    [Google Scholar]
  101. XianY-F. LinZ-X. MaoQ-Q. Bioassay-guided isolation of neuroprotective compounds from Uncaria rhynchophylla against beta-amyloid-induced neurotoxicity.Evid. Based Complement. Alternat. Med.201220121802625 22778778
    [Google Scholar]
  102. LingL.Z. ZhangS.D. The complete chloroplast genome of the traditional Chinese herb, Uncaria rhynchophylla (Rubiaceae).Mitochondrial DNA B Resour.20205142442510.1080/23802359.2019.1703597 33366585
    [Google Scholar]
  103. WangY.L. DongP.P. LiangJ.H. Phytochemical constituents from Uncaria rhynchophylla in human carboxylesterase 2 inhibition: Kinetics and interaction mechanism merged with docking simulations.Phytomedicine20185112012710.1016/j.phymed.2018.10.006 30466609
    [Google Scholar]
  104. YangW. IpS.P. LiuL. XianY.F. LinZ.X. Uncaria rhynchophylla and its major constituents on central nervous system: A review on their pharmacological actions.Curr. Vasc. Pharmacol.202018434635710.2174/1570161117666190704092841 31272356
    [Google Scholar]
  105. ShimJ.S. KimH.G. JuM.S. ChoiJ.G. JeongS.Y. OhM.S. Effects of the hook of Uncaria rhynchophylla on neurotoxicity in the 6-hydroxydopamine model of Parkinson’s disease.J. Ethnopharmacol.2009126236136510.1016/j.jep.2009.08.023 19703534
    [Google Scholar]
  106. Biswajit PalS.S.K. Evaluation of anti-Parkinson’s activity of Uncaria rhynchophylla in 6-hydroxy dopamine lesioned rat model.Int. J. Appl. Res.201516203206
    [Google Scholar]
  107. LanY.L. ZhouJ.J. LiuJ. Uncaria rhynchophylla Ameliorates Parkinson’s disease by inhibiting HSP90 expression: Insights from quantitative proteomics.Cell. Physiol. Biochem.20184741453146410.1159/000490837 29940559
    [Google Scholar]
  108. ZhangY.N. YangY.F. XuW. YangX.W. The blood-brain barrier permeability of six indole alkaloids from Uncariae ramulus cum uncis in the MDCK-pHaMDR cell monolayer model.Molecules20172211194410.3390/molecules22111944 29125571
    [Google Scholar]
  109. ZhangC. WuX. XianY. ZhuL. LinG. LinZ.X. Evidence on integrating pharmacokinetics to find truly therapeutic agent for Alzheimer’s disease: Comparative pharmacokinetics and disposition kinetics profiles of stereoisomers isorhynchophylline and rhynchophylline in rats.Evid. Based Complement. Alternat. Med.2019201911910.1155/2019/4016323 30854007
    [Google Scholar]
  110. HajialyaniM. Hosein FarzaeiM. EcheverríaJ. NabaviS.M. UriarteE. Sobarzo-SánchezE. Hesperidin as a neuroprotective agent: A review of animal and clinical evidence.Molecules201924364810.3390/molecules24030648 30759833
    [Google Scholar]
  111. BhadbhadeA ChengD W Amyloid precursor protein processing in alzheimer's disease2012
    [Google Scholar]
  112. ZhangY. HuangN. YanF. Diabetes mellitus and Alzheimer’s disease: GSK-3β as a potential link.Behav. Brain Res.2018339576510.1016/j.bbr.2017.11.015 29158110
    [Google Scholar]
  113. KhanA. JahanS. ImtiyazZ. Neuroprotection: Targeting multiple pathways by naturally occurring phytochemicals.Biomedicines20208828410.3390/biomedicines8080284 32806490
    [Google Scholar]
  114. Justin ThenmozhiA. William RajaT.R. ManivasagamT. JanakiramanU. EssaM.M. Hesperidin ameliorates cognitive dysfunction, oxidative stress and apoptosis against aluminium chloride induced rat model of Alzheimer’s disease.Nutr. Neurosci.201720636036810.1080/1028415X.2016.1144846 26878879
    [Google Scholar]
  115. KimJ. WieM.B. AhnM. TanakaA. MatsudaH. ShinT. Benefits of hesperidin in central nervous system disorders: A review.Anat. Cell Biol.201952436937710.5115/acb.19.119 31949974
    [Google Scholar]
  116. CaoZ. WangF. XiuC. ZhangJ. LiY. Hypericum perforatum extract attenuates behavioral, biochemical, and neurochemical abnormalities in Aluminum chloride-induced Alzheimer’s disease rats.Biomed. Pharmacother.20179193193710.1016/j.biopha.2017.05.022 28514831
    [Google Scholar]
  117. KumarA. LalithaS. MishraJ. Hesperidin potentiates the neuroprotective effects of diazepam and gabapentin against pentylenetetrazole-induced convulsions in mice: Possible behavioral, biochemical and mitochondrial alterations.Indian J. Pharmacol.201446330931510.4103/0253‑7613.132180 24987179
    [Google Scholar]
  118. ChangC.Y. LinT.Y. LuC.W. Hesperidin inhibits glutamate release and exerts neuroprotection against excitotoxicity induced by kainic acid in the hippocampus of rats.Neurotoxicology20155015716910.1016/j.neuro.2015.08.014 26342684
    [Google Scholar]
  119. SinghR. PariharP. SinghM. Uncovering potential applications of cyanobacteria and algal metabolites in biology, agriculture and medicine: current status and future prospects.Front. Microbiol.2017851510.3389/fmicb.2017.00515 28487674
    [Google Scholar]
  120. KiuruP. DʼAuria M, Muller C, Tammela P, Vuorela H, Yli-Kauhaluoma J. Exploring marine resources for bioactive compounds.Planta Med.201480141234124610.1055/s‑0034‑1383001 25203732
    [Google Scholar]
  121. Moradi-KorN. GhanbariA. RashidipourH. Therapeutic effects of spirulina platensis against adolescent stress-induced oxidative stress, brain-derived neurotrophic factor alterations and morphological remodeling in the amygdala of adult female rats.J. Exp. Pharmacol.202012758510.2147/JEP.S237378 32256126
    [Google Scholar]
  122. ZhangF. XieJ. LuJ. ZhangJ. Protective effects of a polysaccharide from Spirulina platensis on dopaminergic neurons in an MPTP-induced Parkinson′s disease model in C57BL/6J mice.Neural Regen. Res.201510230831310.4103/1673‑5374.152387 25883632
    [Google Scholar]
  123. HuangC. ZhangZ. CuiW. Marine-derived natural compounds for the treatment of Parkinson’s disease.Mar. Drugs201917422110.3390/md17040221 30978965
    [Google Scholar]
  124. KohE.J. KimK.J. SongJ.H. Spirulina maxima extract ameliorates learning and memory impairments via inhibiting GSK-3β phosphorylation induced by intracerebroventricular injection of amyloid-β 1-42 in mice.Int. J. Mol. Sci.20171811240110.3390/ijms18112401 29137190
    [Google Scholar]
  125. ChamorroG. Pérez-AlbiterM. Serrano-GarcíaN. Mares-SámanoJ.J. RojasP. Spirulina maxima pretreatment partially protects against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity.Nutr. Neurosci.200695-620721210.1080/10284150600929748 17263087
    [Google Scholar]
  126. BuonoS. LangellottiA.L. MartelloA. RinnaF. FoglianoV. Functional ingredients from microalgae.Food Funct.2014581669168510.1039/C4FO00125G 24957182
    [Google Scholar]
  127. ChoiW.Y. KangD.H. LeeH.Y. Effect of fermented Spirulina maxima extract on cognitive‐enhancing activities in mice with scopolamine‐induced dementia.Evid. Based Complement. Alternat. Med.201820181721850410.1155/2018/7218504 30598686
    [Google Scholar]
  128. RimbauV. CaminsA. RomayC. GonzálezR. PallàsM. Protective effects of C-phycocyanin against kainic acid-induced neuronal damage in rat hippocampus.Neurosci. Lett.19992762757810.1016/S0304‑3940(99)00792‑2 10624795
    [Google Scholar]
  129. ThomasN. KimS.K. Beneficial effects of marine algal compounds in cosmeceuticals.Mar. Drugs201311114616410.3390/md11010146 23344156
    [Google Scholar]
  130. ØverlandM. MydlandL.T. SkredeA. Marine macroalgae as sources of protein and bioactive compounds in feed for monogastric animals.J. Sci. Food Agric.2019991132410.1002/jsfa.9143 29797494
    [Google Scholar]
  131. DawczynskiC. SchäferU. LeitererM. JahreisG. Nutritional and toxicological importance of macro, trace, and ultra-trace elements in algae food products.J. Agric. Food Chem.20075525104701047510.1021/jf0721500 17994690
    [Google Scholar]
  132. SilvaJ. AlvesC. PinteusS. MendesS. PedrosaR. Neuroprotective effects of seaweeds against 6-hydroxidopamine-induced cell death on an in vitro human neuroblastoma model.BMC Complement. Altern. Med.20181815810.1186/s12906‑018‑2103‑2 29444677
    [Google Scholar]
  133. CunhaL. GrenhaA. Sulfated seaweed polysaccharides as multifunctional materials in drug delivery applications.Mar. Drugs20161434210.3390/md14030042 26927134
    [Google Scholar]
  134. BarbosaA.I. CoutinhoA.J. Costa LimaS.A. ReisS. Marine polysaccharides in pharmaceutical applications: Fucoidan and chitosan as key players in the drug delivery match field.Mar. Drugs2019171265410.3390/md17120654 31766498
    [Google Scholar]
  135. ZhangL. HaoJ. ZhengY. Fucoidan protects dopaminergic neurons by enhancing the mitochondrial function in a rotenone-induced rat model of Parkinson’s disease.Aging Dis.20189459060410.14336/AD.2017.0831 30090649
    [Google Scholar]
  136. WeiH. GaoZ. ZhengL. Protective effects of fucoidan on Aβ25-35 and d-Gal-induced neurotoxicity in PC12 cells and d-Gal-induced cognitive dysfunction in mice.Mar. Drugs20171537710.3390/md15030077 28300775
    [Google Scholar]
  137. Mohd SairaziN.S. SirajudeenK.N.S. Natural products and their bioactive compounds: Neuroprotective potentials against neurodegenerative diseases.Evid. Based Complement. Alternat. Med.202020201656539610.1155/2020/6565396 32148547
    [Google Scholar]
  138. PalS. PaulS. Conformational deviation of Thrombin binding G-quadruplex aptamer (TBA) in presence of divalent cation Sr2+: A classical molecular dynamics simulation study.Int. J. Biol. Macromol.201912135036310.1016/j.ijbiomac.2018.09.102 30308284
    [Google Scholar]
  139. HannanM.A. DashR. HaqueM.N. Neuroprotective potentials of Marine algae and their bioactive metabolites: pharmacological insights and therapeutic advances.Mar. Drugs202018734710.3390/md18070347 32630301
    [Google Scholar]
  140. KohE.J. SeoY.J. ChoiJ. Spirulina maxima extract prevents neurotoxicity via promoting activation of BDNF/CREB signaling pathways in neuronal cells and mice.Molecules2017228136310.3390/molecules22081363 28817076
    [Google Scholar]
  141. AngeloniC. VauzourD. Natural products and neuroprotection.Int. J. Mol. Sci.20192022557010.3390/ijms20225570 31703472
    [Google Scholar]
  142. DurrenbergerP.F. FernandoF.S. KashefiS.N. Common mechanisms in neurodegeneration and neuroinflammation: A brainnet europe gene expression microarray study.J. Neural Transm.201512271055106810.1007/s00702‑014‑1293‑0 25119539
    [Google Scholar]
  143. SchettersS.T.T. Gomez-NicolaD. Garcia-VallejoJ.J. Van KooykY. Neuroinflammation: Microglia and T cells get ready to tango.Front. Immunol.20188190510.3389/fimmu.2017.01905 29422891
    [Google Scholar]
  144. ShanC.S. ZhangH.F. XuQ.Q. Herbal medicine formulas for parkinson’s disease: A systematic review and meta-analysis of randomized double-blind placebo-controlled clinical trials.Front. Aging Neurosci.20181034910.3389/fnagi.2018.00349 30467472
    [Google Scholar]
  145. PandaS.S. JhanjiN. Natural products as potential anti-alzheimer agents.Curr. Med. Chem.202027355887591710.2174/0929867326666190618113613 31215372
    [Google Scholar]
  146. LeonoudakisD. RaneA. AngeliS. LithgowG.J. AndersenJ.K. ChintaS.J. Anti-inflammatory and neuroprotective role of natural product securinine in activated glial cells: Implications for parkinson’s disease.Mediators Inflamm.2017201711110.1155/2017/8302636 28473732
    [Google Scholar]
  147. Martínez-HuélamoM. Rodríguez-MoratóJ. BoronatA. De la TorreR. Modulation of Nrf2 by olive oil and wine polyphenols and neuroprotection.Antioxidants2017647310.3390/antiox6040073 28954417
    [Google Scholar]
  148. RehmanM.U. WaliA.F. AhmadA. Neuroprotective strategies for neurological disorders by natural products: An update.Curr. Neuropharmacol.201917324726710.2174/1570159X16666180911124605 30207234
    [Google Scholar]
  149. BraakH. Del TrediciK. The preclinical phase of the pathological process underlying sporadic Alzheimer’s disease.Brain2015138102814283310.1093/brain/awv236 26283673
    [Google Scholar]
  150. SinghA. DeshpandeP. GogiaN. Exploring the efficacy of natural products in alleviating Alzheimer’s disease.Neural Regen. Res.20191481321132910.4103/1673‑5374.253509 30964049
    [Google Scholar]
  151. CastelliV. GrassiD. BocaleR. Diet and brain health: Which role for polyphenols?Curr. Pharm. Des.201824222723810.2174/1381612824666171213100449 29237377
    [Google Scholar]
  152. BagliE. GoussiaA. MoschosM.M. AgnantisN. KitsosG. Natural compounds and neuroprotection: Mechanisms of action and novel delivery systems.In Vivo2016305535547 27566070
    [Google Scholar]
  153. LanJ. LiuZ. LiaoC. MerklerD.J. HanQ. LiJ. A study for therapeutic treatment against parkinson’s disease via Chou’s 5-steps rule.Curr. Top. Med. Chem.201919252318233310.2174/1568026619666191019111528 31629395
    [Google Scholar]
  154. HaddadF. SawalhaM. KhawajaY. NajjarA. KaramanR. Dopamine and levodopa prodrugs for the treatment of parkinson’s disease.Molecules20172314010.3390/molecules23010040 29295587
    [Google Scholar]
  155. ParkJ.S. DavisR.L. SueC.M. Mitochondrial dysfunction in parkinson’s disease: New mechanistic insights and therapeutic perspectives.Curr. Neurol. Neurosci. Rep.20181852110.1007/s11910‑018‑0829‑3 29616350
    [Google Scholar]
  156. MoonH.E. PaekS.H. Mitochondrial dysfunction in parkinson’s disease.Exp. Neurobiol.201524210311610.5607/en.2015.24.2.103 26113789
    [Google Scholar]
  157. KaushikS. CuervoA.M. Proteostasis and aging.Nat. Med.201521121406141510.1038/nm.4001 26646497
    [Google Scholar]
  158. WalesP. PinhoR. LázaroD.F. OuteiroT.F. Limelight on alpha-synuclein: Pathological and mechanistic implications in neurodegeneration.J. Parkinsons Dis.20133441545910.3233/JPD‑130216 24270242
    [Google Scholar]
  159. CiullaM. MarinelliL. CacciatoreI. StefanoA.D. Role of dietary supplements in the management of parkinson’s disease.Biomolecules20199727110.3390/biom9070271 31295842
    [Google Scholar]
  160. ManyamB.V. DhanasekaranM. HareT.A. Neuroprotective effects of the antiparkinson drug Mucuna pruriens.Phytother. Res.200418970671210.1002/ptr.1514 15478206
    [Google Scholar]
  161. BrichtaL. GreengardP. FlajoletM. Advances in the pharmacological treatment of Parkinson’s disease: targeting neurotransmitter systems.Trends Neurosci.201336954355410.1016/j.tins.2013.06.003 23876424
    [Google Scholar]
  162. ManoharanS. EssaM.M. VinothA. KowsalyaR. ManimaranA. SelvasundaramR. Alzheimer’s disease and medicinal plants: An overview. EssaM.M. AkbarM. GuilleminG. The Benefits of Natural Products for Neurodegenerative Diseases.ChamSpringer International Publishing20169510510.1007/978‑3‑319‑28383‑8_6
    [Google Scholar]
  163. ZhangL. ZhouZ. ZhaiW. Safflower yellow attenuates learning and memory deficits in amyloid β-induced Alzheimer’s disease rats by inhibiting neuroglia cell activation and inflammatory signaling pathways.Metab. Brain Dis.201934392793910.1007/s11011‑019‑00398‑0 30830599
    [Google Scholar]
  164. XuS.S. GaoZ.X. WengZ. Efficacy of tablet huperzine-A on memory, cognition, and behavior in Alzheimer’s disease.Chung Kuo Yao Li Hsueh Pao1995165391395 8701750
    [Google Scholar]
  165. IonitaR. PostuP.A. MihasanM. Ameliorative effects of Matricaria chamomilla L. hydroalcoholic extract on scopolamine-induced memory impairment in rats: A behavioral and molecular study.Phytomedicine20184711312010.1016/j.phymed.2018.04.049 30166095
    [Google Scholar]
  166. AzmiN.H. IsmailM. IsmailN. ImamM.U. AlitheenN.B.M. AbdullahM.A. Germinated brown rice alters A β (1-42) aggregation and modulates alzheimer’s disease-related genes in differentiated human SH-SY5Y cells.Evid. Based Complement. Alternat. Med.20152015111210.1155/2015/153684 26858770
    [Google Scholar]
  167. HishikawaN. TakahashiY. AmakusaY. Effects of turmeric on Alzheimer′s disease with behavioral and psychological symptoms of dementia.Ayu201233449950410.4103/0974‑8520.110524 23723666
    [Google Scholar]
  168. AliT. YoonG.H. ShahS.A. LeeH.Y. KimM.O. Osmotin attenuates amyloid beta-induced memory impairment, tau phosphorylation and neurodegeneration in the mouse hippocampus.Sci. Rep.2015511170810.1038/srep11708 26118757
    [Google Scholar]
  169. KhongsombatO. nakdook W, ingkaninan K. Inhibitory effects of Tabernaemontana divaricata root extract on oxidative stress and neuronal loss induced by amyloid β 25 - 35 peptide in mice.J. Tradit. Complement. Med.20188118418910.1016/j.jtcme.2017.05.009 29322008
    [Google Scholar]
  170. ColovićM.B. KrstićD.Z. Lazarević-PaštiT.D. BondžićA.M. VasićV.M. Acetylcholinesterase inhibitors: Pharmacology and toxicology.Curr. Neuropharmacol.201311331533510.2174/1570159X11311030006 24179466
    [Google Scholar]
  171. Martinez-OliveiraP. de OliveiraM.F. AlvesN. Yacon leaf extract supplementation demonstrates neuroprotective effect against memory deficit related to β-amyloid-induced neurotoxicity.J. Funct. Foods20184866567510.1016/j.jff.2018.08.004
    [Google Scholar]
  172. de la Rubia OrtíJ.E. García-PardoM.P. DrehmerE. Improvement of main cognitive functions in patients with Alzheimer’s disease after treatment with coconut oil enriched mediterranean diet: A pilot study.J. Alzheimers Dis.201865257758710.3233/JAD‑180184 30056419
    [Google Scholar]
  173. MoriM.A. DelattreA.M. CarabelliB. Neuroprotective effect of omega-3 polyunsaturated fatty acids in the 6-OHDA model of Parkinson’s disease is mediated by a reduction of inducible nitric oxide synthase.Nutr. Neurosci.201821534135110.1080/1028415X.2017.1290928 28221817
    [Google Scholar]
  174. BishtR. JoshiB.C. KaliaA.N. PrakashA. Antioxidant-rich fraction of urtica dioica mediated rescue of striatal mito-oxidative damage in mptp-induced behavioral, cellular, and neurochemical alterations in rats.Mol. Neurobiol.20175475632564510.1007/s12035‑016‑0084‑z 27624385
    [Google Scholar]
  175. WangQ. KuangH. SuY. Naturally derived anti-inflammatory compounds from Chinese medicinal plants.J. Ethnopharmacol.2013146193910.1016/j.jep.2012.12.013 23274744
    [Google Scholar]
  176. ChonpathompikunlertP. BoonruamkaewP. SukketsiriW. HutamekalinP. SroyrayaM. The antioxidant and neurochemical activity of Apium graveolens L. and its ameliorative effect on MPTP-induced Parkinson-like symptoms in mice.BMC Complement. Altern. Med.201818110310.1186/s12906‑018‑2166‑0 29558946
    [Google Scholar]
  177. TomaniJ.C.D. GainkamL.O.T. NshutiyayesuS. An ethnobotanical survey and inhibitory effects on NLRP3 inflammasomes/Caspase-1 of herbal recipes’ extracts traditionally used in Rwanda for asthma treatment.J. Ethnopharmacol.2018227294010.1016/j.jep.2018.08.016 30118837
    [Google Scholar]
  178. KarbarzM. MytychJ. SolekP. Cereal grass juice in wound healing: Hormesis and cell-survival in normal fibroblasts, in contrast to toxic events in cancer cells.J. Physiol. Pharmacol.2019704 31741456
    [Google Scholar]
  179. SarbishegiM. Charkhat GorgichE.A. KhajaviO. KomeiliG. SalimiS. The neuroprotective effects of hydro-alcoholic extract of olive (Olea europaea L.) leaf on rotenone-induced Parkinson’s disease in rat.Metab. Brain Dis.2018331798810.1007/s11011‑017‑0131‑0 29039078
    [Google Scholar]
  180. KosarajuJ. ChinniS. RoyP. KannanE. AntonyA.S. KumarM.N.S. Neuroprotective effect of Tinospora cordifolia ethanol extract on 6-hydroxy dopamine induced Parkinsonism.Indian J. Pharmacol.201446217618010.4103/0253‑7613.129312 24741189
    [Google Scholar]
  181. BhullarK.S. RupasingheH.P.V. Polyphenols: Multipotent therapeutic agents in neurodegenerative diseases.Oxid. Med. Cell. Longev.20132013111810.1155/2013/891748 23840922
    [Google Scholar]
  182. RenZ. ZhaoY. CaoT. ZhenX. Dihydromyricetin protects neurons in an MPTP-induced model of Parkinson’s disease by suppressing glycogen synthase kinase-3 beta activity.Acta Pharmacol. Sin.201637101315132410.1038/aps.2016.42 27374489
    [Google Scholar]
  183. NathanP.J. ClarkeJ. LloydJ. HutchisonC.W. DowneyL. StoughC. The acute effects of an extract of Bacopa monniera (Brahmi) on cognitive function in healthy normal subjects.Hum. Psychopharmacol.200116434535110.1002/hup.306 12404571
    [Google Scholar]
  184. TurnerR.S. ThomasR.G. CraftS. A randomized, double-blind, placebo-controlled trial of resveratrol for Alzheimer disease.Neurology201585161383139110.1212/WNL.0000000000002035 26362286
    [Google Scholar]
  185. WattanathornJ. MatorL. MuchimapuraS. Positive modulation of cognition and mood in the healthy elderly volunteer following the administration of Centella asiatica.J. Ethnopharmacol.2008116232533210.1016/j.jep.2007.11.038 18191355
    [Google Scholar]
  186. MarangoniD. FalsiniB. PiccardiM. Functional effect of Saffron supplementation and risk genotypes in early age-related macular degeneration: A preliminary report.J. Transl. Med.201311122810.1186/1479‑5876‑11‑228 24067115
    [Google Scholar]
  187. BoskabadyM.H. JavanH. SajadyM. RakhshandehH. The possible prophylactic effect of Nigella sativa seed extract in asthmatic patients.Fundam. Clin. Pharmacol.200721555956610.1111/j.1472‑8206.2007.00509.x 17868210
    [Google Scholar]
  188. MarcoF.D. RomeoS. NandasenaC. The time course of action of two neuroprotectants, dietary saffron and photobiomodulation, assessed in the rat retina.Am. J. Neurodegener. Dis.201323208220 24093084
    [Google Scholar]
  189. AkhondzadehS. Fallah-PourH. AfkhamK. JamshidiA.H. Khalighi-CigaroudiF. Comparison of Crocus sativus L. and imipramine in the treatment of mild to moderate depression: A pilot double-blind randomized trial [ISRCTN45683816].BMC Complement. Altern. Med.2004411210.1186/1472‑6882‑4‑12 15341662
    [Google Scholar]
  190. ZhangK. ChenM. DuZ-Y. ZhengX. LiD-L. ZhouR-P. Use of curcumin in diagnosis, prevention, and treatment of Alzheimer’s disease.Neural Regen. Res.201813474275210.4103/1673‑5374.230303 29722330
    [Google Scholar]
  191. ChoudharyD. BhattacharyyaS. BoseS. Efficacy and safety of ashwagandha (Withania somnifera (L.) Dunal) root extract in improving memory and cognitive functions.J. Diet. Suppl.201714659961210.1080/19390211.2017.1284970 28471731
    [Google Scholar]
  192. AkhondzadehS. NoroozianM. MohammadiM. OhadiniaS. JamshidiA.H. KhaniM. Salvia officinalis extract in the treatment of patients with mild to moderate Alzheimer’s disease: A double blind, randomized and placebo-controlled trial.J. Clin. Pharm. Ther.2003281535910.1046/j.1365‑2710.2003.00463.x 12605619
    [Google Scholar]
  193. MittalP. VardhanH. AjmalG. Formulation, optimization, hemocompatibility and pharmacokinetic evaluation of PLGA nanoparticles containing paclitaxel.Drug Dev. Ind. Pharm.201945336537810.1080/03639045.2018.1542706 30394795
    [Google Scholar]
  194. SinghJ MittalP Vasant BondeG AjmalG MishraB. Design, optimization, characterization and in-vivo evaluation of Quercetin enveloped Soluplus®/P407 micelles in diabetes treatment.Artif Cells Nanomed Biotechnol201846sup3S54655
    [Google Scholar]
  195. BhartiK. MittalP. MishraB. Formulation and characterization of fast dissolving oral films containing buspirone hydrochloride nanoparticles using design of experiment.J. Drug Deliv. Sci. Technol.20194942043210.1016/j.jddst.2018.12.013
    [Google Scholar]
  196. BondeG.V. YadavS.K. ChauhanS. Lapatinib nano-delivery systems: A promising future for breast cancer treatment.Expert Opin. Drug Deliv.201815549550710.1080/17425247.2018.1449832 29521126
    [Google Scholar]
  197. XiaoQ. WangC. LiJ. Ginkgolide B protects hippocampal neurons from apoptosis induced by beta-amyloid 25-35 partly via up-regulation of brain-derived neurotrophic factor.Eur. J. Pharmacol.20106471-3485410.1016/j.ejphar.2010.08.002 20709055
    [Google Scholar]
  198. MakkarR. BehlT. BungauS. Nutraceuticals in neurological disorders.Int. J. Mol. Sci.20202112442410.3390/ijms21124424 32580329
    [Google Scholar]
  199. SinghS. SinghT.G. Role of nuclear factor kappa B (NF-κB) signalling in neurodegenerative diseases: An mechanistic approach.Curr. Neuropharmacol.2020181091893510.2174/1570159X18666200207120949 32031074
    [Google Scholar]
  200. NouriZ. FakhriS. El-SendunyF.F. On the neuroprotective effects of naringenin: Pharmacological targets, signaling pathways, molecular mechanisms, and clinical perspective.Biomolecules201991169010.3390/biom9110690 31684142
    [Google Scholar]
  201. Yavarpour-BaliH. Ghasemi-KasmanM. PirzadehM. Curcumin-loaded nanoparticles: A novel therapeutic strategy in treatment of central nervous system disorders.Int. J. Nanomedicine2019144449446010.2147/IJN.S208332 31417253
    [Google Scholar]
  202. Enteshari NajafabadiR. KazemipourN. EsmaeiliA. BeheshtiS. NazifiS. Using superparamagnetic iron oxide nanoparticles to enhance bioavailability of quercetin in the intact rat brain.BMC Pharmacol. Toxicol.20181915910.1186/s40360‑018‑0249‑7 30253803
    [Google Scholar]
  203. FachelF.N.S. SchuhR.S. VerasK.S. An overview of the neuroprotective potential of rosmarinic acid and its association with nanotechnology-based delivery systems: A novel approach to treating neurodegenerative disorders.Neurochem. Int.2019122475810.1016/j.neuint.2018.11.003 30439384
    [Google Scholar]
  204. ThapliyalS. SinghT. HanduS. A review on potential footprints of ferulic acid for treatment of neurological disorders.Neurochem. Res.20214651043105710.1007/s11064‑021‑03257‑6 33547615
    [Google Scholar]
  205. WenM.M. El-SalamouniN.S. El-RefaieW.M. Nanotechnology-based drug delivery systems for Alzheimer’s disease management: Technical, industrial, and clinical challenges.J. Control. Release20172459510710.1016/j.jconrel.2016.11.025 27889394
    [Google Scholar]
  206. SinghN.A. MandalA.K.A. KhanZ.A. Potential neuroprotective properties of epigallocatechin-3-gallate (EGCG).Nutr. J.20151516010.1186/s12937‑016‑0179‑4 27268025
    [Google Scholar]
  207. Di SalleA. Polyphenols nanoencapsulation for therapeutic applications.J. Biomol. Res. Ther.2016052113
    [Google Scholar]
  208. RigacciS. StefaniM. Nutraceuticals and amyloid neurodegenerative diseases: A focus on natural phenols.Expert Rev. Neurother.2015151415210.1586/14737175.2015.986101 25418871
    [Google Scholar]
  209. ZhaoD. SimonJ.E. WuQ. A critical review on grape polyphenols for neuroprotection: Strategies to enhance bioefficacy.Crit. Rev. Food Sci. Nutr.202060459762510.1080/10408398.2018.1546668 30614258
    [Google Scholar]
  210. HuS. MaitiP. MaQ. Clinical development of curcumin in neurodegenerative disease.Expert Rev. Neurother.201515662963710.1586/14737175.2015.1044981 26035622
    [Google Scholar]
  211. RakotoarisoaM. AngelovaA. Amphiphilic nanocarrier systems for curcumin delivery in neurodegenerative disorders.Medicines20185412610.3390/medicines5040126 30477087
    [Google Scholar]
  212. RenaudJ. MartinoliM.G. Considerations for the use of polyphenols as therapies in neurodegenerative diseases.Int. J. Mol. Sci.2019208188310.3390/ijms20081883 30995776
    [Google Scholar]
  213. LuY. KimS. ParkK. In vitro-in vivo correlation: Perspectives on model development.Int. J. Pharm.2011418114214810.1016/j.ijpharm.2011.01.010 21237256
    [Google Scholar]
  214. BhattacharjeeS. DLS and zeta potential - What they are and what they are not?J. Control. Release201623533735110.1016/j.jconrel.2016.06.017 27297779
    [Google Scholar]
  215. OvaisM. ZiaN. AhmadI. Phyto-therapeutic and nanomedicinal approaches to cure alzheimer’s disease: Present status and future opportunities.Front. Aging Neurosci.20181028410.3389/fnagi.2018.00284 30405389
    [Google Scholar]
  216. NiuX. ChenJ. GaoJ. Nanocarriers as a powerful vehicle to overcome blood-brain barrier in treating neurodegenerative diseases: Focus on recent advances.Asian J. Pharm. Sci.201914548049610.1016/j.ajps.2018.09.005 32104476
    [Google Scholar]
  217. VarmaL.T. SinghN. GorainB. Recent advances in self-assembled nanoparticles for drug delivery.Curr. Drug Deliv.202017427929110.2174/1567201817666200210122340 32039683
    [Google Scholar]
  218. KalepuS. NekkantiV. Improved delivery of poorly soluble compounds using nanoparticle technology: A review.Drug Deliv. Transl. Res.20166331933210.1007/s13346‑016‑0283‑1 26891912
    [Google Scholar]
  219. SmithA. GiuntaB. BickfordP.C. FountainM. TanJ. ShytleR.D. Nanolipidic particles improve the bioavailability and α-secretase inducing ability of epigallocatechin-3-gallate (EGCG) for the treatment of Alzheimer’s disease.Int. J. Pharm.20103891-220721210.1016/j.ijpharm.2010.01.012 20083179
    [Google Scholar]
  220. LvL. YangF. LiH. YuanJ. Brain-targeted co-delivery of β-amyloid converting enzyme 1 shRNA and epigallocatechin-3-gallate by multifunctional nanocarriers for Alzheimer’s disease treatment.IUBMB Life20207281819182910.1002/iub.2330 32668504
    [Google Scholar]
  221. BhattR. SinghD. PrakashA. MishraN. Development, characterization and nasal delivery of rosmarinic acid-loaded solid lipid nanoparticles for the effective management of Huntington’s disease.Drug Deliv.201522793193910.3109/10717544.2014.880860 24512295
    [Google Scholar]
  222. Del Prado-AudeloM.L. Caballero-FloránI.H. Meza-ToledoJ.A. Formulations of curcumin nanoparticles for brain diseases.Biomolecules2019925610.3390/biom9020056 30743984
    [Google Scholar]
  223. TaghizadehM.S. TaherishiraziM. NiaziA. AfsharifarA. MoghadamA. Structure-guided design and cloning of peptide inhibitors targeting CDK9/cyclin T1 protein-protein interaction.Front. Pharmacol.202415132782010.3389/fphar.2024.1327820 38808256
    [Google Scholar]
  224. TaghizadehM.S. NiaziA. AfsharifarA. Virus-like particles (VLPs): A promising platform for combating against Newcastle disease virus.Vaccine X20241610044010.1016/j.jvacx.2024.100440 38283623
    [Google Scholar]
  225. Mirzapour-KouhdashtA. McClementsD.J. TaghizadehM.S. NiaziA. Garcia-VaqueroM. Strategies for oral delivery of bioactive peptides with focus on debittering and masking.NPJ Sci. Food20237122
    [Google Scholar]
  226. MoghadamA. ForoozanE. TahmasebiA. TaghizadehM.S. BolhassaniM. JafariM. System network analysis of Rosmarinus officinalis transcriptome and metabolome—Key genes in biosynthesis of secondary metabolites.PLoS One2023183e028231610.1371/journal.pone.0282316 36862714
    [Google Scholar]
  227. ShahrakiZ. TaghizadehM.S. NiaziA. RowshanV. MoghadamA. Enhancing bioactive compound production in Salvia mirzayanii through elicitor application: Insights from in vitro and in silico studies.Food Biosci.20246010418510.1016/j.fbio.2024.104185
    [Google Scholar]
  228. MoghadamA. TaghizadehM.S. HaghiR. TahmasebiA. NiaziA. EbrahimieE. Exploring novel insights: Methyl jasmonate treatment reveals novel lncRNA-mediated regulation of secondary metabolite biosynthesis pathways in Echinacea purpurea.Food Biosci.20245710345710.1016/j.fbio.2023.103457
    [Google Scholar]
/content/journals/cnsnddt/10.2174/0118715273370166250610152453
Loading
/content/journals/cnsnddt/10.2174/0118715273370166250610152453
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test