Skip to content
2000
image of Zebrafish-Based Parkinson's Disease Models: Unveiling Genetic Mechanisms and Therapeutic Pathways

Abstract

The zebrafish (Danio rerio) is widely utilised as a live vertebrate model in research on neurological development and nervous system diseases. This species exhibits various distinctive attributes that render it well-suited for investigating neurological disorders such as Parkinson’s disease (PD). Zebrafish and humans have a genetic similarity of around 70%, and approximately 84% of the genes associated with human diseases have zebrafish equivalents. The genetic similarities and presence of neurotransmitters like dopamine allow scientists to study PD genes and proteins. Zebrafish are often challenged with neurotoxins to induce Parkinsonian symptoms, allowing researchers to evaluate attendant biochemical pathways. Zebrafish can also repair damaged organs, increasing their potential value in PD research. Because of their regenerative capacity and genetic resemblance to humans, these species can be used to study dopamine neurodegeneration and prospective PD treatments. In addition to PD, zebrafish are helpful models for studying Huntington's disease, Alzheimer's disease, epilepsy, depression, schizophrenia, and anxiety disorders. This article emphasizes significant findings of relevance to PD using the zebrafish model, describing its challenges and benefits. The investigation of key genes, protein pathways, and neurotoxins provides the opportunity to facilitate understanding of the role of dopamine neurotransmitters in PD and

expedite the development of potentially promising therapeutic strategies.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/0118715273367688250528122144
2025-06-11
2025-09-29
Loading full text...

Full text loading...

References

  1. Dag A. Lucia B. Halliday G.M. Parkinson disease-associated cognitive impairment. Nat. Rev. Dis. Primers 2021 7 1 47 10.1038/s41572‑021‑00280‑3
    [Google Scholar]
  2. Wang Z. Hu B. Zhou W. Xu M. Wang D. Hopf bifurcation mechanism analysis in an improved cortex-basal ganglia network with distributed delays: An application to Parkinson’s disease. Chaos Solitons Fractals 2023 166 113022 10.1016/j.chaos.2022.113022
    [Google Scholar]
  3. Noyce A.J. Lees A.J. Schrag A.E. The prediagnostic phase of] Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 2016 87 8 871 878 10.1136/jnnp‑2015‑311890 26848171
    [Google Scholar]
  4. Chia K. Klingseisen A. Sieger D. Priller J. Zebrafish as a model organism for neurodegenerative disease. Front. Mol. Neurosci. 2022 15 940484 10.3389/fnmol.2022.940484 36311026
    [Google Scholar]
  5. Horzmann K. Freeman J. Zebrafish get connected: Investigating neurotransmission targets and alterations in chemical toxicity. Toxics 2016 4 3 19 10.3390/toxics4030019 28730152
    [Google Scholar]
  6. Huang W. Percie du Sert N. Vollert J. General principles of preclinical study design. In: Good Research Practice in Non-Clinical Pharmacology and Biomedicine Handbook of Experimental Pharmacology. Cham: Springer 2020 2020 257 55 69 10.1007/164_2019_277
    [Google Scholar]
  7. Budday S. Ovaert T.C. Holzapfel G.A. Steinmann P. Kuhl E. Fifty shades of brain: A review on the mechanical testing and modeling of brain tissue. Arch. Comput. Methods Eng. 2020 27 4 1187 1230 10.1007/s11831‑019‑09352‑w
    [Google Scholar]
  8. Khan F.R. Alhewairini S.S. Zebrafish (Danio rerio) as a model organism. Curr Trends Cancer Manag 2018 27 3 18
    [Google Scholar]
  9. Jucker M. The benefits and limitations of animal models for translational research in neurodegenerative diseases. Nat. Med. 2010 16 11 1210 1214 10.1038/nm.2224 21052075
    [Google Scholar]
  10. Ségalat L. Invertebrate animal models of diseases as screening tools in drug discovery. ACS Chem. Biol. 2007 2 4 231 236 10.1021/cb700009m 17455900
    [Google Scholar]
  11. Caramillo EM Echevarria DJ Alzheimer’s disease in the zebrafish: Where can we take it? Behav Pharmacol 2017 28 (2 and 3) 179 86 10.1097/FBP.0000000000000284 28177980 2017
    [Google Scholar]
  12. Vijayanathan Y. Lim F.T. Lim S.M. 6-OHDA-lesioned adult zebrafish as a useful Parkinson’s disease model for dopaminergic neuroregeneration. Neurotox. Res. 2017 32 3 496 508 10.1007/s12640‑017‑9778‑x 28707266
    [Google Scholar]
  13. Sidorova Y.A. Volcho K.P. Salakhutdinov N.F. Neuroregeneration in Parkinson’s disease: From proteins to small molecules. Curr. Neuropharmacol. 2019 17 3 268 287 10.2174/1570159X16666180905094123 30182859
    [Google Scholar]
  14. Pitchai A. Rajaretinam R.K. Freeman J.L. Zebrafish as an emerging model for bioassay-guided natural product drug discovery for neurological disorders. Medicines 2019 6 2 61 10.3390/medicines6020061 31151179
    [Google Scholar]
  15. Robea M.A. Balmus I.M. Ciobica A. Parkinson’s disease-induced zebrafish models: Focussing on oxidative stress implications and sleep processes. Oxid. Med. Cell. Longev. 2020 2020 1 15 10.1155/2020/1370837 32908622
    [Google Scholar]
  16. Rink E. Wullimann M.F. Connections of the ventral telencephalon (subpallium) in the zebrafish (Danio rerio). Brain Res. 2004 1011 2 206 220 10.1016/j.brainres.2004.03.027 15157807
    [Google Scholar]
  17. Missale C. Nash S.R. Robinson S.W. Jaber M. Caron M.G. Dopamine receptors: From structure to function. Physiol. Rev. 1998 78 1 189 225 10.1152/physrev.1998.78.1.189 9457173
    [Google Scholar]
  18. Murray R.M. Lappin J. Di Forti M. Schizophrenia: From developmental deviance to dopamine dysregulation. Eur. Neuropsychopharmacol. 2008 18 S129 S134 10.1016/j.euroneuro.2008.04.002 18499406
    [Google Scholar]
  19. Schultz W. Getting formal with dopamine and reward. Neuron 2002 36 2 241 263 10.1016/S0896‑6273(02)00967‑4 12383780
    [Google Scholar]
  20. Rink E. Wullimann M.F. Development of the catecholaminergic system in the early zebrafish brain: An immunohistochemical study. Brain Res. Dev. Brain Res. 2002 137 1 89 100 10.1016/S0165‑3806(02)00354‑1 12128258
    [Google Scholar]
  21. Callier S. Snapyan M. Le Crom S. Prou D. Vincent J.D. Vernier P. Evolution and cell biology of dopamine receptors in vertebrates. Biol. Cell 2003 95 7 489 502 10.1016/S0248‑4900(03)00089‑3 14597267
    [Google Scholar]
  22. Xi Y. Noble S. Ekker M. Modeling neurodegeneration in zebrafish. Curr. Neurol. Neurosci. Rep. 2011 11 3 274 282 10.1007/s11910‑011‑0182‑2 21271309
    [Google Scholar]
  23. Wasel O. Freeman J.L. Chemical and genetic zebrafish models to define mechanisms of and treatments for dopaminergic neurodegeneration. Int. J. Mol. Sci. 2020 21 17 5981 10.3390/ijms21175981 32825242
    [Google Scholar]
  24. Benarroch E.E. Monoamine transporters. Neurology 2013 81 8 761 768 10.1212/WNL.0b013e3182a1ab4a 23902707
    [Google Scholar]
  25. Semenova S. Rozov S. Panula P. Distribution, properties, and inhibitor sensitivity of zebrafish catechol-O-methyl transferases (COMT). Biochem. Pharmacol. 2017 145 147 157 10.1016/j.bcp.2017.08.017 28844929
    [Google Scholar]
  26. Doyle J.M. Croll R.P. A critical review of zebrafish models of Parkinson’s disease. Front. Pharmacol. 2022 13 835827 10.3389/fphar.2022.835827 35370740
    [Google Scholar]
  27. Wen L. Wei W. Gu W. Visualization of monoaminergic neurons and neurotoxicity of MPTP in live transgenic zebrafish. Dev. Biol. 2008 314 1 84 92 10.1016/j.ydbio.2007.11.012 18164283
    [Google Scholar]
  28. Dukes A.A. Bai Q. Van Laar V.S. Live imaging of mitochondrial dynamics in CNS dopaminergic neurons in vivo demonstrates early reversal of mitochondrial transport following MPP+ exposure. Neurobiol. Dis. 2016 95 238 249 10.1016/j.nbd.2016.07.020 27452482
    [Google Scholar]
  29. Anichtchik O.V. Kaslin J. Peitsaro N. Scheinin M. Panula P. Neurochemical and behavioural changes in zebrafish Danio rerio after systemic administration of 6‐hydroxydopamine and 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine. J. Neurochem. 2004 88 2 443 453 10.1111/j.1471‑4159.2004.02190.x 14690532
    [Google Scholar]
  30. Sarath Babu N. Murthy C.L.N. Kakara S. Sharma R. Brahmendra Swamy C.V. Idris M.M. 1‐Methyl‐4‐phenyl‐1,2,3,6‐tetrahydro-pyridine induced Parkinson’s disease in zebrafish. Proteomics 2016 16 9 1407 1420 10.1002/pmic.201500291 26959078
    [Google Scholar]
  31. Sallinen V. Torkko V. Sundvik M. MPTP and MPP+ target specific aminergic cell populations in larval zebrafish. J. Neurochem. 2009 108 3 719 731 10.1111/j.1471‑4159.2008.05793.x 19046410
    [Google Scholar]
  32. Parng C. Roy N.M. Ton C. Lin Y. McGrath P. Neurotoxicity assessment using zebrafish. J. Pharmacol. Toxicol. Methods 2007 55 1 103 112 10.1016/j.vascn.2006.04.004 16769228
    [Google Scholar]
  33. Feng C.W. Wen Z.H. Huang S.Y. Effects of 6-hydroxydopamine exposure on motor activity and biochemical expression in zebrafish (Danio rerio) larvae. Zebrafish 2014 11 3 227 239 10.1089/zeb.2013.0950 24720843
    [Google Scholar]
  34. Bretaud S. Lee S. Guo S. Sensitivity of zebrafish to environmental toxins implicated in Parkinson’s disease. Neurotoxicol. Teratol. 2004 26 6 857 864 10.1016/j.ntt.2004.06.014 15451049
    [Google Scholar]
  35. Wang L. Sheng W. Tan Z. Treatment of Parkinson’s disease in Zebrafish model with a berberine derivative capable of crossing blood brain barrier, targeting mitochondria, and convenient for bioimaging experiments. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2021 249 109151 10.1016/j.cbpc.2021.109151 34343700
    [Google Scholar]
  36. Nellore J.P.N. Paraquat exposure induces behavioral deficits in larval zebrafish during the window of dopamine neurogenesis. Toxicol. Rep. 2015 2 950 956 10.1016/j.toxrep.2015.06.007 28962434
    [Google Scholar]
  37. Wang Q. Liu S. Hu D. Identification of apoptosis and macrophage migration events in paraquat-induced oxidative stress using a zebrafish model. Life Sci. 2016 157 116 124 10.1016/j.lfs.2016.06.009 27288846
    [Google Scholar]
  38. Wang X.H. Souders C.L. Zhao Y.H. Martyniuk C.J. Paraquat affects mitochondrial bioenergetics, dopamine system expression, and locomotor activity in zebrafish (Danio rerio). Chemosphere 2018 191 106 117 10.1016/j.chemosphere.2017.10.032 29031050
    [Google Scholar]
  39. Nunes M.E. Müller T.E. Braga M.M. Chronic treatment with paraquat induces brain injury, changes in antioxidant defenses system, and modulates behavioral functions in zebrafish. Mol. Neurobiol. 2017 54 6 3925 3934 10.1007/s12035‑016‑9919‑x 27229491
    [Google Scholar]
  40. Kalyn M. Hua K. Mohd Noor S. Wong C.E.D. Ekker M. Comprehensive analysis of neurotoxin-induced ablation of dopaminergic neurons in zebrafish larvae. Biomedicines 2019 8 1 1 10.3390/biomedicines8010001 31905670
    [Google Scholar]
  41. Razali K. Othman N. Mohd Nasir M.H. The promise of the zebrafish model for Parkinson’s disease: Today’s science and tomorrow’s treatment. Front. Genet. 2021 12 655550 10.3389/fgene.2021.655550 33936174
    [Google Scholar]
  42. Sulzer D. Multiple hit hypotheses for dopamine neuron loss in Parkinson’s disease. Trends Neurosci. 2007 30 5 244 250 10.1016/j.tins.2007.03.009 17418429
    [Google Scholar]
  43. DeMaagd G Philip A Parkinson’s disease and its management: Part 1: Disease entity, risk factors, pathophysiology, clinical presentation, and diagnosis. 2015 40 8 504 32 26236139
  44. Blauwendraat C. Nalls M.A. Singleton A.B. The genetic architecture of Parkinson’s disease. Lancet Neurol. 2020 19 2 170 178 10.1016/S1474‑4422(19)30287‑X 31521533
    [Google Scholar]
  45. Polymeropoulos M.H. Higgins J.J. Golbe L.I. Mapping of a gene for Parkinson’s disease to chromosome 4q21-q23. Science 1996 274 5290 1197 1199 10.1126/science.274.5290.1197 8895469
    [Google Scholar]
  46. Nuytemans K. Theuns J. Cruts M. Van Broeckhoven C. Genetic etiology of Parkinson disease associated with mutations in the SNCA, PARK2, PINK1, PARK7, and LRRK2 genes: A mutation update. Hum. Mutat. 2010 31 7 763 780 10.1002/humu.21277 20506312
    [Google Scholar]
  47. Marques O. Outeiro T.F. Alpha-synuclein: from secretion to dysfunction and death. Cell Death Dis. 2012 3 7 e350 e0 10.1038/cddis.2012.94 22825468
    [Google Scholar]
  48. Barré-Sinoussi F. Montagutelli X. Animal models are essential to biological research: Issues and perspectives. Future Sci. OA 2015 1 4 FSO63 10.4155/fso.15.63
    [Google Scholar]
  49. Davidson W.S. Jonas A. Clayton D.F. George J.M. Stabilization of α-synuclein secondary structure upon binding to synthetic membranes. J. Biol. Chem. 1998 273 16 9443 9449 10.1074/jbc.273.16.9443 9545270
    [Google Scholar]
  50. Mahul-Mellier A.L. Burtscher J. Maharjan N. The process of Lewy body formation, rather than simply α-synuclein fibrillization, is one of the major drivers of neurodegeneration. Proc. Natl. Acad. Sci. USA 2020 117 9 4971 4982 10.1073/pnas.1913904117 32075919
    [Google Scholar]
  51. Toni M. Cioni C. Fish synucleins: An update. Mar. Drugs 2015 13 11 6665 6686 10.3390/md13116665 26528989
    [Google Scholar]
  52. Chandra S. Fornai F. Kwon H.B. Double-knockout mice for α- and β-synucleins: Effect on synaptic functions. Proc. Natl. Acad. Sci. USA 2004 101 41 14966 14971 10.1073/pnas.0406283101 15465911
    [Google Scholar]
  53. Zhang J. Li X. Li J.D. The roles of post-translational modifications on α-synuclein in the pathogenesis of Parkinson’s diseases. Front. Neurosci. 2019 13 381 10.3389/fnins.2019.00381 31057362
    [Google Scholar]
  54. Kitada T. Asakawa S. Hattori N. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 1998 392 6676 605 608 10.1038/33416 9560156
    [Google Scholar]
  55. Imai Y. Soda M. Takahashi R. Parkin suppresses unfolded protein stress-induced cell death through its E3 ubiquitin-protein ligase activity. J. Biol. Chem. 2000 275 46 35661 35664 10.1074/jbc.C000447200 10973942
    [Google Scholar]
  56. Jęśko H. Lenkiewicz A.M. Wilkaniec A. Adamczyk A. The interplay between parkin and alpha-synuclein; possible implications for the pathogenesis of Parkinson’s disease. Acta Neurobiol. Exp. 2019 79 3 277 290 10.21307/ane‑2019‑026 31587020
    [Google Scholar]
  57. Sequeira S. α-Synuclein degradation by parkin is impaired in Parkinson’s disease. Trends Neurosci. 2001 24 10 569 10.1016/S0166‑2236(00)02022‑1
    [Google Scholar]
  58. Wilkaniec A. Lenkiewicz A.M. Babiec L. Exogenous alpha-synuclein evoked parkin downregulation promotes mitochondrial dysfunction in neuronal cells. implications for Parkinson’s disease pathology. Front. Aging Neurosci. 2021 13 591475 10.3389/fnagi.2021.591475 33716707
    [Google Scholar]
  59. Chung K.K.K. Zhang Y. Lim K.L. Parkin ubiquitinates the α-synuclein-interacting protein, synphilin-1: Implications for Lewy-body formation in Parkinson disease. Nat. Med. 2001 7 10 1144 1150 10.1038/nm1001‑1144 11590439
    [Google Scholar]
  60. Selvaraj S. Piramanayagam S. Impact of gene mutation in the development of Parkinson’s disease. Genes Dis. 2019 6 2 120 128 10.1016/j.gendis.2019.01.004 31193965
    [Google Scholar]
  61. Barnhill L.M. Murata H. Bronstein J.M. Studying the pathophysiology of Parkinson’s disease using zebrafish. Biomedicines 2020 8 7 197 10.3390/biomedicines8070197 32645821
    [Google Scholar]
  62. Ashrafi G. Schwarz T.L. The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ. 2013 20 1 31 42 10.1038/cdd.2012.81 22743996
    [Google Scholar]
  63. Khandelwal P. Moussa C.E.H. The relationship between parkin and protein aggregation in neurodegenerative diseases. Front. Psychiatry 2010 1 15 10.3389/fpsyt.2010.00015 21423426
    [Google Scholar]
  64. Ge P. Dawson V.L. Dawson T.M. PINK1 and Parkin mitochondrial quality control: A source of regional vulnerability in Parkinson’s disease. Mol. Neurodegener. 2020 15 1 20 10.1186/s13024‑020‑00367‑7 32169097
    [Google Scholar]
  65. Valente E.M. Bentivoglio A.R. Dixon P.H. Localization of a novel locus for autosomal recessive early-onset parkinsonism, PARK6, on human chromosome 1p35-p36. Am. J. Hum. Genet. 2001 68 4 895 900 10.1086/319522 11254447
    [Google Scholar]
  66. Valente E.M. Abou-Sleiman P.M. Caputo V. Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science 2004 304 5674 1158 1160 10.1126/science.1096284 15087508
    [Google Scholar]
  67. Wang X. Schwarz T.L. The mechanism of Ca2+ -dependent regulation of kinesin-mediated mitochondrial motility. Cell 2009 136 1 163 174 10.1016/j.cell.2008.11.046 19135897
    [Google Scholar]
  68. Weihofen A. Thomas K.J. Ostaszewski B.L. Cookson M.R. Selkoe D.J. Pink1 forms a multiprotein complex with Miro and Milton, linking Pink1 function to mitochondrial trafficking. Biochemistry 2009 48 9 2045 2052 10.1021/bi8019178 19152501
    [Google Scholar]
  69. Gandhi S. Wood-Kaczmar A. Yao Z. PINK1-associated Parkinson’s disease is caused by neuronal vulnerability to calcium-induced cell death. Mol. Cell 2009 33 5 627 638 10.1016/j.molcel.2009.02.013 19285945
    [Google Scholar]
  70. Deng H. Dodson M.W. Huang H. Guo M. The Parkinson’s disease genes pink1 and parkin promote mitochondrial fission and/or inhibit fusion in Drosophila. Proc. Natl. Acad. Sci. USA 2008 105 38 14503 14508 10.1073/pnas.0803998105 18799731
    [Google Scholar]
  71. Gandhi S. Plun-Favreau H. Mutations and mechanism: How PINK1 may contribute to risk of sporadic Parkinson’s disease. Brain 2017 140 1 2 5 10.1093/brain/aww320 28031215
    [Google Scholar]
  72. Bastide M.F. Bido S. Duteil N. Bézard E. Striatal NELF-mediated RNA polymerase II stalling controls l -dopa induced dyskinesia. Neurobiol. Dis. 2016 85 93 98 10.1016/j.nbd.2015.10.013 26480869
    [Google Scholar]
  73. Priyadarshini M. Orosco L.A. Panula P.J. Oxidative stress and regulation of Pink1 in zebrafish (Danio rerio). PLoS One 2013 8 11 e81851 10.1371/journal.pone.0081851 24324558
    [Google Scholar]
  74. Xi Y. Ryan J. Noble S. Yu M. Yilbas A.E. Ekker M. Impaired dopaminergic neuron development and locomotor function in zebrafish with loss of pink1 function. Eur. J. Neurosci. 2010 31 4 623 633 10.1111/j.1460‑9568.2010.07091.x 20141529
    [Google Scholar]
  75. Anichtchik O. Diekmann H. Fleming A. Roach A. Goldsmith P. Rubinsztein D.C. Loss of PINK1 function affects development and results in neurodegeneration in zebrafish. J. Neurosci. 2008 28 33 8199 8207 10.1523/JNEUROSCI.0979‑08.2008 18701682
    [Google Scholar]
  76. McQuibban G.A. Bulman D.E. The PARLance of Parkinson disease. Autophagy 2011 7 7 790 792 10.4161/auto.7.7.15614 21471738
    [Google Scholar]
  77. Liu J. Liu W. Li R. Yang H. Mitophagy in Parkinson’s disease: From pathogenesis to treatment. Cells 2019 8 7 712 10.3390/cells8070712 31336937
    [Google Scholar]
  78. Noble S. Ismail A. Godoy R. Xi Y. Ekker M. Zebrafish Parla‐ and Parlb‐deficiency affects dopaminergic neuron patterning and embryonic survival. J. Neurochem. 2012 122 1 196 207 10.1111/j.1471‑4159.2012.07758.x 22506991
    [Google Scholar]
  79. Shamchuk A.L. Allison W.T. Tierney K.B. The importance of olfactory and motor endpoints for zebrafish models of neurodegenerative disease. Animal models for the study of human disease. Elsevier 2017 525 554 10.1016/B978‑0‑12‑809468‑6.00021‑8
    [Google Scholar]
  80. Merhi R. Kalyn M. Zhu-Pawlowsky A. Ekker M. Loss of parla function results in inactivity, olfactory impairment, and dopamine neuron loss in zebrafish. Biomedicines 2021 9 2 205 10.3390/biomedicines9020205 33670667
    [Google Scholar]
  81. Bonifati V. Rizzu P. van Baren M.J. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 2003 299 5604 256 259 10.1126/science.1077209 12446870
    [Google Scholar]
  82. Lev N. Ickowicz D. Barhum Y. Lev S. Melamed E. Offen D. DJ-1 protects against dopamine toxicity. J. Neural Transm. 2009 116 2 151 160 10.1007/s00702‑008‑0134‑4 18974921
    [Google Scholar]
  83. Xiong H. Wang D. Chen L. Parkin, PINK1, and DJ-1 form a ubiquitin E3 ligase complex promoting unfolded protein degradation. J. Clin. Invest. 2009 119 3 650 660 10.1172/JCI37617 19229105
    [Google Scholar]
  84. Bandyopadhyay S. Cookson M.R. Evolutionary and functional relationships within the DJ1 superfamily. BMC Evol. Biol. 2004 4 1 6 10.1186/1471‑2148‑4‑6 15070401
    [Google Scholar]
  85. Buneeva O.A. Medvedev A.E. DJ-1 protein and its role in the development of Parkinson’s disease: Studies on experimental models. Biochemistry 2021 86 6 627 640 10.1134/S000629792106002X 34225587
    [Google Scholar]
  86. Bretaud S. Allen C. Ingham P.W. Bandmann O. p53‐dependent neuronal cell death in a DJ‐1‐deficient zebrafish model of Parkinson’s disease. J. Neurochem. 2007 100 6 1626 1635 10.1111/j.1471‑4159.2006.04291.x 17166173
    [Google Scholar]
  87. Kato I. Maita H. Takahashi-Niki K. Oxidized DJ-1 inhibits p53 by sequestering p53 from promoters in a DNA-binding affinity-dependent manner. Mol. Cell. Biol. 2013 33 2 340 359 10.1128/MCB.01350‑12 23149933
    [Google Scholar]
  88. Repici M. Giorgini F. DJ-1 in Parkinson’s disease: Clinical insights and therapeutic perspectives. J. Clin. Med. 2019 8 9 1377 10.3390/jcm8091377 31484320
    [Google Scholar]
  89. Edson A.J. Hushagen H.A. Frøyset A.K. Dysregulation in the brain protein profile of zebrafish lacking the Parkinson’s disease-related protein DJ-1. Mol. Neurobiol. 2019 56 12 8306 8322 10.1007/s12035‑019‑01667‑w 31218647
    [Google Scholar]
  90. Funayama M. Hasegawa K. Kowa H. Saito M. Tsuji S. Obata F. A new locus for Parkinson’s disease (PARK8) maps to chromosome 12p11.2-q13.1. Ann. Neurol. 2002 51 3 296 301 10.1002/ana.10113 11891824
    [Google Scholar]
  91. Paisán-Ruíz C. Jain S. Evans E.W. Cloning of the gene containing mutations that cause PARK8-linked Parkinson’s disease. Neuron 2004 44 4 595 600 10.1016/j.neuron.2004.10.023 15541308
    [Google Scholar]
  92. Prabhudesai S. Bensabeur F.Z. Abdullah R. LRRK2 knockdown in zebrafish causes developmental defects, neuronal loss, and synuclein aggregation. J. Neurosci. Res. 2016 94 8 717 735 10.1002/jnr.23754 27265751
    [Google Scholar]
  93. Rui Q. Ni H. Li D. Gao R. Chen G. The role of LRRK2 in neurodegeneration of Parkinson disease. Curr. Neuropharmacol. 2018 16 9 1348 1357 10.2174/1570159X16666180222165418 29473513
    [Google Scholar]
  94. Tsika E. Moore D.J. Mechanisms of LRRK2-mediated neurodegeneration. Curr. Neurol. Neurosci. Rep. 2012 12 3 251 260 10.1007/s11910‑012‑0265‑8 22441981
    [Google Scholar]
  95. Martin I. Kim J.W. Dawson V.L. Dawson T.M. LRRK2 pathobiology in Parkinson’s disease. J. Neurochem. 2014 131 5 554 565 10.1111/jnc.12949 25251388
    [Google Scholar]
  96. Sheng D. Qu D. Kwok K.H.H. Deletion of the WD40 domain of LRRK2 in Zebrafish causes Parkinsonism-like loss of neurons and locomotive defect. PLoS Genet. 2010 6 4 e1000914 10.1371/journal.pgen.1000914 20421934
    [Google Scholar]
  97. Sheng D. See K. Hu X. Disruption of LRRK2 in Zebrafish leads to hyperactivity and weakened antibacterial response. Biochem. Biophys. Res. Commun. 2018 497 4 1104 1109 10.1016/j.bbrc.2018.02.186 29499195
    [Google Scholar]
  98. Milanese C. Sager J.J. Bai Q. Hypokinesia and reduced dopamine levels in zebrafish lacking β- and γ1-synucleins. J. Biol. Chem. 2012 287 5 2971 2983 10.1074/jbc.M111.308312 22128150
    [Google Scholar]
  99. Lulla A. Barnhill L. Bitan G. Neurotoxicity of the Parkinson disease-associated pesticide ziram is synuclein-dependent in zebrafish embryos. Environ. Health Perspect. 2016 124 11 1766 1775 10.1289/EHP141 27301718
    [Google Scholar]
  100. Flinn L. Mortiboys H. Volkmann K. Köster R.W. Ingham P.W. Bandmann O. Complex I deficiency and dopaminergic neuronal cell loss in parkin-deficient zebrafish (Danio rerio). Brain 2009 132 6 1613 1623 10.1093/brain/awp108 19439422
    [Google Scholar]
  101. Flinn L.J. Keatinge M. Bretaud S. TigarB causes mitochondrial dysfunction and neuronal loss in PINK1 deficiency. Ann. Neurol. 2013 74 6 837 847 10.1002/ana.23999 24027110
    [Google Scholar]
  102. Ren G. Xin S. Li S. Zhong H. Lin S. Disruption of LRRK2 does not cause specific loss of dopaminergic neurons in zebrafish. PLoS One 2011 6 6 e20630 10.1371/journal.pone.0020630 21698186
    [Google Scholar]
  103. Yang T. Shen J. Lemere C.A. Increased DJ-1 expression under oxidative stress and in Alzheimer’s disease brains. Mol. Neurodegener. 2009 4 12 10.1186/1750‑1326‑4‑12
    [Google Scholar]
  104. Dumitrescu E. Deshpande A. Wallace K.N. Andreescu S. Time-dependent monitoring of dopamine in the brain of live embryonic zebrafish using electrochemically pretreated carbon fiber microelectrodes. ACS Measurement Science Au 2022 2 3 261 270 10.1021/acsmeasuresciau.1c00051 36785866
    [Google Scholar]
  105. Khalili A. Wijngaarden E. Zoidl G.R. Rezai P. Dopaminergic signaling regulates zebrafish larvae’s response to electricity. Biotechnol. J. 2022 17 6 2100561 10.1002/biot.202100561 35332995
    [Google Scholar]
  106. Wilson C.N. Mustafa S.J. Adenosine receptors in health and disease. Springer 2009 10.1007/978‑3‑540‑89615‑9
    [Google Scholar]
  107. Olanow C.W. Brundin P. Parkinson’s disease and alpha synuclein: Is Parkinson’s disease a prion-like disorder? Mov. Disord. 2013 28 1 31 40 10.1002/mds.25373 23390095
    [Google Scholar]
  108. Martínez-Jauand M. Sitges C. Rodríguez V. Pain sensitivity in fibromyalgia is associated with catechol‐ O ‐methyltransferase (COMT) gene. Eur. J. Pain 2013 17 1 16 27 10.1002/j.1532‑2149.2012.00153.x 22528689
    [Google Scholar]
  109. Zheng J. Zhang X. Zhen X. Development of adenosine A2A receptor antagonists for the treatment of Parkinson’s disease: A recent update and challenge. ACS Chem. Neurosci. 2019 10 2 783 791 10.1021/acschemneuro.8b00313 30199223
    [Google Scholar]
  110. Borroto-Escuela D.O. Fuxe K. Adenosine heteroreceptor complexes in the basal ganglia are implicated in Parkinson’s disease and its treatment. J. Neural Transm. 2019 126 4 455 471 10.1007/s00702‑019‑01969‑2 30637481
    [Google Scholar]
  111. Wang Z. Hu B. Zhu L. Lin J. Xu M. Wang D. The possible mechanism of direct feedback projections from basal ganglia to cortex in beta oscillations of Parkinson’s disease: A theoretical evidence in the competing resonance model. Commun. Nonlinear Sci. Numer. Simul. 2023 120 107142 10.1016/j.cnsns.2023.107142
    [Google Scholar]
  112. Waggan I. Rissanen E. Tuisku J. Effect of dopaminergic medication on adenosine 2A receptor availability in patients with Parkinson’s disease. Parkinsonism Relat. Disord. 2021 86 40 44 10.1016/j.parkreldis.2021.03.030 33831661
    [Google Scholar]
  113. Wichmann T. Changing views of the pathophysiology of Parkinsonism. Mov. Disord. 2019 34 8 1130 1143 10.1002/mds.27741 31216379
    [Google Scholar]
  114. Kulisevsky J. Poyurovsky M. Adenosine A2A-receptor antagonism and pathophysiology of Parkinson’s disease and drug-induced movement disorders. Eur. Neurol. 2012 67 1 4 11 10.1159/000331768 22134373
    [Google Scholar]
  115. Fredholm B.B. Svenningsson P. Why target brain adenosine receptors? A historical perspective. Parkinsonism Relat. Disord. 2020 80 S3 S6 10.1016/j.parkreldis.2020.09.027 33349578
    [Google Scholar]
  116. Ikram M. Park T.J. Ali T. Kim M.O. Antioxidant and neuroprotective effects of caffeine against Alzheimer’s and Parkinson’s disease: Insight into the role of Nrf-2 and A2AR signaling. Antioxidants 2020 9 9 902 10.3390/antiox9090902 32971922
    [Google Scholar]
  117. Drake J. Kanski J. Varadarajan S. Tsoras M. Butterfield D.A. Elevation of brain glutathione by γ‐glutamylcysteine ethyl ester protects against peroxynitrite‐induced oxidative stress. J. Neurosci. Res. 2002 68 6 776 784 10.1002/jnr.10266 12111838
    [Google Scholar]
  118. Jankovic J. Tan E.K. Parkinson’s disease: Etiopathogenesis and treatment. J. Neurol. Neurosurg. Psychiatry 2020 91 8 795 808 10.1136/jnnp‑2019‑322338 32576618
    [Google Scholar]
  119. Calabrese V. Cornelius C. Dinkova-Kostova A.T. Calabrese E.J. Mattson M.P. Cellular stress responses, the hormesis paradigm, and vitagenes: Novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid. Redox Signal. 2010 13 11 1763 1811 10.1089/ars.2009.3074 20446769
    [Google Scholar]
  120. Wakabayashi K. Where and how alpha‐synuclein pathology spreads in Parkinson’s disease. Neuropathology 2020 40 5 415 425 10.1111/neup.12691 32750743
    [Google Scholar]
  121. Rekha K.R. Selvakumar G.P. Santha K. Inmozhi Sivakamasundari R. Geraniol attenuates α-synuclein expression and neuromuscular impairment through increase dopamine content in MPTP intoxicated mice by dose dependent manner. Biochem. Biophys. Res. Commun. 2013 440 4 664 670 10.1016/j.bbrc.2013.09.122 24103762
    [Google Scholar]
  122. Rocha EM De Miranda B Sanders LH Alpha-synuclein: Pathology, mitochondrial dysfunction and neuroinflammation in Parkinson’s disease Neurobiol Dis 2018 109 (Pt B) 249 57 10.1016/j.nbd.2017.04.004 28400134
    [Google Scholar]
  123. Mehra S. Sahay S. Maji S.K. α-Synuclein misfolding and aggregation: Implications in Parkinson’s disease pathogenesis. Biochim. Biophys. Acta. Proteins Proteomics 2019 1867 10 890 908 10.1016/j.bbapap.2019.03.001 30853581
    [Google Scholar]
  124. Brundin P Dave KD Kordower JH Therapeutic approaches to target alpha-synuclein pathology. Exp Neurol 2017 298 (Pt B): 225 35 10.1016/j.expneurol.2017.10.003 28987463
    [Google Scholar]
  125. Katsaiti I. Nixon J. Are there benefits in adding catechol-O methyltransferase inhibitors in the pharmacotherapy of Parkinson’s disease patients? A systematic review. J. Parkinsons Dis. 2018 8 2 217 231 10.3233/JPD‑171225 29614697
    [Google Scholar]
  126. Palma P.N. Kiss L.E. Soares-da-Silva P. Catechol-Omethyltransferase inhibitors: Present problems and relevance of the new ones. In: Emerging drugs and targets for Parkinson’s disease. RSC Publishing 2013 34 83 109 10.13140/2.1.1292.3848
    [Google Scholar]
  127. Cacabelos R. Parkinson’s disease: From pathogenesis to pharmacogenomics. Int. J. Mol. Sci. 2017 18 3 551 10.3390/ijms18030551 28273839
    [Google Scholar]
  128. de Beer J. Petzer J.P. Lourens A.C.U. Petzer A. Design, synthesis and evaluation of 3-hydroxypyridin-4-ones as inhibitors of catechol-O-methyltransferase. Mol. Divers. 2021 25 2 753 762 10.1007/s11030‑020‑10053‑x 32108308
    [Google Scholar]
  129. dos Santos Passos C. Soldi T.C. Torres Abib R. Monoamine oxidase inhibition by monoterpene indole alkaloids and fractions obtained from Psychotria suterella and Psychotria laciniata. J. Enzyme Inhib. Med. Chem. 2013 28 3 611 618 10.3109/14756366.2012.666536 22424181
    [Google Scholar]
  130. Chamoli M. Chinta S.J. Andersen J.K. An inducible MAO-B mouse model of Parkinson’s disease: A tool towards better understanding basic disease mechanisms and developing novel therapeutics. J. Neural Transm. 2018 125 11 1651 1658 10.1007/s00702‑018‑1887‑z 29713806
    [Google Scholar]
  131. Dezsi L. Vecsei L. Monoamine oxidase B inhibitors in Parkinson’s disease. CNS Neurol. Disord. Drug Targets 2017 16 425 439
    [Google Scholar]
  132. Binda C. Hubálek F. Li M. Crystal structures of monoamine oxidase B in complex with four inhibitors of the N-propargylaminoindan class. J. Med. Chem. 2004 47 7 1767 1774 10.1021/jm031087c 15027868
    [Google Scholar]
  133. Sampaio T.F. dos Santos E.U.D. de Lima G.D.C. MAO‐B and COMT genetic variations associated with levodopa treatment response in patients with Parkinson’s disease. J. Clin. Pharmacol. 2018 58 7 920 926 10.1002/jcph.1096 29578580
    [Google Scholar]
  134. Yang J. Song S. Li J. Liang T. Neuroprotective effect of curcumin on hippocampal injury in 6-OHDA-induced Parkinson’s disease rat. Pathol. Res. Pract. 2014 210 6 357 362 10.1016/j.prp.2014.02.005 24642369
    [Google Scholar]
  135. Yang L. Wang H. Liu L. Xie A. The role of insulin/IGF-1/PI3K/Akt/GSK3β signaling in Parkinson’s disease dementia. Front. Neurosci. 2018 12 73 10.3389/fnins.2018.00073 29515352
    [Google Scholar]
  136. Baj T. Seth R. Role of curcumin in regulation of TNF-α mediated brain inflammatory responses. Recent Pat. Inflamm. Allergy Drug Discov. 2018 12 1 69 77 10.2174/1872213X12666180703163824 29972106
    [Google Scholar]
  137. Huang N. Zhang Y. Chen M. Resveratrol delays 6-hydroxydopamine-induced apoptosis by activating the PI3K/Akt signaling pathway. Exp. Gerontol. 2019 124 110653 10.1016/j.exger.2019.110653 31295526
    [Google Scholar]
  138. Deng H. Ma Z. Protective effects of berberine against MPTP-induced dopaminergic neuron injury through promoting autophagy in mice. Food Funct. 2021 12 18 8366 8375 10.1039/D1FO01360B 34342315
    [Google Scholar]
  139. Huang S. Liu H. Lin Y. Berberine protects against NLRP3 inflammasome via ameliorating autophagic impairment in MPTP-induced Parkinson’s disease model. Front. Pharmacol. 2021 11 618787 10.3389/fphar.2020.618787 33584302
    [Google Scholar]
  140. Li X.M. Zhang X.J. Dong M.X. Isorhynchophylline attenuates MPP+-induced apoptosis through endoplasmic reticulum stress-and mitochondria-dependent pathways in PC12 cells: Involvement of antioxidant activity. Neuromolecular Med. 2017 19 4 480 492 10.1007/s12017‑017‑8462‑x 28822073
    [Google Scholar]
  141. Kim S.M. Chung M.J. Ha T.J. Neuroprotective effects of black soybean anthocyanins via inactivation of ASK1–JNK/p38 pathways and mobilization of cellular sialic acids. Life Sci. 2012 90 21-22 874 882 10.1016/j.lfs.2012.04.025 22575822
    [Google Scholar]
  142. Li X. Zhang J. Zhang X. Dong M. Puerarin suppresses MPP+/MPTP-induced oxidative stress through an Nrf2-dependent mechanism. Food Chem. Toxicol. 2020 144 111644 10.1016/j.fct.2020.111644 32763437
    [Google Scholar]
  143. Zhao Y. Zhao J. Zhang X. Botanical drug puerarin promotes neuronal survival and neurite outgrowth against MPTP/MPP+-induced toxicity via progesterone receptor signaling. Oxid. Med. Cell. Longev. 2020 2020 1 11 10.1155/2020/7635291 33123315
    [Google Scholar]
  144. Zhao X. Kong D. Zhou Q. Baicalein alleviates depression-like behavior in rotenone-induced Parkinson’s disease model in mice through activating the BDNF/TrkB/CREB pathway. Biomed. Pharmacother. 2021 140 111556 10.1016/j.biopha.2021.111556 34087694
    [Google Scholar]
  145. Song J.X. Choi M.Y.M. Wong K.C.K. Baicalein antagonizes rotenone-induced apoptosis in dopaminergic SH-SY5Y cells related to Parkinsonism. Chin. Med. 2012 7 1 1 9 10.1186/1749‑8546‑7‑1 22264378
    [Google Scholar]
  146. Zheng Z.V. Cheung C.Y. Lyu H. Baicalein enhances the effect of low dose Levodopa on the gait deficits and protects dopaminergic neurons in experimental Parkinsonism. J. Clin. Neurosci. 2019 64 242 251 10.1016/j.jocn.2019.02.005 30905662
    [Google Scholar]
  147. Zhang C. Zhao M. Wang B. The Nrf2-NLRP3-caspase-1 axis mediates the neuroprotective effects of Celastrol in Parkinson’s disease. Redox Biol. 2021 47 102134 10.1016/j.redox.2021.102134 34600334
    [Google Scholar]
  148. Lin M.W. Lin C.C. Chen Y.H. Yang H.B. Hung S.Y. Celastrol inhibits dopaminergic neuronal death of Parkinson’s disease through activating mitophagy. Antioxidants 2019 9 1 37 10.3390/antiox9010037 31906147
    [Google Scholar]
  149. Feng Y. Zheng C. Zhang Y. Triptolide inhibits preformed fibril‐induced microglial activation by targeting the MicroRNA155‐5p/SHIP1 pathway. Oxid. Med. Cell. Longev. 2019 2019 1 13 10.1155/2019/6527638 31182996
    [Google Scholar]
  150. Lu S. Liao Q.S. Tang L. MiR-155 affects osteosarcoma cell proliferation and invasion through regulating NF-κB signaling pathway. Eur. Rev. Med. Pharmacol. Sci. 2018 22 22 7633 7639 [PMID: 30536304
    [Google Scholar]
  151. Huang Y.Y. Zhang Q. Zhang J.N. Triptolide up-regulates metabotropic glutamate receptor 5 to inhibit microglia activation in the lipopolysaccharide-induced model of Parkinson’s disease. Brain Behav. Immun. 2018 71 93 107 10.1016/j.bbi.2018.04.006 29649522
    [Google Scholar]
  152. Hu G. Gong X. Wang L. Triptolide promotes the clearance of α-synuclein by enhancing autophagy in neuronal cells. Mol. Neurobiol. 2017 54 3 2361 2372 10.1007/s12035‑016‑9808‑3 26957304
    [Google Scholar]
  153. Omar N.A. Kumar J. Teoh S.L. Parkinson’s disease model in zebrafish using intraperitoneal MPTP injection. Front. Neurosci. 2023 17 1236049 10.3389/fnins.2023.1236049 37694115
    [Google Scholar]
  154. Gao X. Zhang B. Zheng Y. Neuroprotective effect of chlorogenic acid on Parkinson’s disease like symptoms through boosting the autophagy in zebrafish. Eur. J. Pharmacol. 2023 956 175950 10.1016/j.ejphar.2023.175950 37544423
    [Google Scholar]
  155. Santo G.D. de Veras B.O. Rico E. Hexane extract from SpoSndias mombin L. (Anacardiaceae) prevents behavioral and oxidative status changes on model of Parkinson’s disease in zebrafish. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2021 241 108953 10.1016/j.cbpc.2020.108953 33310063
    [Google Scholar]
  156. Ren Q. Jiang X. Zhang S. Neuroprotective effect of YIAEDAER peptide against Parkinson’s disease like pathology in zebrafish. Biomed. Pharmacother. 2022 147 112629 10.1016/j.biopha.2022.112629 35030435
    [Google Scholar]
  157. Wang M. Ye H. Jiang P. The alleviative effect of Calendula officinalis L. extract against Parkinson’s disease-like pathology in zebrafish via the involvement of autophagy activation. Front. Neurosci. 2023 17 1153889 10.3389/fnins.2023.1153889 37179558
    [Google Scholar]
  158. Gondokesumo M.E. Budipramana K. Putri P.D.A. Nopitasari N.P.D. Aditya M. Yusan L.Y. Keluwih (Artocarpus camansi) extract effects in zebrafish models of Parkinson’s disease. Jurnal Teknologi Laboratorium 2023 12 1 14 22 10.29238/teknolabjournal.v12i1.406
    [Google Scholar]
  159. Wu C.H. Lin K.L. Long C.Y. Feng C.W. The neuroprotective effect of isotetrandrine on Parkinson’s disease via anti-inflammation and antiapoptosis in vitro and in vivo. Parkinsons Dis. 2023 2023 1 12 10.1155/2023/8444153 37854894
    [Google Scholar]
  160. Barbosa J.S. Ninkovic J. Adult neural stem cell behavior underlying constitutive and restorative neurogenesis in zebrafish. Neurogenesis 2016 3 1 e1148101 10.1080/23262133.2016.1148101 27606336
    [Google Scholar]
  161. Godoy R. Hua K. Kalyn M. Cusson V.M. Anisman H. Ekker M. Dopaminergic neurons regenerate following chemogenetic ablation in the olfactory bulb of adult Zebrafish (Danio rerio). Sci. Rep. 2020 10 1 12825 10.1038/s41598‑020‑69734‑0 32733000
    [Google Scholar]
  162. Marques I.J. Lupi E. Mercader N. Model systems for regeneration: Zebrafish. Development 2019 146 18 dev167692 10.1242/dev.167692 31540899
    [Google Scholar]
  163. Caldwell L.J. Davies N.O. Cavone L. Regeneration of dopaminergic neurons in adult zebrafish depends on immune system activation and differs for distinct populations. J. Neurosci. 2019 39 24 4694 4713 10.1523/JNEUROSCI.2706‑18.2019 30948475
    [Google Scholar]
  164. Alunni A. Bally-Cuif L. A comparative view of regenerative neurogenesis in vertebrates. Development 2016 143 5 741 753 10.1242/dev.122796 26932669
    [Google Scholar]
  165. Kyritsis N. Kizil C. Zocher S. Acute inflammation initiates the regenerative response in the adult zebrafish brain. Science 2012 338 6112 1353 1356 10.1126/science.1228773 23138980
    [Google Scholar]
  166. Ohnmacht J Yang Y Maurer GW Spinal motor neurons are regenerated after mechanical lesion and genetic ablation in larval zebrafish. Development 2016 143 9 dev.129155 10.1242/dev.129155 26965370
    [Google Scholar]
  167. Yamamoto K. Ruuskanen J.O. Wullimann M.F. Vernier P. Two tyrosine hydroxylase genes in vertebrates. Mol. Cell. Neurosci. 2010 43 4 394 402 10.1016/j.mcn.2010.01.006 20123022
    [Google Scholar]
  168. Hughes G.L. Lones M.A. Bedder M. Currie P.D. Smith S.L. Pownall M.E. Machine learning discriminates a movement disorder in a zebrafish model of Parkinson’s disease. Dis. Model. Mech. 2020 13 10 dmm045815 10.1242/dmm.045815 32859696
    [Google Scholar]
  169. Shehwana H. Konu O. Comparative transcriptomics between zebrafish and mammals: A roadmap for discovery of conserved and unique signaling pathways in physiology and disease. Front. Cell Dev. Biol. 2019 7 5 10.3389/fcell.2019.00005 30775367
    [Google Scholar]
  170. Howe K. Clark M.D. Torroja C.F. The zebrafish reference genome sequence and its relationship to the human genome. Nature 2013 496 7446 498 503 10.1038/nature12111 23594743
    [Google Scholar]
  171. Kalueff A.V. Cachat J.M. Zebrafish models in neurobehavioral research. Springer 2011 10.1007/978‑1‑60761‑922‑2
    [Google Scholar]
  172. d’Amora M. Giordani S. The utility of zebrafish as a model for screening developmental neurotoxicity. Front. Neurosci. 2018 12 976 10.3389/fnins.2018.00976 30618594
    [Google Scholar]
  173. Gilbert M.J.H. Zerulla T.C. Tierney K.B. Zebrafish (Danio rerio) as a model for the study of aging and exercise: Physical ability and trainability decrease with age. Exp. Gerontol. 2014 50 106 113 10.1016/j.exger.2013.11.013 24316042
    [Google Scholar]
  174. Njiwa J.R.K. Müller P. Klein R. Life cycle stages and length of zebrafish (Danio rerio) exposed to DDT. J. Health Sci. 2004 50 3 220 225 10.1248/jhs.50.220
    [Google Scholar]
  175. Avdesh A. Chen M. Martin-Iverson M.T. Regular care and maintenance of a zebrafish (Danio rerio) laboratory: An introduction. J. Vis. Exp. 2012 69 e4196 [PMID: 23183629
    [Google Scholar]
  176. Arslan B.K. Edmondson D.E. Expression of zebrafish (Danio rerio) monoamine oxidase (MAO) in Pichia pastoris: Purification and comparison with human MAO A and MAO B. Protein Expr. Purif. 2010 70 2 290 297 10.1016/j.pep.2010.01.005 20079438
    [Google Scholar]
  177. Fierro A. Montecinos A. Gómez-Molina C. Similarities between the binding sites of monoamine oxidase (MAO) from different species. Is zebrafish a useful model for the discovery of novel MAO inhibitors. In:An integrated view of the molecular recognition and toxinology From analytical procedures to biomedical applications. Rijeka InTech 2013
    [Google Scholar]
  178. Kalueff A.V. Stewart A.M. Gerlai R. Zebrafish as an emerging model for studying complex brain disorders. Trends Pharmacol. Sci. 2014 35 2 63 75 10.1016/j.tips.2013.12.002 24412421
    [Google Scholar]
  179. Saleem S. Kannan R.R. Zebrafish: An emerging real-time model system to study Alzheimer’s disease and neurospecific drug discovery. Cell Death Discov. 2018 4 1 45 10.1038/s41420‑018‑0109‑7 30302279
    [Google Scholar]
  180. Goldsmith J.R. Jobin C. Think small: Zebrafish as a model system of human pathology. J. Biomed. Biotechnol. 2012 2012 1 12 10.1155/2012/817341 22701308
    [Google Scholar]
  181. Lardelli M. Using zebrafish in human disease research: Some advantages, disadvantages and ethical considerations. Proceedings of 2008 ANZCCART Conference Auckland, New Zealand 2008 23 28
    [Google Scholar]
  182. Vaz R.L. Outeiro T.F. Ferreira J.J. Zebrafish as an animal model for drug discovery in Parkinson’s disease and other movement disorders: A systematic review. Front. Neurol. 2018 9 347 10.3389/fneur.2018.00347 29910763
    [Google Scholar]
/content/journals/cnsnddt/10.2174/0118715273367688250528122144
Loading
/content/journals/cnsnddt/10.2174/0118715273367688250528122144
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Parkinson’s disease ; genes ; dopamine ; neurodegeneration ; Zebrafish
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test