Skip to content
2000
Volume 24, Issue 8
  • ISSN: 1871-5273
  • E-ISSN: 1996-3181

Abstract

Introduction/Background

Parkinson’s disease, the second most common neurodegenerative disease, is still lacking an effective treatment that can stop dopaminergic cell loss in substantia nigra and alter disease progression. The present study aimed to investigate the neuroprotective efficacy of lithium chloride in a rotenone-induced rat model of Parkinson’s disease.

Methods

Forty male Sprague Dawley rats were assigned into 4 groups: control, rotenone-, rotenone and lithium chloride- and lithium chloride-treated groups. Rotenone (2 mg/kg b.w.) and lithium chloride (60 mg/kg b.w.) were, respectively, administered subcutaneously and orally five times a week for 5 weeks. At the end of each treatment, the neuroprotective efficacy of lithium chloride against rotenone-induced derangements was evaluated by some behavioral tests, biochemical analysis, gel electrophoresis, histopathology, and immunohistochemistry.

Results

Rotenone significantly resulted in neurobehavioral deficits, gastrointestinal dysfunction, decreased activities of catalase and superoxide dismutase, depleted glutathione, and increased levels of malondialdehyde. It also caused DNA fragmentation and loss of dopaminergic neurons in substantia nigra and decreased striatal tyrosine hydroxylase staining intensity. Concomitant treatment of rats with rotenone and lithium chloride significantly improved behavioral impairment and markedly alleviated gastrointestinal dysfunction. It also increased catalase activity and decreased malondialdehyde levels, indicating antioxidant effects. Moreover, it decreased DNA fragmentation, rescued dopaminergic neurons, and increased tyrosine hydroxylase immunoreactivity in the striatum compared to the rotenone-treated group.

Conclusion

Lithium chloride rescued dopaminergic neurons in a rotenone model of PD, possibly through the improvement of behavioral deficits, decreasing oxidative stress, and reducing DNA damage.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/0118715273365449250224090655
2025-03-20
2025-10-25
Loading full text...

Full text loading...

References

  1. AltharawiA. AlharthyK.M. AlthurwiH.N. Europinidin inhibits rotenone-activated Parkinson’s disease in rodents by decreasing lipid peroxidation and inflammatory cytokines pathways.Molecules20222721715910.3390/molecules27217159 36363986
    [Google Scholar]
  2. RadadK. MoldzioR. KrewenkaC. KrannerB. RauschW.D. Pathophysiology of non-motor signs in Parkinson’s disease: Some recent updating with brief presentation.Explor. Neuroprotective Ther.20233244610.37349/ent.2023.00036
    [Google Scholar]
  3. RoseK.N. ZorluM. FassiniA. Neuroprotection of low dose carbon monoxide in Parkinson’s disease models commensurate with the reduced risk of Parkinson’s among smokers.NPJ Parkinsons Dis.202410115210.1038/s41531‑024‑00763‑6 39174550
    [Google Scholar]
  4. CalabresiP. PicconiB. TozziA. Di FilippoM. Dopamine-mediated regulation of corticostriatal synaptic plasticity.Trends Neurosci.200730521121910.1016/j.tins.2007.03.001 17367873
    [Google Scholar]
  5. FunayamaM. NishiokaK. LiY. HattoriN. Molecular genetics of Parkinson’s disease: Contributions and global trends.J. Hum. Genet.202368312513010.1038/s10038‑022‑01058‑5 35821405
    [Google Scholar]
  6. PouchieuC. PielC. CarlesC. Pesticide use in agriculture and Parkinson’s disease in the AGRICAN cohort study.Int. J. Epidemiol.201847129931010.1093/ije/dyx225 29136149
    [Google Scholar]
  7. HeinzS. FreybergerA. LawrenzB. SchladtL. SchmuckG. Ellinger-ZiegelbauerH. Mechanistic investigations of the mitochondrial complex i inhibitor rotenone in the context of pharmacological and safety evaluation.Sci. Rep.2017714546510.1038/srep45465 28374803
    [Google Scholar]
  8. TannerC.M. KamelF. RossG.W. Rotenone, paraquat, and Parkinson’s disease.Environ. Health Perspect.2011119686687210.1289/ehp.1002839 21269927
    [Google Scholar]
  9. MartinezT.N. GreenamyreJ.T. Toxin models of mitochondrial dysfunction in Parkinson’s disease.Antioxid. Redox Signal.201216992093410.1089/ars.2011.4033 21554057
    [Google Scholar]
  10. HeikkilaR.E. NicklasW.J. VyasI. DuvoisinR.C. Dopaminergic toxicity of rotenone and the 1-methyl-4-phenylpyridinium ion after their stereotaxic administration to rats: Implication for the mechanism of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity.Neurosci. Lett.198562338939410.1016/0304‑3940(85)90580‑4 3912685
    [Google Scholar]
  11. BetarbetR. ShererT.B. MacKenzieG. Garcia-OsunaM. PanovA.V. GreenamyreJ.T. Chronic systemic pesticide exposure reproduces features of Parkinson’s disease.Nat. Neurosci.20003121301130610.1038/81834 11100151
    [Google Scholar]
  12. SköldM. RolstadS. JoasE. Regional lithium prescription rates and recurrence in bipolar disorder.Int J Bipolar Disord2021911810.1186/s40345‑021‑00223‑734061259
    [Google Scholar]
  13. ChenG. BowerK.A. MaC. FangS. ThieleC.J. LuoJ. Expression of Concern: Glycogen synthase kinase 3β (GSK3β) mediates 6‐ hydroxydopamine‐induced neuronal death.FASEB J.200418101162116410.1096/fj.04‑1551fje 15132987
    [Google Scholar]
  14. DongH. ZhangX. DaiX. Lithium ameliorates lipopolysaccharide-induced microglial activation via inhibition of toll-like receptor 4 expression by activating the PI3K/Akt/FoxO1 pathway.J. Neuroinflammation201411114010.1186/s12974‑014‑0140‑4 25115727
    [Google Scholar]
  15. WeiH. QinZ.H. SenatorovV.V. Lithium suppresses excitotoxicity-induced striatal lesions in a rat model of huntington’s disease.Neuroscience2001106360361210.1016/S0306‑4522(01)00311‑6 11591460
    [Google Scholar]
  16. AlaM. Mohammad JafariR. NematianH. Neuroprotective effect of intravitreal single-dose lithium chloride after optic nerve injury in rats.Curr. Eye Res.202146455856710.1080/02713683.2020.1808999 32885675
    [Google Scholar]
  17. HouL. NianX. LingL. Lithium protects dopaminergic cells from rotenone toxicity via autophagy enhancement.BMC Neuros.2015168210.1186/s12868‑015‑0222‑y 26608648
    [Google Scholar]
  18. ZhaoQ. LiuH. ChengJ. Neuroprotective effects of lithium on a chronic mptp mouse model of Parkinson’s disease via regulation of α synuclein methylation.Mol. Med. Rep.20191964989499710.3892/mmr.2019.10152 31059019
    [Google Scholar]
  19. MiyazakiI. IsookaN. ImafukuF. Chronic systemic exposure to low-dose rotenone induced central and peripheral neuropathology and motor deficits in mice: Reproducible animal model of Parkinson’s disease.Int. J. Mol. Sci.2020219325410.3390/ijms21093254 32375371
    [Google Scholar]
  20. HoffmanE WinderSJ A modified wire hanging apparatus for small animal muscle function testing.PLoS Curr20168ecurrents.md.1e2bec4e78697b7b0ff80ea25a1d38be10.1371/currents.md.1e2bec4e78697b7b0ff80ea25a1d38be28966868
    [Google Scholar]
  21. LiZ.S. SchmaussC. CuencaA. RatcliffeE. GershonM.D. Physiological modulation of intestinal motility by enteric dopaminergic neurons and the D2 receptor:Analysis of dopamine receptor expression, location, development, and function in wild-type and knock-out mice.J. Neurosci.200626102798280710.1523/JNEUROSCI.4720‑05.2006 16525059
    [Google Scholar]
  22. GreeneJ.G. NoorianA.R. SrinivasanS. Delayed gastric emptying and enteric nervous system dysfunction in the rotenone model of Parkinson’s disease.Exp. Neurol.2009218115416110.1016/j.expneurol.2009.04.023 19409896
    [Google Scholar]
  23. JohnsonM.E. StringerA. BobrovskayaL. Rotenone induces gastrointestinal pathology and microbiota alterations in a rat model of Parkinson’s disease.Neurotoxicology20186517418510.1016/j.neuro.2018.02.013 29471018
    [Google Scholar]
  24. AebiH. Catalase in vitro.Methods Enzymol1984105121610.1016/S0076‑6879(84)05016‑3 6727660
    [Google Scholar]
  25. MisraH.P. FridovichI. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase.J. Biol. Chem.1972247103170317510.1016/S0021‑9258(19)45228‑9 4623845
    [Google Scholar]
  26. EllmanG.L. Tissue sulfhydryl groups.Arch. Biochem. Biophys.1959821707710.1016/0003‑9861(59)90090‑6 13650640
    [Google Scholar]
  27. OhkawaH. OhishiN. YagiK. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction.Anal. Biochem.197995235135810.1016/0003‑2697(79)90738‑3 36810
    [Google Scholar]
  28. LowryO. RosebroughN. FarrA.L. RandallR. Protein measurement with the folin phenol reagent.J. Biol. Chem.1951193126527510.1016/S0021‑9258(19)52451‑6 14907713
    [Google Scholar]
  29. BancroftJ.D. StevensA. Theory and practice of histological techniques.In: EdinburgChurchill Livingstone Publishers1990172510.1002/path.1711640316
    [Google Scholar]
  30. CullingC.F.A. Handbook of histopathological and histochemical techniques.In: London, UKButterworths2013671681
    [Google Scholar]
  31. LandauR. HalperinR. SullivanP. The rat rotenone model reproduces the abnormal pattern of central catecholamine metabolism found in Parkinson’s disease.Dis. Model. Mech.2022151dmm04908210.1242/dmm.049082 34842277
    [Google Scholar]
  32. WrangelC. SchwabeK. JohnN. KraussJ.K. AlamM. The rotenone-induced rat model of Parkinson’s disease: Behavioral and electrophysiological findings.Behav. Brain Res.2015279526110.1016/j.bbr.2014.11.002 25446762
    [Google Scholar]
  33. TharwatE.K. AbdelatyA.O. AbdelrahmanA.I. Evaluation of the therapeutic potential of cerebrolysin and/or lithium in the male Wistar rat model of Parkinson’s disease induced by reserpine.Metab. Brain Dis.20233851513152910.1007/s11011‑023‑01189‑4 36847968
    [Google Scholar]
  34. PoirierA.A. AubéB. CôtéM. MorinN. Di PaoloT. SouletD. Gastrointestinal dysfunctions in Parkinson’s disease: Symptoms and treatments.Parkinsons Dis.2016201612310.1155/2016/6762528 28050310
    [Google Scholar]
  35. DroletR.E. CannonJ.R. MonteroL. GreenamyreJ.T. Chronic rotenone exposure reproduces Parkinson’s disease gastrointestinal neuropathology.Neurobiol. Dis.20093619610210.1016/j.nbd.2009.06.017 19595768
    [Google Scholar]
  36. ShererT.B. KimJ.H. BetarbetR. GreenamyreJ.T. Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and alpha-synuclein aggregation.Exp. Neurol.2003179191610.1006/exnr.2002.8072 12504863
    [Google Scholar]
  37. OjhaS. JavedH. AzimullahS. Abul KhairS.B. HaqueM.E. Neuroprotective potential of ferulic acid in the rotenone model of Parkinson’s disease.Drug Des. Devel. Ther.2015954995510 26504373
    [Google Scholar]
  38. MotawiT.K. SadikN.A.H. HamedM.A. AliS.A. KhalilW.K.B. AhmedY.R. Potential therapeutic effects of antagonizing adenosine A2A receptor, curcumin and niacin in rotenone-induced Parkinson’s disease mice model.Mol. Cell. Biochem.20204651-28910210.1007/s11010‑019‑03670‑0 31820278
    [Google Scholar]
  39. KimY.H. RaneA. LussierS. AndersenJ.K. Lithium protects against oxidative stress‐mediated cell death in α‐synuclein‐overexpressing in vitro and in vivo models of Parkinson’s disease.J. Neurosci. Res.201189101666167510.1002/jnr.22700 21710541
    [Google Scholar]
  40. PercárioS da Silva BarbosaA VarelaELP Oxidative stress in Parkinson’s disease: Potential benefits of antioxidant supplementation.Oxid. Med. Cell. Longev.2020202012310.1155/2020/2360872 33101584
    [Google Scholar]
  41. FarombiE.O. AwogbindinI.O. FarombiT.H. Neuroprotective role of kolaviron in striatal redo-inflammation associated with rotenone model of Parkinson’s disease.Neurotoxicology20197313214110.1016/j.neuro.2019.03.005 30930291
    [Google Scholar]
  42. El-ShamarkaM.E.S. Abdel-SalamO.M.E. ShafeeN. ZeidanH.M. Curcumin modulation of L-dopa and rasagiline-induced neuroprotection in rotenone model of Parkinson’s disease.Iran. J. Basic Med. Sci.2023262139147 36742141
    [Google Scholar]
  43. HouL. XiongN. LiuL. Lithium protects dopaminergic cells from rotenone toxicity via autophagy enhancement.BMC Neurosci.20151618210.1186/s12868‑015‑0222‑y 26608648
    [Google Scholar]
  44. LeeY.S. FengC.W. PengM.Y. ChanT.F. ChenY.C. Neuroprotective effects of estradiol plus lithium chloride via anti-apoptosis and neurogenesis pathway in in vitro and in vivo Parkinson’s disease models.Parkinsons Dis.2021202111510.1155/2021/3064892 34721835
    [Google Scholar]
  45. WuN. LuoQ. HuangY. Lithium chloride exerts anti-inflammatory and neuroprotective effects by inhibiting microglial activation in LPS-Induced retinal injury.Invest. Ophthalmol. Vis. Sci.20236433510.1167/iovs.64.3.35 37000125
    [Google Scholar]
/content/journals/cnsnddt/10.2174/0118715273365449250224090655
Loading
/content/journals/cnsnddt/10.2174/0118715273365449250224090655
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): dopaminergic; lithium; Parkinson’s disease; rotenone; sprague dawley rats
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test