Skip to content
2000
Volume 24, Issue 7
  • ISSN: 1871-5273
  • E-ISSN: 1996-3181

Abstract

Promoting neuroplasticity for better recovery and function restoration has lately become the focus of rehabilitation techniques for individuals with neurologic disorders. A rapidly expanding medical specialty, neuromodulation includes a broad variety of methods for activating particular neurological pathways, such as Transcranial magnetic stimulation (TMS), Transcranial direct current stimulation (tDCS), peripheral nerve stimulation, and SCS, among many others. Research on the use of neuromodulation in the context of spinal cord injury (SCI) is limited, in contrast to the abundance of literature on its potential benefits in chronic pain treatment. Combining exercise with non-invasive neuromodulation improves recovery outcomes for some patient groups, according to our research. While we mostly focus on the motor components of recovery, we do briefly mention the non-motor effects of these disorders. The difficulties of applying ideas in clinical practice and the gaps in the existing research are also brought to light. In order to better customize the individual neuroplastic responses associated with each disease, we identify research gaps and propose routes for future investigations. This review is useful for rehabilitation professionals and researchers since it focuses on neuroplastic exercise treatments for specific illnesses and diagnoses. Few studies have used long-term randomized-controlled trials, even though these approaches have great promise for enhancing overall functionality and impairment levels. If these novel modalities may be therapeutically employed to reduce pain, restore function, and improve the quality of life for individuals impacted, then more study is required to support them.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/0118715273341882250114054733
2025-02-11
2025-09-05
Loading full text...

Full text loading...

References

  1. KumarJ. PatelT. SugandhF. Innovative approaches and therapies to enhance neuroplasticity and promote recovery in patients with neurological disorders: A narrative review.Cureus2023157e4191410.7759/cureus.41914 37588309
    [Google Scholar]
  2. MarzolaP. MelzerT. PavesiE. MohapelG.J. BrocardoP.S. Exploring the role of neuroplasticity in development, aging, and neurodegeneration.Brain Sci.20231312161010.3390/brainsci13121610 38137058
    [Google Scholar]
  3. DinizC.R.A.F. CrestaniA.P. The times they are a-changin’: A proposal on how brain flexibility goes beyond the obvious to include the concepts of “upward” and “downward” to neuroplasticity.Mol. Psychiatry202328397799210.1038/s41380‑022‑01931‑x 36575306
    [Google Scholar]
  4. ZoteyV. AndhaleA. ShegekarT. JuganavarA. Adaptive neuroplasticity in brain injury recovery: Strategies and insights.Cureus2023159e4587310.7759/cureus.45873 37885532
    [Google Scholar]
  5. CzyżewskiW. MazurekM. SakwaL. Astroglial cells: Emerging therapeutic targets in the management of traumatic brain injury.Cells202413214810.3390/cells13020148 38247839
    [Google Scholar]
  6. WinklerF. VenkateshH.S. AmitM. Cancer neuroscience: State of the field, emerging directions.Cell202318681689170710.1016/j.cell.2023.02.002 37059069
    [Google Scholar]
  7. ZhouB. ZhuZ. RansomB.R. TongX. Oligodendrocyte lineage cells and depression.Mol. Psychiatry202126110311710.1038/s41380‑020‑00930‑0 33144710
    [Google Scholar]
  8. KaramianB.A. SiegelN. NourieB. The role of electrical stimulation for rehabilitation and regeneration after spinal cord injury.J. Orthop. Traumatol.2022231210.1186/s10195‑021‑00623‑6 34989884
    [Google Scholar]
  9. AlfalahiH DiasSB KhandokerAH ChaudhuriKR HadjileontiadisLJ A scoping review of neurodegenerative manifestations in explainable digital phenotyping. npj Park Dis [Internet]20239149
  10. KrsekA. BaticicL. Nanotechnology-driven therapeutic innovations in neurodegenerative disorders: A focus on alzheimer’s and parkinson’s disease.Future Pharmacology20244235237910.3390/futurepharmacol4020020
    [Google Scholar]
  11. VinogradovS. ChafeeM.V. LeeE. MorishitaH. Psychosis spectrum illnesses as disorders of prefrontal critical period plasticity.Neuropsychopharmacology202348116818510.1038/s41386‑022‑01451‑w 36180784
    [Google Scholar]
  12. AppelbaumL.G. ShenasaM.A. StolzL. DaskalakisZ. Synaptic plasticity and mental health: Methods, challenges and opportunities.Neuropsychopharmacology202348111312010.1038/s41386‑022‑01370‑w 35810199
    [Google Scholar]
  13. MeulenbergC.J.W. RehfeldK. JovanovićS. MarusicU. Unleashing the potential of dance: A neuroplasticity-based approach bridging from older adults to Parkinson’s disease patients.Front. Aging Neurosci.202315118885510.3389/fnagi.2023.1188855 37434737
    [Google Scholar]
  14. TenchovR. SassoJ.M. WangX. ZhouQ.A. Aging hallmarks and progression and age-related diseases: A landscape view of research advancement.ACS Chem. Neurosci.202415113010.1021/acschemneuro.3c00531 38095562
    [Google Scholar]
  15. VerkhratskyA. ButtA. LiB. Astrocytes in human central nervous system diseases: A frontier for new therapies.Signal Transduct. Target. Ther.20238139610.1038/s41392‑023‑01628‑9 37828019
    [Google Scholar]
  16. MedinaR. HoA. ReddyR. ChenJ. CastellanosJ. Narrative review of current neuromodulation modalities for spinal cord injury.Front. Pain Res.20234114340510.3389/fpain.2023.1143405
    [Google Scholar]
  17. ReffatN. PusecC. PriceS. GuptaM. MavrocordatosP. ElsayedA.A. Neuromodulation techniques for headache management.Life202414217310.3390/life14020173 38398683
    [Google Scholar]
  18. PatilA.S. LevasseurB. GuptaM. Neuromodulation and habituation: A literature review and conceptional analysis of sustaining therapeutic efficacy and mitigating habituation.Biomedicines202412593010.3390/biomedicines12050930 38790891
    [Google Scholar]
  19. AderintoN. OlatunjiG. MuiliA. A narrative review of non-invasive brain stimulation techniques in neuropsychiatric disorders: Current applications and future directions.Egypt. J. Neurol. Psychiat. Neurosurg.20246015010.1186/s41983‑024‑00824‑w
    [Google Scholar]
  20. GuptaA. VardalakisN. WagnerF.B. Neuroprosthetics: From sensorimotor to cognitive disorders.Commun. Biol.2023611410.1038/s42003‑022‑04390‑w 36609559
    [Google Scholar]
  21. CataniaV. RundoF. PaneraiS. FerriR. Virtual reality for the rehabilitation of acquired cognitive disorders: A narrative review.Bioengineering20231113510.3390/bioengineering11010035 38247912
    [Google Scholar]
  22. DrigasA. SiderakiA. Brain neuroplasticity leveraging virtual reality and brain-computer interface technologies.Sensors20242417572510.3390/s24175725 39275636
    [Google Scholar]
  23. JørgensenH.S. NakayamaH. RaaschouH.O. LarsenV.J. StøierM. OlsenT.S. Outcome and time course of recovery in stroke. part i: Outcome. the copenhagen stroke study.Arch. Phys. Med. Rehabil.1995a76539940510.1016/S0003‑9993(95)80567‑2 7741608
    [Google Scholar]
  24. KumarM.K. NarayanS. SinghP.K. A review on advancement of mouth dissolving tablets.Prob Sci2024113449
    [Google Scholar]
  25. XingY. BaiY. Review of exercise-induced neuroplasticity in ischemic stroke: Pathology and mechanisms.Mol. Neurobiol.202057104218423110.1007/s12035‑020‑02021‑1 32691303
    [Google Scholar]
  26. PollockA. BaerG. CampbellP. Physical rehabilitation approaches for the recovery of function and mobility following stroke.Cochrane Database Syst. Rev.201420144CD001920 24756870
    [Google Scholar]
  27. DobkinB.H. CarmichaelS.T. The specific requirements of neural repair trials for stroke.Neurorehabil. Neural Repair201630547047810.1177/1545968315604400 26359342
    [Google Scholar]
  28. NesinS.M. SabithaK.R. GuptaA. LaxmiT.R. Constraint induced movement therapy as a rehabilitative strategy for ischemic stroke-linking neural plasticity with restoration of skilled movements.J. Stroke Cerebrovasc. Dis.20192861640165310.1016/j.jstrokecerebrovasdis.2019.02.028 30904472
    [Google Scholar]
  29. MarkV.W. TaubE. MorrisD.M. Neuroplasticity and constraint-induced movement therapy.Eura Medicophys.2006423269284 17039225
    [Google Scholar]
  30. TaubE. MillerN.E. NovackT.A. Technique to improve chronic motor deficit after stroke.Arch. Phys. Med. Rehabil.1993744347354 8466415
    [Google Scholar]
  31. MangC.S. CampbellK.L. RossC.J.D. BoydL.A. Promoting neuroplasticity for motor rehabilitation after stroke: Considering the effects of aerobic exercise and genetic variation on brain-derived neurotrophic factor.Phys. Ther.201393121707171610.2522/ptj.20130053 23907078
    [Google Scholar]
  32. TaubE. UswatteG. ElbertT. New treatments in neurorehabiliation founded on basic research.Nat. Rev. Neurosci.20023322823610.1038/nrn754 11994754
    [Google Scholar]
  33. SahuB. Comprehensive review on non-alcoholic fatty liver disease (NAFLD).Clin Adv Drug Treatments Prob Sci20241117
    [Google Scholar]
  34. JohanssonH. HagströmerM. GrootenW.J.A. FranzénE. Exercise induced neuroplasticity in parkinson’s disease: A metasynthesis of the literature.Neural Plast.2020202011510.1155/2020/8961493 32256559
    [Google Scholar]
  35. MackayC.P. KuysS.S. BrauerS.G. The effect of aerobic exercise on brain-derived neurotrophic factor in people with neurological disorders: A systematic review and meta-analysis.Neural Plast.201720171910.1155/2017/4716197 29057125
    [Google Scholar]
  36. FoxC. EbersbachG. RamigL. SapirS. LSVT loud and lsvt big: Behavioral treatment programs for speech and body movement in parkinson disease.Parkinsons Dis.2012201211210.1155/2012/391946 22530161
    [Google Scholar]
  37. IsaacsonS. O’BrienA. LazaroJ.D. RayA. FluetG. The JFK big study: The impact of lsvt big<sup>®</sup> on dual task walking and mobility in persons with parkinson’s disease.J. Phys. Ther. Sci.201830463664110.1589/jpts.30.636 29706722
    [Google Scholar]
  38. WalshF.S. BalsterC. ChandlerA. BrownJ. BoehlerM. O’RearS. LSVT BIG R and long-term retention of functional gains in individuals with Parkinson’s disease.Physiother. Theory Pract.202238562963610.1080/09593985.2020.1780655
    [Google Scholar]
  39. FloodM.W. O’CallaghanB.P.F. DiamondP. LiegeyJ. HughesG. LoweryM.M. Quantitative clinical assessment of motor function during and following LSVT-BIG® therapy.J. Neuroeng. Rehabil.20201719210.1186/s12984‑020‑00729‑8 32660495
    [Google Scholar]
  40. OsborneJ.A. BotkinR. SemenzaC.C. Physical therapist management of parkinson disease: A clinical practice guideline from the american physical therapy association.Phys. Ther.20221024pzab30210.1093/ptj/pzab302
    [Google Scholar]
  41. WHO Spinal cord injury. Geneva: WHO2022
    [Google Scholar]
  42. FouadK. TetzlaffW. Rehabilitative training and plasticity following spinal cord injury.Exp. Neurol.20122351919910.1016/j.expneurol.2011.02.009 21333646
    [Google Scholar]
  43. HutchinsonK.J. PinillaG.F. CroweM.J. YingZ. BassoD.M. Three exercise paradigms differentially improve sensory recovery after spinal cord contusion in rats.Brain200412761403141410.1093/brain/awh160 15069022
    [Google Scholar]
  44. FeinbergS.H.R. HouléJ.D. Exercise after spinal cord injury as an agent for neuroprotection, regeneration and rehabilitation.Brain Res.20151619122110.1016/j.brainres.2015.03.052 25866284
    [Google Scholar]
  45. JainP. PandeyR. ShuklaS.S. Natural Sources of Anti-inflammation.In: Jain P, Pandey R, Shukla SS, Eds.Inflammation: Natural Resources and Its Applications.New Delhi, IndiaSpringer20152513310.1007/978‑81‑322‑2163‑0_4
    [Google Scholar]
  46. PinillaS.F. YingZ. RoyR.R. MolteniR. EdgertonV.R. Voluntary exercise induces a BDNF-mediated mechanism that promotes neuroplasticity.J. Neurophysiol.20028852187219510.1152/jn.00152.2002 12424260
    [Google Scholar]
  47. YingZ. RoyR.R. EdgertonV.R. PinillaG.F. Exercise restores levels of neurotrophins and synaptic plasticity following spinal cord injury.Exp. Neurol.2005193241141910.1016/j.expneurol.2005.01.015 15869943
    [Google Scholar]
  48. CôtéM.P. AzzamG.A. LemayM.A. ZhukarevaV. HouléJ.D. Activity dependent increase in neurotrophic factors is associated with an enhanced modulation of spinal reflexes after spinal cord injury.J. Neurotrauma201128229930910.1089/neu.2010.1594 21083432
    [Google Scholar]
  49. DeyR. BhattacharyaK. BasakA.K. Inflammatory perspectives of polycystic ovary syndrome: Role of specific mediators and markers.Middle East Fertil. Soc. J.20232813310.1186/s43043‑023‑00158‑2
    [Google Scholar]
  50. BilchakJ.N. CaronG. CôtéM.P. Exercise-induced plasticity in signaling pathways involved in motor recovery after spinal cord Injury.Int. J. Mol. Sci.2021229485810.3390/ijms22094858 34064332
    [Google Scholar]
  51. WangH. LiuN.K. ZhangY.P. Treadmill training induced lumbar motoneuron dendritic plasticity and behavior recovery in adult rats after a thoracic contusive spinal cord injury.Exp. Neurol.201527136837810.1016/j.expneurol.2015.07.004 26164199
    [Google Scholar]
  52. GanzerP.D. BeringerC.R. ShumskyJ.S. NwaobasiC. MoxonK.A. Serotonin receptor and dendritic plasticity in the spinal cord mediated by chronic serotonergic pharmacotherapy combined with exercise following complete SCI in the adult rat.Exp. Neurol.2018a30413214210.1016/j.expneurol.2018.03.006 29526741
    [Google Scholar]
  53. WilsonJ.R. CadotteD.W. FehlingsM.G. Clinical predictors of neurological outcome, functional status, and survival after traumatic spinal cord injury: A systematic review.J. Neurosurg. Spine2012171Suppl. 1112610.3171/2012.4.AOSPINE1245 22985366
    [Google Scholar]
  54. LittleJ.W. DitunnoJ.F.Jr StiensS.A. HarrisR.M. Incomplete spinal cord injury: Neuronal mechanisms of motor recovery and hyperreflexia.Arch. Phys. Med. Rehabil.199980558759910.1016/S0003‑9993(99)90204‑6 10326926
    [Google Scholar]
  55. ZimmerM.B. NantwiK. GoshgarianH.G. Effect of spinal cord injury on the respiratory system: Basic research and current clinical treatment options.J. Spinal Cord Med.200730431933010.1080/10790268.2007.11753947 17853653
    [Google Scholar]
  56. National Institute of Neurological Disorders and Stroke (2022) Traumatic Brain Injury: Hope Through Research.Bethesda, MANational Institute of Neurological Disorders and Stroke2022
    [Google Scholar]
  57. BasfordJ.R. ChouL.S. KaufmanK.R. An assessment of gait and balance deficits after traumatic brain injury.Arch. Phys. Med. Rehabil.200384334334910.1053/apmr.2003.50034 12638101
    [Google Scholar]
  58. MarshallS. TeasellR. BayonaN. Motor impairment rehabilitation post acquired brain injury.Brain Inj.200721213316010.1080/02699050701201383 17364529
    [Google Scholar]
  59. MuchaA. FedorS. DeMarcoD. Vestibular dysfunction and concussion.Handb. Clin. Neurol.201815813514410.1016/B978‑0‑444‑63954‑7.00014‑8 30482341
    [Google Scholar]
  60. MarcusH.J. PaineH. SargeantM. Vestibular dysfunction in acute traumatic brain injury.J. Neurol.2019266102430243310.1007/s00415‑019‑09403‑z 31201499
    [Google Scholar]
  61. KumarA. LoaneD.J. Neuroinflammation after traumatic brain injury: Opportunities for therapeutic intervention.Brain Behav. Immun.20122681191120110.1016/j.bbi.2012.06.008 22728326
    [Google Scholar]
  62. JohnsonV.E. StewartJ.E. BegbieF.D. TrojanowskiJ.Q. SmithD.H. StewartW. Inflammation and white matter degeneration persist for years after a single traumatic brain injury.Brain20131361284210.1093/brain/aws322 23365092
    [Google Scholar]
  63. CullenD.K. WoffordK.L. LoaneD.J. Acute drivers of neuroinflammation in traumatic brain injury.Neural Regen. Res.20191491481148910.4103/1673‑5374.255958 31089036
    [Google Scholar]
  64. PiaoC.S. StoicaB.A. WuJ. Late exercise reduces neuroinflammation and cognitive dysfunction after traumatic brain injury.Neurobiol. Dis.20135425226310.1016/j.nbd.2012.12.017 23313314
    [Google Scholar]
  65. GriesbachG.S. Exercise after traumatic brain injury: Is it a double-edged sword?PM R201136SSuppl. 1S64S7210.1016/j.pmrj.2011.02.008 21703583
    [Google Scholar]
  66. LeddyJ.J. WillerB. Use of graded exercise testing in concussion and return-to-activity management.Curr. Sports Med. Rep.201312637037610.1249/JSR.0000000000000008 24225521
    [Google Scholar]
  67. LeddyJ.J. HindsA.L. MiecznikowskiJ. Safety and prognostic utility of provocative exercise testing in acutely concussed adolescents.Clin. J. Sport Med.2018281132010.1097/JSM.0000000000000431 29257777
    [Google Scholar]
  68. GriesbachG.S. HovdaD.A. MolteniR. WuA. PinillaG.F. Voluntary exercise following traumatic brain injury: Brain-derived neurotrophic factor upregulation and recovery of function.Neuroscience2004125112913910.1016/j.neuroscience.2004.01.030 15051152
    [Google Scholar]
  69. International Neuromodulation Society About Neuromodulation.San Francisco, CAInternational Neuromodulation Society2023
    [Google Scholar]
  70. DanilovY. PaltinD. Translingual Neurostimulation (TLNS): Perspective on a novel approach to neurorehabilitation after brain injury.Neuromethods201813930732710.1007/978‑1‑4939‑8564‑7_19
    [Google Scholar]
  71. ChestertonLS LewisAM SimJ Transcutaneous electrical nerve stimulation as adjunct to primary care management for tennis elbow: Pragmatic randomised controlled trial (TATE trial). BMJ2013347sep02 4f516010.1136/bmj.f5160 23999980
    [Google Scholar]
  72. SivaramakrishnanA. SolomonJ.M. ManikandanN. Comparison of transcutaneous electrical nerve stimulation (TENS) and functional electrical stimulation (FES) for spasticity in spinal cord injury - A pilot randomized cross-over trial.J. Spinal Cord Med.201841439740610.1080/10790268.2017.1390930 29067867
    [Google Scholar]
  73. GhonameE.A. CraigW.F. WhiteP.F. Percutaneous electrical nerve stimulation for low back pain: A randomized crossover study.JAMA1999281981882310.1001/jama.281.9.818 10071003
    [Google Scholar]
  74. KopskyD.J. EttemaF.W.L. Van der LeedenM. DekkerJ. SwusteS.J.M. Percutaneous nerve stimulation in chronic neuropathic pain patients due to spinal cord injury: A pilot study.Pain Pract.201414325225910.1111/papr.12064
    [Google Scholar]
  75. MatsuoH. UchidaK. NakajimaH. Early transcutaneous electrical nerve stimulation reduces hyperalgesia and decreases activation of spinal glial cells in mice with neuropathic pain.Pain201415591888190110.1016/j.pain.2014.06.022 25010326
    [Google Scholar]
  76. PfyfferD. WyssP.O. HuberE. CurtA. HenningA. FreundP. Metabolites of neuroinflammation relate to neuropathic pain after spinal cord injury.Neurology2020957e805e81410.1212/WNL.0000000000010003 32591473
    [Google Scholar]
  77. MaY.T. SlukaK.A. Reduction in inflammation-induced sensitization of dorsal horn neurons by transcutaneous electrical nerve stimulation in anesthetized rats.Exp. Brain Res.200113719410210.1007/s002210000629 11310176
    [Google Scholar]
  78. YangY. TangY. QinH. XuJ. Efficacy of transcutaneous electrical nerve stimulation in people with pain after spinal cord injury: A meta-analysis.Spinal Cord202260537538110.1038/s41393‑022‑00776‑z 35277650
    [Google Scholar]
  79. van der ScheerJ.W. TolfreyG.V.L. ValentinoS.E. DavisG.M. HoC.H. Functional electrical stimulation cycling exercise after spinal cord injury: A systematic review of health and fitness-related outcomes.J. Neuroeng. Rehabil.20211819910.1186/s12984‑021‑00882‑8 34118958
    [Google Scholar]
  80. KamboonlertK. PanyasriwanitS. TantisiriwatN. KitisomprayoonkulW. Effects of bilateral transcutaneous tibial nerve stimulation on neurogenic destrusor overactivity in spinal cord injury: A urodynamic study.Arch. Phys. Med. Rehabil.202110261165116910.1016/j.apmr.2020.10.130 33245938
    [Google Scholar]
  81. ChenG. LiaoL. LiY. The possible role of percutaneous tibial nerve stimulation using adhesive skin surface electrodes in patients with neurogenic detrusor overactivity secondary to spinal cord injury.Int. Urol. Nephrol.201547345145510.1007/s11255‑015‑0911‑6 25609546
    [Google Scholar]
  82. McCaugheyE.J. ButlerJ.E. McBainR.A. Abdominal function electrical stimulation to augment respiratory function in spinal cord injury.Top. Spinal Cord Inj. Rehabil.201925210511110.1310/sci2502‑105 31068742
    [Google Scholar]
  83. AwadB.I. CarmodyM.A. ZhangX. LinV.W. SteinmetzM.P. Transcranial magnetic stimulation after spinal cord injury.World Neurosurg.201583223223510.1016/j.wneu.2013.01.043 23321378
    [Google Scholar]
  84. BhattacharyaK. MukhopadhyayL.D. GoswamiR. SARS-CoV-2 infection and human semen: Possible modes of contamination and transmission.Middle East Fertil. Soc. J.20212611810.1186/s43043‑021‑00063‑6 34177252
    [Google Scholar]
  85. UgawaY. TeraoY. HanajimaR. Magnetic stimulation over the cerebellum in patients with ataxia.Evok. Pot.1997104545345810.1016/S0168‑5597(97)00051‑8 9344082
    [Google Scholar]
  86. NowakD.A. LinderS. TopkaH. Diagnostic relevance of transcranial magnetic and electric stimulation of the facial nerve in the management of facial palsy.Clin. Neurophysiol.200511692051205710.1016/j.clinph.2005.05.007 16024292
    [Google Scholar]
  87. KobayashiM. LeoneP.A. Transcranial magnetic stimulation in neurology.Lancet Neurol.20032314515610.1016/S1474‑4422(03)00321‑1 12849236
    [Google Scholar]
  88. BhattacharyaK. SenguptaP. DuttaS. BhattacharyaS. Pathophysiology of obesity: Endocrine, inflammatory and neural regulators.Research Journal of Pharmacy and Technology20201394469447810.5958/0974‑360X.2020.00789.1
    [Google Scholar]
  89. GentnerR. WankerlK. ReinsbergerC. ZellerD. ClassenJ. Depression of human corticospinal excitability induced by magnetic theta-burst stimulation: Evidence of rapid polarity-reversing metaplasticity.Cereb. Cortex20081892046205310.1093/cercor/bhm239 18165282
    [Google Scholar]
  90. KulshresthaR ChaudhuriRG BhattacharyaK DuttaS SenguptaP Periodontitis as an independent factor in pathogenesis of erectile dysfunction. Biomed Pharmacol J202013101410.13005/bpj/1852
    [Google Scholar]
  91. ChervyakovA.V. ChernyavskyA.Y. SinitsynD.O. PiradovM.A. Possible mechanisms underlying the therapeutic effects of transcranial magnetic stimulation.Front. Hum. Neurosci.2015930310.3389/fnhum.2015.00303 26136672
    [Google Scholar]
  92. BelciM. CatleyM. HusainM. FrankelH.L. DaveyN.J. Magnetic brain stimulation can improve clinical outcome in incomplete spinal cord injured patients.Spinal Cord200442741741910.1038/sj.sc.3101613 15111994
    [Google Scholar]
  93. BenitoJ. KumruH. MurilloN. Motor and gait improvement in patients with incomplete spinal cord injury induced by high-frequency repetitive transcranial magnetic stimulation.Top. Spinal Cord Inj. Rehabil.201218210611210.1310/sci1802‑106 23459246
    [Google Scholar]
  94. KumruH PenalvaBJ Sole vJ, et al Placebo-controlled study of rTMS combined with Lokomat® gait training for treatment in subjects with motor incomplete spinal cord injury.Exp. Brain Res.2016234123447345510.1007/s00221‑016‑4739‑9 27469242
    [Google Scholar]
  95. KuppuswamyA. BalasubramaniamA.V. MaksimovicR. Action of 5Hz repetitive transcranial magnetic stimulation on sensory, motor and autonomic function in human spinal cord injury.Clin. Neurophysiol.2011122122452246110.1016/j.clinph.2011.04.022 21600843
    [Google Scholar]
  96. KroghS. AagaardP. JønssonA.B. FiglewskiK. KaschH. Effects of repetitive transcranial magnetic stimulation on recovery in lower limb muscle strength and gait function following spinal cord injury: A randomized controlled trial.Spinal Cord202260213514110.1038/s41393‑021‑00703‑8 34504284
    [Google Scholar]
  97. BloomO. TraceyK.J. PavlovV.A. Exploring the vagus nerve and the inflammatory reflex for therapeutic benefit in chronic spinal cord injury.Curr. Opin. Neurol.202235224925710.1097/WCO.0000000000001036 35102123
    [Google Scholar]
  98. GrefkesC. FinkG.R. Recovery from stroke: Current concepts and future perspectives.Neurological Research and Practice2020211710.1186/s42466‑020‑00060‑6 33324923
    [Google Scholar]
  99. KimberleyT.J. PierceD. PrudenteC.N. Vagus nerve stimulation paired with upper limb rehabilitation after chronic stroke: A blinded randomized pilot study.Stroke201849112789279210.1161/STROKEAHA.118.022279 30355189
    [Google Scholar]
  100. SachdevaR. KrassioukovA.V. BucksotJ.E. HaysS.A. Acute cardiovascular responses to vagus nerve stimulation after experimental spinal cord injury.J. Neurotrauma20203791149115510.1089/neu.2019.6828 31973660
    [Google Scholar]
  101. ChenH. FengZ. MinL. Vagus nerve stimulation reduces neuroinflammation through microglia polarization regulation to improve functional recovery after spinal cord injury.Front. Neurosci.20221681347210.3389/fnins.2022.813472 35464311
    [Google Scholar]
  102. DarrowM.J. TorresM. SosaM.J. Vagus nerve stimulation paired with rehabilitation training enhances motor recovery after bilateral spinal cord injury to cervical forelimb motor pools.Neurorehabil. Neural Repair202034320020910.1177/1545968319895480 31969052
    [Google Scholar]
  103. YangC. GuoZ. PengH. Repetitive transcranial magnetic stimulation therapy for motor recovery in Parkinson’s disease: A Meta‐analysis.Brain Behav.2018811e0113210.1002/brb3.1132 30264518
    [Google Scholar]
  104. GaoB. WangY. ZhangD. WangZ. WangZ. 2022 Intermittent thetaburst stimulation with physical exercise improves poststroke motor function: A systemic review and meta-analysis.Front. Neurol.964627
    [Google Scholar]
  105. BuhagiarF. FitzgeraldM. BellJ. AllansonF. PestellC. Neuromodulation for mild traumatic brain injury rehabilitation: A systematic review.Front. Hum. Neurosci.20201459820810.3389/fnhum.2020.598208 33362494
    [Google Scholar]
  106. AhujaC.S. WilsonJ.R. NoriS. Traumatic spinal cord injury.Nat. Rev. Dis. Primers2017311701810.1038/nrdp.2017.18 28447605
    [Google Scholar]
  107. Attwell GA. Bennin KE. TekinerdoganB. A systematic review of online speech therapy systems for intervention in childhood speech communication disorders.Sensors (Basel)20222224971310.3390/s22249713 36560082
    [Google Scholar]
  108. RadderD.L.M. Lígia Silva de LimaA. DomingosJ. Physiotherapy in parkinson’s disease: A meta-analysis of present treatment modalities.Neurorehabil. Neural Repair2020341087188010.1177/1545968320952799 32917125
    [Google Scholar]
  109. HanZ. ZhaoW. LeeH. Remote ischemic conditioning with exercise (rice)—rehabilitative strategy in patients with acute ischemic stroke: Rationale, design, and protocol for a randomized controlled study.Front. Neurol.20211265466910.3389/fneur.2021.654669 34012417
    [Google Scholar]
  110. SchlemmerE. NicholsonN. Vestibular rehabilitation effectiveness for adults with mild traumatic brain injury/concussion: A mini-systematic review.Am. J. Audiol.202231122824210.1044/2021_AJA‑21‑00165 35077655
    [Google Scholar]
  111. PelletierC. Exercise prescription for persons with spinal cord injury: A review of physiological considerations and evidence-based guidelines.Appl. Physiol. Nutr. Metab.2023481288289510.1139/apnm‑2023‑0227 37816259
    [Google Scholar]
  112. MengL. JinM. ZhuX. MingD. Peripherical electrical stimulation for parkinsonian tremor: A systematic review.Front. Aging Neurosci.20221479545410.3389/fnagi.2022.795454 35197841
    [Google Scholar]
  113. PopaL. TaylorP. Functional electrical stimulation may reduce bradykinesia in Parkinson’s disease: A feasibility study.J. Rehabil. Assist. Technol. Eng.20152205566831560783610.1177/2055668315607836 31191918
    [Google Scholar]
  114. FlemingM.K. SorinolaI.O. LewisR.S.F. WolfeC.D. WellwoodI. NewhamD.J. The effect of combined somatosensory stimulation and task-specific training on upper limb function in chronic stroke: A double-blind randomized controlled trial.Neurorehabil. Neural Repair201529214315210.1177/1545968314533613 24803495
    [Google Scholar]
  115. KimS. WonK. JungE. The effects of simultaneous application of peripheral nerve sensory stimulation and task-oriented training to improve upper extremity motor function after stroke.Single Blinded Randomized Controlled Trial Ther Sci Rehabil20209720
    [Google Scholar]
  116. CanningC.G. ShepherdR.B. CarrJ.H. AlisonJ.A. WadeL. WhiteA. A randomized controlled trial of the effects of intensive sit-to-stand training after recent traumatic brain injury on sit-to-stand performance.Clin. Rehabil.200317435536210.1191/0269215503cr620oa 12785242
    [Google Scholar]
  117. SilvaPE Marqueti CdR, Livino-de-Carvalho K, et al. Neuromuscular electrical stimulation in critically ill traumatic brain injury patients attenuates muscle atrophy, neurophysiological disorders, and weakness: A randomized controlled trial.J. Intensive Care2019715910.1186/s40560‑019‑0417‑x 31890221
    [Google Scholar]
  118. AmbrosiniE. FerranteS. PedrocchiA. FerrignoG. MolteniF. Cycling induced by electrical stimulation improves motor recovery in postacute hemiparetic patients: A randomized controlled trial.Stroke20114241068107310.1161/STROKEAHA.110.599068 21372309
    [Google Scholar]
  119. MilosevicM. NakanishiT. SasakiA. Cortical re-organization after traumatic brain injury elicited using functional electrical stimulation therapy: A case report.Front. Neurosci.20211569386110.3389/fnins.2021.693861 34489624
    [Google Scholar]
  120. LeeS.Y. AmatyaB. JudsonR. Clinical practice guidelines for rehabilitation in traumatic brain injury: A critical appraisal.Brain Inj.201933101263127110.1080/02699052.2019.1641747 31314607
    [Google Scholar]
  121. MangoldS. KellerT. CurtA. DietzV. Transcutaneous functional electrical stimulation for grasping in subjects with cervical spinal cord injury.Spinal Cord200543111310.1038/sj.sc.3101644 15289804
    [Google Scholar]
  122. KapadiaN.M. ZivanovicV. FurlanJ. CravenB.C. McGillivrayC. PopovicM.R. Functional electrical stimulation therapy for grasping in traumatic incomplete spinal cord injury: Randomized control trial.Artif. Organs201135321221610.1111/j.1525‑1594.2011.01216.x 21401662
    [Google Scholar]
  123. GanzerP.D. DarrowM.J. MeyersE.C. Closed-loop neuromodulation restores network connectivity and motor control after spinal cord injury.eLife2018b7e3205810.7554/eLife.32058 29533186
    [Google Scholar]
  124. DarrowM.J. TorresM. SosaM.J. Vagus nerve stimulation paired with rehabilitative training enhances motor recovery after bilateral spinal cord injury to cervical forelimb motor pools.Neurorehabil. Neural Repair202034320020910.1177/1545968319895480 31969052
    [Google Scholar]
  125. PruittD.T. SchmidA.N. KimL.J. Vagus nerve stimulation delivered with motor training enhances recovery of function after traumatic brain injury.J. Neurotrauma201633987187910.1089/neu.2015.3972 26058501
    [Google Scholar]
  126. HakonJ. MoghisehM. PoulsenI. ØlandC.M.L. HansenC.P. SabersA. Transcutaneous vagus nerve stimulation in patients with severe traumatic brain injury: A feasibility trial.Neuromodulation202023685986410.1111/ner.13148 32227429
    [Google Scholar]
  127. NoéE. FerriJ. ColomerC. Feasibility, safety and efficacy of transauricular vagus nerve stimulation in a cohort of patients with disorders of consciousness.Brain Stimul.202013242742910.1016/j.brs.2019.12.005 31866491
    [Google Scholar]
  128. HaysS.A. KhodaparastN. RuizA. The timing and amount of vagus nerve stimulation during rehabilitative training affect poststroke recovery of forelimb strength.Neuroreport2014b25967668210.1097/WNR.0000000000000154 24818637
    [Google Scholar]
  129. HaysS.A. KhodaparastN. HulseyD.R. Vagus nerve stimulation during rehabilitative training improves functional recovery after intracerebral hemorrhage.Stroke2014a45103097310010.1161/STROKEAHA.114.006654 25147331
    [Google Scholar]
  130. DawsonJ. LiuC.Y. FranciscoG.E. Vagus nerve stimulation paired with rehabilitation for upper limb motor function after ischaemic stroke (VNS-REHAB): A randomised, blinded, pivotal, device trial.Lancet2021397102841545155310.1016/S0140‑6736(21)00475‑X 33894832
    [Google Scholar]
  131. DawsonJ. PierceD. DixitA. Safety, feasibility, and efficacy of vagus nerve stimulation paired with upper-limb rehabilitation after ischemic stroke.Stroke201647114315010.1161/STROKEAHA.115.010477 26645257
    [Google Scholar]
  132. MaranoM. AnziniG. MusumeciG. Transcutaneous auricular vagus stimulation improves gait and reaction time in parkinson’s disease.Mov. Disord.202237102163216410.1002/mds.29166 35861362
    [Google Scholar]
  133. NitscheM.A. LiebetanzD. LangN. AntalA. TergauF. PaulusW. Safety criteria for transcranial direct current stimulation (tDCS) in humans.Clin. Neurophysiol.2003114112220222210.1016/S1388‑2457(03)00235‑9 14580622
    [Google Scholar]
  134. NitscheM.A. RothA. KuoM.F. FischerA.K. LiebetanzD. LangN. Timingdependent modulation of associative plasticity by general network excitability in the human motor Cortex.J. Neurosci.200727143807381210.1523/JNEUROSCI.5348‑06.2007
    [Google Scholar]
  135. ParuaS DasA HazraA Assessing body composition through anthropometry: Implications for diagnosing and managing polycystic ovary syndrome (PCOS). Clin Physiol Funct Imaging2024cpf.1290510.1111/cpf.12905 39320052
  136. CortesM. MedeirosA.H. GandhiA. Improved grasp function with transcranial direct current stimulation in chronic spinal cord injury.NeuroRehabilitation2017411515910.3233/NRE‑171456 28505987
    [Google Scholar]
  137. BhattacharyaK. SenguptaP. DuttaS. SyamalA.K. Optimization of estrogen dosage for uterine receptivity for implantation in post-coital bilaterally ovariectomized mice.Mol. Cell. Biochem.2023478228528910.1007/s11010‑022‑04505‑1 35788949
    [Google Scholar]
  138. YamaguchiT. FujiwaraT. TsaiY.A. The effects of anodal transcranial direct current stimulation and patterned electrical stimulation on spinal inhibitory interneurons and motor function in patients with spinal cord injury.Exp. Brain Res.201623461469147810.1007/s00221‑016‑4561‑4 26790423
    [Google Scholar]
  139. SimisM. FregniF. BattistellaL.R. Transcranial direct current stimulation combined with robotic training in incomplete spinal cord injury: A randomized, sham-controlled clinical trial.Spinal Cord Ser. Cases2021718710.1038/s41394‑021‑00448‑9 34580282
    [Google Scholar]
  140. YozbatiranN. KeserZ. DavisM. Transcranial direct current stimulation (tDCS) of the primary motor cortex and robot-assisted arm training in chronic incomplete cervical spinal cord injury: A proof of concept sham-randomized clinical study.NeuroRehabilitation201639340141110.3233/NRE‑161371 27589510
    [Google Scholar]
  141. KumruH. MurilloN. PenalvaB.J. TormosJ.M. VidalJ. Transcranial direct current stimulation is not effective in the motor strength and gait recovery following motor incomplete spinal cord injury during Lokomat® gait training.Neurosci. Lett.201662014314710.1016/j.neulet.2016.03.056 27040426
    [Google Scholar]
  142. Araújo dAVL, Ribeiro FPG, Massetti T, et al. Effectiveness of anodal transcranial direct current stimulation to improve muscle strength and motor functionality after incomplete spinal cord injury: A systematic review and meta-analysis. Spinal Cord20205866354610.1038/s41393‑020‑0438‑2 32066873
    [Google Scholar]
  143. NitscheM.A. PaulusW. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans.Neurology200157101899190110.1212/WNL.57.10.1899 11723286
    [Google Scholar]
  144. YehN.C. YangY.R. HuangS.F. KuP.H. WangR.Y. Effects of transcranial direct current stimulation followed by exercise on neuropathic pain in chronic spinal cord injury: A double-blinded randomized controlled pilot trial.Spinal Cord202159668469210.1038/s41393‑020‑00560‑x 33024299
    [Google Scholar]
  145. LiC. JirachaipitakS. WrigleyP. XuH. EuasobhonP. Transcranial direct current stimulation for spinal cord injury-associated neuropathic pain.Korean J. Pain202134215616410.3344/kjp.2021.34.2.156 33785667
    [Google Scholar]
  146. LiL. HuangH. YuY. Non-invasive brain stimulation for neuropathic pain after spinal cord injury: A systematic review and network metaanalysis.Front. Neurosci.20221580056010.3389/fnins.2021.800560 35221889
    [Google Scholar]
  147. LinderothB. ForemanR.D. Conventional and novel spinal stimulation algorithms: Hypothetical mechanisms of action and comments on outcomes.Neuromodulation201720652553310.1111/ner.12624 28568898
    [Google Scholar]
  148. ShealyC.N. MortimerJ.T. HagforsN.R. Dorsal column electroanalgesia.J. Neurosurg.197032556056410.3171/jns.1970.32.5.0560 5438096
    [Google Scholar]
  149. TazawaT KamiyaY KobayashiA Spinal cord stimulation modulates supraspinal centers of the descending antinociceptive system in rats with unilateral spinal nerve injury.Mol Pain201511s12990-015-0039-910.1186/s12990‑015‑0039‑9 26104415
    [Google Scholar]
  150. KellerA.F. CoullJ.A.M. ChéryN. PoisbeauP. KoninckD.Y. Region-specific developmental specialization of GABA-glycine cosynapses in laminas I-II of the rat spinal dorsal horn.J. Neurosci.200121207871788010.1523/JNEUROSCI.21‑20‑07871.2001 11588160
    [Google Scholar]
  151. JiRR BertaT NedergaardM Glia and pain: Is chronic pain a gliopathy? Pain20131540 1(Suppl. 1)S102810.1016/j.pain.2013.06.022 23792284
  152. NagelS.J. WilsonS. JohnsonM.D. Spinal cord stimulation for spasticity: Historical approaches, current Status, and future directions.Neuromodulation201720430732110.1111/ner.12591 28370802
    [Google Scholar]
  153. AslanS.C. DitterlineL.B.E. ParkM.C. Epidural spinal cord stimulation of lumbosacral networks modulates arterial blood pressure in individuals with spinal cord injury-induced cardiovascular deficits.Front. Physiol.2018956510.3389/fphys.2018.00565 29867586
    [Google Scholar]
  154. HerrityA.N. WilliamsC.S. AngeliC.A. HarkemaS.J. HubscherC.H. Lumbosacral spinal cord epidural stimulation improves voiding function after human spinal cord injury.Sci. Rep.201881868810.1038/s41598‑018‑26602‑2 29875362
    [Google Scholar]
  155. KapuralL. CywinskiJ.B. SparksD.A. Spinal cord stimulation for visceral pain from chronic pancreatitis.Neuromodulation201114542342710.1111/j.1525‑1403.2011.00381.x 21854493
    [Google Scholar]
  156. DiMarcoA.F. KowalskiK.E. GeertmanR.T. HromyakD.R. Spinal cord stimulation: A new method to produce an effective cough in patients with spinal cord injury.Am. J. Respir. Crit. Care Med.2006173121386138910.1164/rccm.200601‑097CR
    [Google Scholar]
  157. SyamalA.K. BoseC. KingeA.D. SultanaJ. BiswasA.K. BhattacharyaK. Impact of a lifestyle intervention program on cardio-metabolic parameters among obese adults: A comparative population-based study in West Bengal, India.J. Med. Life202316455957010.25122/jml‑2022‑0006 37305820
    [Google Scholar]
  158. DiMarcoA.F. KowalskiK.E. GeertmanR.T. HromyakD.R. FrostF.S. CreaseyG.H. Lower thoracic spinal cord stimulation to restore cough in patients with spinal cord injury: Results of a national institutes of health-sponsored clinical trial.Arch. Phys. Med. Rehabil.200990572673210.1016/j.apmr.2008.11.014
    [Google Scholar]
  159. DiMarcoA.F. KowalskiK.E. HromyakD.R. GeertmanR.T. Long-term follow-up of spinal cord stimulation to restore cough in subjects with spinal cord injury.J. Spinal Cord Med.201437438038810.1179/2045772313Y.0000000152 24090524
    [Google Scholar]
  160. MeglioM. CioniB. RossiG.F. Spinal cord stimulation in management of chronic pain: A 9-year experience.J. Neurosurg.198970451952410.3171/jns.1989.70.4.0519
    [Google Scholar]
  161. BuchhaasU. KoulousakisA. NittnerK. Experience with spinal cord stimulation (SCS) in the management of chronic pain in a traumatic transverse lesion syndrome.Neurosurg. Rev.198912S1Suppl. 158258710.1007/BF01790706 2812434
    [Google Scholar]
  162. MeglioM. CioniB. PreziosoA. TalamontiG. Spinal cord stimulation (SCS) in deafferentation pain.Pacing Clin. Electrophysiol.1989124709712
    [Google Scholar]
  163. NorthR.B. KiddD.H. ZahurakM. JamesC.S. LongD.M. Spinal cord stimulation for chronic, intractable pain: Experience over two decades.Neurosurgery199332338439510.1227/00006123‑199303000‑00008 8455763
    [Google Scholar]
  164. CioniB. MeglioM. PentimalliL. VisocchiM. Spinal cord stimulation in the treatment of paraplegic pain.J. Neurosurg.19958213539
    [Google Scholar]
  165. LagaucheD. FacioneJ. AlbertT. FattalC. The chronic neuropathic pain of spinal cord injury: Which efficiency of neuropathics stimulations?Ann. Phys. Rehabil. Med.200952218018710.1016/j.rehab.2008.12.010 19909708
    [Google Scholar]
  166. WarmsC.A. TurnerJ.A. MarshallH.M. CardenasD.D. Treatments for chronic pain associated with spinal cord injuries: Many are tried, few are helpful.Clin. J. Pain200218315416310.1097/00002508‑200205000‑00004 12048417
    [Google Scholar]
  167. WrightR.E. CollitonJ.W. Neurostimulation of the L2 dorsal root ganglion for intractable disc pain: Description of a novel technique. Lucerne, 1998, pp. 1101-1110, Vol. 36
    [Google Scholar]
  168. HarrisonC. EptonS. BojanicS. GreenA.L. FitzGeraldJ.J. The efficacy and safety of dorsal root ganglion stimulation as a treatment for neuropathic pain: A literature review.Neuromodulation201821322523310.1111/ner.12685 28960653
    [Google Scholar]
  169. DeerT.R. GrigsbyE. WeinerR.L. WilcoskyB. KramerJ.M. A prospective study of dorsal root ganglion stimulation for the relief of chronic pain.Neuromodulation2013161677210.1111/ner.12013 23240657
    [Google Scholar]
  170. LiemL. RussoM. HuygenF.J.P.M. A multicenter, prospective trial to assess the safety and performance of the spinal modulation dorsal root ganglion neurostimulator system in the treatment of chronic pain.Neuromodulation201316547148210.1111/ner.12072 23668228
    [Google Scholar]
  171. DeerT.R. LevyR.M. KramerJ. PoreeL. AmirdelfanK. GrigsbyE. Dorsal root ganglion stimulation yielded higher treatment success rate for CRPS and causalgia at 3 and 12 months: Randomized comparative trial.Pain2017158466968110.1097/j.pain.0000000000000814 28030470
    [Google Scholar]
  172. KoopmeinersA.S. MuellerS. KramerJ. HoganQ.H. Effect of electrical field stimulation on dorsal root ganglion neuronal function.Neuromodulation201316430431110.1111/ner.12028 23421796
    [Google Scholar]
  173. SongX.J. HuS.J. GreenquistK.W. ZhangJ.M. LaMotteR.H. Mechanical and thermal hyperalgesia and ectopic neuronal discharge after chronic compression of dorsal root ganglia.J. Neurophysiol.199982633473358
    [Google Scholar]
  174. AmirR. MichaelisM. DevorM. Burst discharge in primary sensory neurons: Triggered by subthreshold oscillations, maintained by depolarizing afterpotentials.J. Neurosci.20022231187119810.1523/JNEUROSCI.22‑03‑01187.2002 11826148
    [Google Scholar]
  175. KentA.R. MinX. HoganQ.H. KramerJ.M. Mechanisms of dorsal root ganglion stimulation in pain suppression: A computational modeling analysis.Neuromodulation201821323424610.1111/ner.12754 29377442
    [Google Scholar]
  176. EspositoM.F. MalayilR. HanesM. DeerT. Unique characteristics of the dorsal root ganglion as a target for neuromodulation.Pain Med.2019201Suppl. 1S23S3010.1093/pm/pnz012 31152179
    [Google Scholar]
  177. SoloukeyS Rooij dJD, Osterthun R, Drenthen J, Zeeuw DCI, Huygen FJ, et al. The dorsal root ganglion as a novel neuromodulatory target to evoke strong and reproducible motor responses in chronic motor complete spinal cord injury: A case series of five patients.Neuromodulation202124477979310.1111/ner.13235
    [Google Scholar]
  178. JohnsonD.M.L. HagedornJ.M. LamerT.J. Dorsal root ganglion stimulation for Complex regional pain syndrome in spinal cord injury.Pain Med.20212251224122710.1093/pm/pnaa452 34019651
    [Google Scholar]
  179. SoloukeyS. DrenthenJ. OsterthunR. Bilateral l2 dorsal root ganglion-stimulation suppresses lower limb spasticity following chronic motor complete spinal cord injury: A case report.Brain Stimul.202013363763910.1016/j.brs.2020.02.005 32289689
    [Google Scholar]
  180. PerruchoudC. EldabeS. BatterhamA.M. Analgesic efficacy of high-frequency spinal cord stimulation: A randomized double-blind placebo-controlled study.Neuromodulation201316436336910.1111/ner.12027 23425338
    [Google Scholar]
  181. YounY. SmithH. MorrisB. ArgoffC. PilitsisJ.G. The effect of high-frequency stimulation on sensory thresholds in chronic pain patients.Stereotact. Funct. Neurosurg.201593535535910.1159/000438998 26444968
    [Google Scholar]
  182. NorthJ.M. HongK.S.J. ChoP.Y. Clinical outcomes of 1 kHz subperception spinal cord stimulation in implanted patients with failed paresthesia-based stimulation: Results of a prospective randomized controlled trial.Neuromodulation201619773173710.1111/ner.12441 27186822
    [Google Scholar]
  183. ShechterR. YangF. XuQ. Conventional and kilohertz-frequency spinal cord stimulation produces intensity- and frequency-dependent inhibition of mechanical hypersensitivity in a rat model of neuropathic pain.Anesthesiology2013119242243210.1097/ALN.0b013e31829bd9e2 23880991
    [Google Scholar]
  184. SongZ. ViisanenH. MeyersonB.A. PertovaaraA. LinderothB. Efficacy of kilohertz-frequency and conventional spinal cord stimulation in rat models of different pain conditions.Neuromodulation201417322623410.1111/ner.12161
    [Google Scholar]
  185. ChakravarthyK. RichterH. ChristoP.J. WilliamsK. GuanY. Spinal cord stimulation for treating chronic pain: Reviewing preclinical and clinical data on paresthesia-free high-frequency therapy.Neuromodulation2018211101810.1111/ner.12721 29105244
    [Google Scholar]
  186. KapuralL. YuC. DoustM.W. Novel 10- kHz high-frequency therapy (HF10 therapy) is superior to traditional low-frequency spinal cord stimulation for the treatment of chronic back and leg pain: The SENZARCT randomized controlled trial.Anesthesiology2015123485186010.1097/ALN.0000000000000774 26218762
    [Google Scholar]
  187. DiMarcoA.F. KowalskiK.E. High-frequency spinal cord stimulation in a subacute animal model of spinal cord injury.J. Appl. Physiol.201912719810210.1152/japplphysiol.00006.2019 31095462
    [Google Scholar]
  188. KowalskiK.E. RomaniukJ.R. BroseS.W. RichmondM.A. KowalskiT. DiMarcoA.F. High frequency spinal cord stimulation—New method to restore cough.Respir. Physiol. Neurobiol.2016232545610.1016/j.resp.2016.07.001 27395446
    [Google Scholar]
  189. KapuralL. YuC. DoustM.W. Comparison of 10-kHz high-frequency and traditional low-frequency spinal cord stimulation for the treatment of chronic back and leg pain: 24-month results from a multicenter, randomized, controlled pivotal trial.Neurosurgery201679566767710.1227/NEU.0000000000001418 27584814
    [Google Scholar]
  190. ThomsonS.J. TavakkolizadehM. JonesL.S. Effects of rate on analgesia in kilohertz frequency spinal cord stimulation: Results of the PROCO randomized controlled trial.Neuromodulation2018211677610.1111/ner.12746 29220121
    [Google Scholar]
  191. KaisyA.A. PalmisaniS. PangD. Prospective, randomized, sham-control, double blind, crossover trial of subthreshold spinal cord stimulation at Various kilohertz frequencies in subjects suffering from failed back surgery syndrome (SCS frequency study).Neuromodulation201821545746510.1111/ner.12771 29608229
    [Google Scholar]
  192. YamadaC. MaedaA. MatsushitaK. NakayamaS. ShirozuK. YamauraK. 1-kHz high-frequency spinal cord stimulation alleviates chronic refractory pain after spinal cord injury: A case report.JA Clin. Rep.2021714610.1186/s40981‑021‑00451‑x 34101052
    [Google Scholar]
  193. SchieferdeckerS. NeudorferC. MajdoubE.F. MaaroufM. A retrospective case series of high-frequency spinal cord stimulation (HF10-SCS) in neurogenic bladder incontinence.Oper. Neurosurg. (Hagerstown)2019171142010.1093/ons/opy236 30169840
    [Google Scholar]
  194. RidderD.D. PlazierM. KamerlingN. MenovskyT. VannesteS. Burst spinal cord stimulation for limb and back pain.World Neurosurg.2013805642649.e110.1016/j.wneu.2013.01.040 23321375
    [Google Scholar]
  195. ChakravarthyK. KentA.R. RazaA. XingF. KinfeT.M. Burst spinal cord stimulation: Review of preclinical studies and comments on clinical outcomes.Neuromodulation201821543143910.1111/ner.12756 29431275
    [Google Scholar]
  196. TangR. MartinezM. KeiserG.M. FarberJ.P. QinC. ForemanR.D. Comparison of burst and tonic spinal cord stimulation on spinal neural processing in an animal model.Neuromodulation201417214315110.1111/ner.12117 24655042
    [Google Scholar]
  197. DeerT. SlavinK.V. AmirdelfanK. Success using neuromodulation with BURST (SUNBURST) study: Results from a prospective, randomized controlled trial using a novel burst waveform.Neuromodulation2018211566610.1111/ner.12698 28961366
    [Google Scholar]
  198. RidderD.D. LendersM.W.P.M. VosD.C.C. A 2-center comparative study on tonic versus burst spinal cord stimulation: Amount of responders and amount of pain suppression.Clin. J. Pain201531543343710.1097/AJP.0000000000000129 24977394
    [Google Scholar]
  199. SchuS. SlottyP.J. BaraG. Knop vM, Edgar D, Vesper J. A prospective, randomised, double-blind, placebo-controlled study to examine the effectiveness of burst spinal cord stimulation patterns for the treatment of failed back surgery syndrome.Neuromodulation201417544345010.1111/ner.12197 24945621
    [Google Scholar]
  200. CrosbyN.D. WeisshaarC.L. SmithJ.R. ZeemanM.E. KeiserG.M.D. WinkelsteinB.A. Burst and tonic spinal cord stimulation differentially activate GABAergic mechanisms to attenuate pain in a rat model of cervical radiculopathy.IEEE Trans. Biomed. Eng.20156261604161310.1109/TBME.2015.2399374 25667344
    [Google Scholar]
  201. RidderD.D. VancampT. VannesteS. Chapter 14: Fundamentals of burst stimulation of the spinal cord and brain.In: Krames ES, Peckham PH, Rezai AR, Eds. Neuromodulation.Chapter 142nd ed KramesE.S. PeckhamP.H. RezaiA.R. London, UKAcademic Press2018147160
    [Google Scholar]
  202. OswaldA.M.M. ChacronM.J. DoironB. BastianJ. MalerL. Parallel processing of sensory input by bursts and isolated spikes.J. Neurosci.200424184351436210.1523/JNEUROSCI.0459‑04.2004 15128849
    [Google Scholar]
  203. KulkarniB. BentleyD.E. ElliottR. Attention to pain localization and unpleasantness discriminates the functions of the medial and lateral pain systems.Eur. J. Neurosci.200521113133314210.1111/j.1460‑9568.2005.04098.x 15978022
    [Google Scholar]
  204. RidderD.D. VannesteS. PlazierM. van der LooE. MenovskyT. Burst spinal cord stimulation: Toward paresthesia-free pain suppression.Neurosurgery201066598699010.1227/01.NEU.0000368153.44883.B3 20404705
    [Google Scholar]
  205. YearwoodT. FalowskiS. VenkatesanL. VannesteS. Comparison of neural activity in chronic pain patients during tonic and burst spinal cord stimulation: A SUNBURST sub-study.Baltimore, MDJune 25-29, 2016, pp. 1-6.
    [Google Scholar]
  206. ReckT.A. LandmannG. Successful spinal cord stimulation for neuropathic below-level spinal cord injury pain following complete paraplegia: A case report.Spinal Cord Ser. Cases2017311704910.1038/scsandc.2017.49 28808583
    [Google Scholar]
  207. YoonL.J. KimD.Y. Burst spinal cord stimulation for central neuropathic pain: Two case reports.Medicine20211006e2462810.1097/MD.0000000000024628
    [Google Scholar]
  208. LeeK.S. JangY.K. ParkG.H. JunI.J. KohJ.C. Successful application of burst spinal cord stimulation for refractory upper limb pain: A case series.J. Int. Med. Res.20214930300060521100403510.1177/03000605211004035 33788644
    [Google Scholar]
  209. DobkinB.H. Brain-computer interface technology as a tool to augment plasticity and outcomes for neurological rehabilitation.J. Physiol.2007579363764210.1113/jphysiol.2006.123067 17095557
    [Google Scholar]
  210. GulyaevaN.V. Molecular mechanisms of neuroplasticity: An expanding universe.Biochemistry201782323724210.1134/S0006297917030014 28320264
    [Google Scholar]
  211. ZatorreR.J. FieldsR.D. BergJ.H. Plasticity in gray and white: Neuroimaging changes in brain structure during learning.Nat. Neurosci.201215452853610.1038/nn.3045 22426254
    [Google Scholar]
  212. OsierN.D. CarlsonS.W. DeSanaA. DixonC.E. Chronic histopathological and behavioral outcomes of experimental traumatic brain injury in adult male animals.J. Neurotrauma201532231861188210.1089/neu.2014.3680 25490251
    [Google Scholar]
  213. AndersonK.D. Targeting recovery: Priorities of the spinal cord-injured population.J. Neurotrauma200421101371138310.1089/neu.2004.21.1371 15672628
    [Google Scholar]
  214. CrossonB. RodriguezA.D. CoplandD. Neuroplasticity and aphasia treatments: New approaches for an old problem.J. Neurol. Neurosurg. Psychiatry201990101147115510.1136/jnnp‑2018‑319649 31055282
    [Google Scholar]
  215. WilliamsW.H. PotterS. RylandH. Mild traumatic brain injury and Postconcussion Syndrome: A neuropsychological perspective.J. Neurol. Neurosurg. Psychiatry201081101116112210.1136/jnnp.2008.171298 20802217
    [Google Scholar]
  216. LeoneP.A. FreitasC. ObermanL. Characterizing brain cortical plasticity and network dynamics across the age-span in health and disease with TMS-EEG and TMS-fMRI.Brain Topogr.2011243-430231510.1007/s10548‑011‑0196‑8 21842407
    [Google Scholar]
  217. CramerS.C. Brain repair after stroke.N. Engl. J. Med.2010362191827182910.1056/NEJMe1003399 20400553
    [Google Scholar]
  218. JainP. SatapathyT. PandeyR.K. A mini review of methods to control ticks population infesting cattle in Chhattisgarh with special emphasis on herbal acaricides.Indian J. Nat. Prod. Resour.20201112217223
    [Google Scholar]
  219. ChengS. XinR. ZhaoY. WangP. FengW. LiuP. Evaluation of fMRI activation in post-stroke patients with movement disorders after repetitive transcranial magnetic stimulation: A scoping review.Front. Neurol.202314119254510.3389/fneur.2023.1192545 37404941
    [Google Scholar]
  220. NithianantharajahJ. HannanA.J. Enriched environments, experience-dependent plasticity and disorders of the nervous system.Nat. Rev. Neurosci.20067969770910.1038/nrn1970 16924259
    [Google Scholar]
  221. ZiemannU. SiebnerH.R. Inter-subject and inter-session variability of plasticity induction by non-invasive brain stimulation: Boon or bane?Brain Stimul.20158366266310.1016/j.brs.2015.01.409 25704341
    [Google Scholar]
  222. CramerS.C. WolfS.L. AdamsH.P.Jr Stroke recovery and rehabilitation research: Issues, opportunities, and the national institutes of health strokenet.Stroke201748381381910.1161/STROKEAHA.116.015501 28174324
    [Google Scholar]
  223. CohenN.R. CrossE.S. TunikE. GraftonS.T. CulhamJ.C. Ventral and dorsal stream contributions to the online control of immediate and delayed grasping: A TMS approach.Neuropsychologia20094761553156210.1016/j.neuropsychologia.2008.12.034 19168086
    [Google Scholar]
  224. DoyonJ. BellecP. AmselR. Contributions of the basal ganglia and functionally related brain structures to motor learning.Behav. Brain Res.20091991617510.1016/j.bbr.2008.11.012 19061920
    [Google Scholar]
  225. BhairamM. PrasadJ. VermaK. JainP. GidwaniB. Formulation of transdermal patch of losartan potassium & glipizide for the treatment of hypertension & diabetes.Mater. Today Proc.202383596810.1016/j.matpr.2023.01.147
    [Google Scholar]
  226. ConeleaC. GreeneD.J. AlexanderJ. The CBIT + TMS trial: Study protocol for a two-phase randomized controlled trial testing neuromodulation to augment behavior therapy for youth with chronic tics.Trials202324143910.1186/s13063‑023‑07455‑1 37400828
    [Google Scholar]
  227. SinhaL. JainS.K. ChoudharyR. Current trends in the treatment of hepatocellular carcinoma: Clinical applications and advancement.Prob Sci2024112433
    [Google Scholar]
  228. KirvalidzeM. AbbadiA. DahlbergL. SaccoL.B. MorinL. LarrañagaC.A. Effectiveness of interventions designed to mitigate the negative health outcomes of informal caregiving to older adults: An umbrella review of systematic reviews and meta-analyses.BMJ Open2023134e06864610.1136/bmjopen‑2022‑068646 37085312
    [Google Scholar]
  229. CherniY. TremblayA. SimonM. BretheauF. BlanchetteA.K. MercierC. Corticospinal responses following gait-specific training in stroke survivors: A systematic review.Int. J. Environ. Res. Public Health202219231558510.3390/ijerph192315585 36497663
    [Google Scholar]
  230. JainP. SatapathyT. PandeyR.K. First report on ticks (Acari: Ixodidae) controlling activity of cottonseed oil (Gossypium Sp.).Int. J. Acarol.202046426326710.1080/01647954.2020.1767203
    [Google Scholar]
  231. KarimA.K.M.R. ProulxM.J. Sousa dAA, Likova LT. Neuroplasticity and crossmodal connectivity in the normal, healthy brain.Psychol. Neurosci.202114329833410.1037/pne0000258 36937077
    [Google Scholar]
  232. YuanK. ChenC. WangX. ChuW.C. TongR.K. BCI training effects on chronic stroke correlate with functional reorganization in motor-related regions: A concurrent EEG and fMRI study.Brain Sci.20211115610.3390/brainsci11010056 33418846
    [Google Scholar]
  233. KhanA. ChenC. YuanK. Changes in electroencephalography complexity and functional magnetic resonance imaging connectivity following robotic hand training in chronic stroke.Top. Stroke Rehabil.202128427628810.1080/10749357.2020.1803584 32799771
    [Google Scholar]
  234. AntonenkoD. FrommA.E. ThamsF. GrittnerU. MeinzerM. FlöelA. Microstructural and functional plasticity following repeated brain stimulation during cognitive training in older adults.Nat. Commun.2023141318410.1038/s41467‑023‑38910‑x 37268628
    [Google Scholar]
  235. HallJ. KrollT. Wijck vF, Morozow BH. Co-creating digital stories with UK-based stroke survivors with the aim of synthesizing collective lessons from individual experiences of interacting with healthcare professionals.Frontiers in Rehabiitation Sciences2022387744210.3389/fresc.2022.877442 36189023
    [Google Scholar]
  236. BahouthM.N. DeluzioS. PruskiA. ZinkE.K. Nonpharmacological treatments for hospitalized patients with stroke: A nuanced approach to prescribing early activity.Neurotherapeutics202320371272010.1007/s13311‑023‑01392‑2 37289401
    [Google Scholar]
  237. HannanA.J. Review: Environmental enrichment and brain repair: Harnessing the therapeutic effects of cognitive stimulation and physical activity to enhance experience‐dependent plasticity.Neuropathol. Appl. Neurobiol.2014401132510.1111/nan.12102 24354721
    [Google Scholar]
  238. MenzeI. MuellerN.G. ZaehleT. SchmickerM. Individual response to transcranial direct current stimulation as a function of working memory capacity and electrode montage.Front. Hum. Neurosci.202317113463210.3389/fnhum.2023.1134632 36968784
    [Google Scholar]
  239. Lima dMSN, dos Santos Couto Paz CC, Ribeiro TG, Martins FE. Assessment of passive upper limb stiffness and its function in post-stroke individuals wearing an inertial sensor during the pendulum test.Sensors2023237348710.3390/s23073487 37050547
    [Google Scholar]
  240. SartinS. RanziniM. ScarpazzaC. MonacoS. Cortical areas involved in grasping and reaching actions with and without visual information: An ALE meta-analysis of neuroimaging studies.Current Research in Neurobiology2023410007010.1016/j.crneur.2022.100070 36632448
    [Google Scholar]
  241. LefaucheurJ.P. ObadiaA.N. AntalA. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS).Clin. Neurophysiol.2014125112150220610.1016/j.clinph.2014.05.021 25034472
    [Google Scholar]
  242. NetamA.K. PrasadJ. SatapathyT. JainP. Evaluation for toxicity and improved therapeutic effectiveness of natural polymer co-administered along with venocin in acetic acid-induced colitis using rat model bt - advances in biomedical engineering and technology.In: Rizvanov AA, Singh BK, Ganasala P, Eds.SingaporeSpringer Singapore2021207220
    [Google Scholar]
  243. SinghR. PrasadJ. SatapathyT. JainP. SinghS. Pharmacological evaluation for anti-bacterial and anti-inflammatory potential of polymeric microparticles.Ind J Bioch Bio202158April156161
    [Google Scholar]
  244. IslamM. HuangY. JainP. FanB. TongL. WangF. Enzymatic hydrolysis of soy protein to high moisture textured meat analogue with emphasis on antioxidant effects: As a tool to improve techno-functional property.Biocatal. Agric. Biotechnol.20235010270010.1016/j.bcab.2023.102700
    [Google Scholar]
/content/journals/cnsnddt/10.2174/0118715273341882250114054733
Loading
/content/journals/cnsnddt/10.2174/0118715273341882250114054733
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test