Skip to content
2000
Volume 24, Issue 8
  • ISSN: 1871-5273
  • E-ISSN: 1996-3181

Abstract

A recent World Health Organization report claims that along with the growing world population and emerging life prospects, the prevalence of neurological disorders is also increasing. Out of all neurological disorders, Alzheimer's disease is the most widespread and alarming concern. The disease poses significant therapeutic challenges due to the blood-brain barrier's restrictiveness and the lack of effective drug delivery systems. The olfactory and trigeminal nerves have direct access to the brain, therefore, intranasal drug delivery can be a promising route for the direct delivery of anti-Alzheimer’s drugs. Despite this advantage, brain targeting is limited through this route due to mucociliary clearance. Thus, nanotechnology offers a transformative approach by leveraging the intranasal route to directly target the central nervous system. This comprehensive review discusses recent advancements, mechanisms, and applications of nanotechnology in Alzheimer's disease therapeutics, highlighting its potential to enhance drug delivery efficiency, improve bioavailability, and mitigate the progression of this debilitating condition. The importance of intranasal drug delivery has been emphasized in this review, along with the clear benefits of lipid-based nanotechnology for the efficient delivery of medication in targeting Alzheimer's disease.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/0118715273335978250127070434
2025-02-17
2025-09-04
Loading full text...

Full text loading...

References

  1. ChorawalaM. R. ShahA. C. PandyaA. J. KothariN. R. PrajapatiB. G. 2024Symptoms and conventional treatments of Alzheimer's disease.In: Alzheimer's disease and advanced drug delivery strategies.Academic Press202421323410.1016/B978‑0‑443‑13205‑6.00009‑1
    [Google Scholar]
  2. ParikhN.H. ParikhP.K. RaoH.J. ShahK. DaveB.P. PrajapatiB.G. Current trends and updates in the treatment of Alzheimer’s disease.Alzheimer’s Disease and Advanced Drug Delivery Strategies.Academic Press202437339010.1016/B978‑0‑443‑13205‑6.00014‑5
    [Google Scholar]
  3. GBD 2019 CollaboratorsGlobal mortality from dementia: Application of a new method and results from the global burden of disease study 2019.Alzheimers Dement202171e1220010.1002/trc2.12200
    [Google Scholar]
  4. GaoY. AlmalkiW.H. AfzalO. PandaS.K. KazmiI. AlrobaianM. KatouahH.A. AltamimiA.S.A. Al-AbbasiF.A. AlshehriS. SoniK. IbrahimI.A.A. RahmanM. BegS. Systematic development of lectin conjugated microspheres for nose-to-brain delivery of rivastigmine for the treatment of Alzheimer’s disease.Biomed. Pharmacother.202114111182910.1016/j.biopha.2021.11182934147904
    [Google Scholar]
  5. RajasekharK. GovindarajuT. Current progress, challenges and future prospects of diagnostic and therapeutic interventions in Alzheimer’s disease.RSC Advances2018842237802380410.1039/C8RA03620A35540246
    [Google Scholar]
  6. AgrawalM. SinghalM. PrajapatiB.G. ChaudharyH. JasoriaY. KumarB. SahooJ. Neuroinflammation in Alzheimer’s disease.In: Alzheimer’s Disease and Advanced Drug Delivery Strategies.Academic Press2024133210.1016/B978‑0‑443‑13205‑6.00003‑0
    [Google Scholar]
  7. SharmaP. TripathiM.K. ShrivastavaS.K. Cholinesterase as a target for drug development in Alzheimer’s disease.Methods Mol. Biol.2020208925728610.1007/978‑1‑0716‑0163‑1_1831773661
    [Google Scholar]
  8. SharmaK. Cholinesterase inhibitors as Alzheimer’s therapeutics (Review).Mol. Med. Rep.20192021479148710.3892/mmr.2019.1037431257471
    [Google Scholar]
  9. GiacobiniE. GoldG. Alzheimer disease therapy—moving from amyloid-β to tau.Nat. Rev. Neurol.201391267768610.1038/nrneurol.2013.22324217510
    [Google Scholar]
  10. LiH TanY ChengX Untargeted metabolomics analysis of the hippocampus and cerebral cortex identified the neuroprotective mechanisms of Bushen Tiansui formula in an aβ25-35-induced rat model of Alzheimer’s disease.Front Pharmacol.20221399030710.3389/fphar.2022.990307
    [Google Scholar]
  11. SinghA. MaheshwariS. YadavJ.P. VarshneyA.P. SinghS. PrajapatiB.G. A review on Tau Targeting biomimetics nano formulations: Novel approach for targeting Alzheimer’s diseases.Cent. Nerv. Syst. Agents Med. Chem.202424329430310.2174/011871524928912024032106593638646682
    [Google Scholar]
  12. De StrooperB. KarranE. The cellular phase of Alzheimer’s disease.Cell2016164460361510.1016/j.cell.2015.12.05626871627
    [Google Scholar]
  13. LaffleurF. BauerB. Progress in nasal drug delivery systems.Int. J. Pharm.202160712099410.1016/j.ijpharm.2021.12099434390810
    [Google Scholar]
  14. DesmaraisJ.E. GauthierS. Clinical use of cholinergic drugs in Alzheimer disease.Nat. Rev. Neurol.20106841842010.1038/nrneurol.2010.10520689561
    [Google Scholar]
  15. GiunchediP. GaviniE. BonferoniM.C. Nose-to-Brain Delivery.Pharmaceutics202012213810.3390/pharmaceutics1202013832041344
    [Google Scholar]
  16. BahadurS. SachanN. HarwanshR.K. DeshmukhR. Nanoparticlized system: Promising approach for the management of Alzheimer’s disease through intranasal delivery.Curr. Pharm. Des.202026121331134410.2174/138161282666620031113165832160843
    [Google Scholar]
  17. PatelM. PrajapatiB.G. YadavM.R. Microbubbles-based drug delivery for anti Alzheimer’s drugs.In: Alzheimer’s Disease and Advanced Drug Delivery StrategiesAcademic Press202440341910.1016/B978‑0‑443‑13205‑6.00006‑6
    [Google Scholar]
  18. Wang H, Shang Y, Wang E, Xu X, Zhang Q, Qian C, Yang Z, Wu S, Zhang T. MST1 mediates neuronal loss and cognitive deficits: A novel therapeutic target for Alzheimer's disease.Prog Neurobiol.202221410228010.1016/j.pneurobio.2022.10228035525373
    [Google Scholar]
  19. BonferoniM.C. RossiS. SandriG. FerrariF. GaviniE. RassuG. GiunchediP. Nanoemulsions for “Nose-to-Brain” drug delivery.Pharmaceutics20191128410.3390/pharmaceutics1102008430781585
    [Google Scholar]
  20. LoureiroJ.A. GomesB. CoelhoM.A.N. Carmo PereiraM. RochaS. Targeting nanoparticles across the blood-brain barrier with monoclonal antibodies.Nanomedicine (Lond.)20149570972210.2217/nnm.14.2724827845
    [Google Scholar]
  21. LochheadJ.J. WolakD.J. PizzoM.E. ThorneR.G. Rapid transport within cerebral perivascular spaces underlies widespread tracer distribution in the brain after intranasal administration.J. Cereb. Blood Flow Metab.201535337138110.1038/jcbfm.2014.21525492117
    [Google Scholar]
  22. MaherR. Moreno-BorralloA. JindalD. MaiB.T. Ruiz-HernandezE. HarkinA. Intranasal polymeric and lipid-based nanocarriers for CNS drug delivery.Pharmaceutics202315374610.3390/pharmaceutics1503074636986607
    [Google Scholar]
  23. EmadN.A. AhmedB. AlhalmiA. AlzobaidiN. Al-KubatiS.S. Recent progress in nanocarriers for direct nose to brain drug delivery.J. Drug Deliv. Sci. Technol.20216410264210.1016/j.jddst.2021.102642
    [Google Scholar]
  24. AkelH. IsmailR. CsókaI. Progress and perspectives of brain-targeting lipid-based nanosystems via the nasal route in Alzheimer’s disease.Eur. J. Pharm. Biopharm.2020148385310.1016/j.ejpb.2019.12.01431926222
    [Google Scholar]
  25. TuckerC. TuckerL. BrownK. The intranasal route as an alternative method of medication administration.Crit. Care Nurse2018385263110.4037/ccn201883630275061
    [Google Scholar]
  26. Bustamante-MarinX.M. OstrowskiL.E. Cilia and Mucociliary clearance.Cold Spring Harb. Perspect. Biol.201794a02824110.1101/cshperspect.a02824127864314
    [Google Scholar]
  27. IshikawaT. Axoneme structure from motile cilia.Cold Spring Harb. Perspect. Biol.201791a02807610.1101/cshperspect.a02807627601632
    [Google Scholar]
  28. RomanelliM.C. GelardiM. FiorellaM.L. TattoliL. Di VellaG. SolarinoB. Nasal ciliary motility: A new tool in estimating the time of death.Int. J. Legal Med.2012126342743310.1007/s00414‑012‑0682‑x22370997
    [Google Scholar]
  29. KashyapK. ShuklaR. Drug delivery and targeting to the brain through nasal route: Mechanisms, applications and challenges.Curr. Drug Deliv.2019161088790110.2174/156720181666619102912274031660815
    [Google Scholar]
  30. JeongS.H. JangJ.H. LeeY.B. Drug delivery to the brain via the nasal route of administration: Exploration of key targets and major consideration factors.J. Pharm. Investig.202353111915210.1007/s40005‑022‑00589‑535910081
    [Google Scholar]
  31. PiresP.C. SantosA.O. Nanosystems in nose-to-brain drug delivery: A review of non-clinical brain targeting studies.J. Control. Release20182708910010.1016/j.jconrel.2017.11.04729199063
    [Google Scholar]
  32. KaurP. GargT. RathG. GoyalA.K. In situ nasal gel drug delivery: A novel approach for brain targeting through the mucosal membrane.Artif. Cells Nanomed. Biotechnol.201544411010.3109/21691401.2015.101226025749276
    [Google Scholar]
  33. PandeyM. ChoudhuryH. binti Abd AzizA. BhattamisraS.K. GorainB. SuJ.S.T. TanC.L. ChinW.Y. YipK.Y. Potential of stimuli-responsive in situ gel system for sustained ocular drug delivery: Recent progress and contemporary research.Polymers2021138134010.3390/polym1308134033923900
    [Google Scholar]
  34. TrivediR. MinglaniV.V. El-GazzarA.M. BatihaG.E.S. MahmoudM.H. PatelM. PatelM. Optimization of pramipexole-loaded in situ thermosensitive intranasal gel for parkinson’s disease.Pharmaceuticals202417217210.3390/ph1702017238399387
    [Google Scholar]
  35. HusseinN OmerH ElhissiA AhmedW Advances in nasal drug delivery systems.In: Advances in Medical and Surgical EngineeringAcademic Press202010.1016/B978‑0‑12‑819712‑7.00015‑2
    [Google Scholar]
  36. SonvicoF. ClementinoA. ButtiniF. ColomboG. PescinaS. Stanisçuaski GuterresS. Raffin PohlmannA. NicoliS. Surface-Modified nanocarriers for nose-to-brain delivery: From bioadhesion to targeting.Pharmaceutics20181013410.3390/pharmaceutics1001003429543755
    [Google Scholar]
  37. RawalS. KhodakiyaA. PrajapatiB.G. Nanotechnology-based delivery for CRISPR-Cas 9 cargo in Alzheimer’s disease.In: Alzheimer’s Disease and Advanced Drug Delivery Strategies.Academic Press202413915210.1016/B978‑0‑443‑13205‑6.00012‑1
    [Google Scholar]
  38. PatelA. PaliwalH. SawantK. PrajapatiB.G. Micro and nanoemulsion as drug carriers in Alzheimer’s disease.In: Alzheimer’s Disease and Advanced Drug Delivery Strategies.Academic Press202431934510.1016/B978‑0‑443‑13205‑6.00013‑3
    [Google Scholar]
  39. KapoorD. SharmaD. PathakY. PrajapatiB.G. SataniB. Nanoformulations targeting Alzheimer’s disease.In: Alzheimer’s Disease and Advanced Drug Delivery Strategies.Academic Press202426528210.1016/B978‑0‑443‑13205‑6.00010‑8
    [Google Scholar]
  40. MadhuS. KomalaM. PandianP. Formulation development and characterization of withaferin-A loaded polymeric nanoparticles for Alzheimer’s disease.Bionanoscience202111255956610.1007/s12668‑020‑00819‑w
    [Google Scholar]
  41. RayB. BishtS. MaitraA. MaitraA. LahiriD.K. Neuroprotective and neurorescue effects of a novel polymeric nanoparticle formulation of curcumin (NanoCurc™) in the neuronal cell culture and animal model: Implications for Alzheimer’s disease.J. Alzheimers Dis.2011231617710.3233/JAD‑2010‑10137420930270
    [Google Scholar]
  42. CanoA. Sánchez-LópezE. EttchetoM. López-MachadoA. EspinaM. SoutoE.B. GalindoR. CaminsA. GarcíaM.L. TurowskiP. Current advances in the development of novel polymeric nanoparticles for the treatment of neurodegenerative diseases.Nanomedicine (Lond.)202015121239126110.2217/nnm‑2019‑044332370600
    [Google Scholar]
  43. DingN. LeiY. HuY. WeiJ. WangW. ZhangR. CaiF. Research progress of novel inorganic nanomaterials in the diagnosis and treatment of Alzheimer’s disease.Neurol. India202472594395010.4103/neurol‑india.Neurol‑India‑D‑23‑0059239428764
    [Google Scholar]
  44. PersanoF. BatashevaS. FakhrullinaG. GigliG. LeporattiS. FakhrullinR. Recent advances in the design of inorganic and nano-clay particles for the treatment of brain disorders.J. Mater. Chem. B Mater. Biol. Med.20219122756278410.1039/D0TB02957B33596293
    [Google Scholar]
  45. RajputA.P. ButaniS.B. Resveratrol anchored nanostructured lipid carrier loaded in situ gel via nasal route: Formulation, optimization and in vivo characterization.J. Drug Deliv. Sci. Technol.20195121422310.1016/j.jddst.2019.01.040
    [Google Scholar]
  46. PinheiroR.G.R. GranjaA. LoureiroJ.A. PereiraM.C. PinheiroM. NevesA.R. ReisS. Quercetin lipid nanoparticles functionalized with transferrin for Alzheimer’s disease.Eur. J. Pharm. Sci.202014810531410.1016/j.ejps.2020.10531432200044
    [Google Scholar]
  47. ShahB.M. MisraM. ShishooC.J. PadhH. Nose to brain microemulsion-based drug delivery system of rivastigmine: Formulation and ex-vivo characterization.Drug Deliv.201522791893010.3109/10717544.2013.87885724467601
    [Google Scholar]
  48. YangZ.Z. ZhangY.Q. WangZ.Z. WuK. LouJ.N. QiX.R. Enhanced brain distribution and pharmacodynamics of rivastigmine by liposomes following intranasal administration.Int. J. Pharm.20134521-234435410.1016/j.ijpharm.2013.05.00923680731
    [Google Scholar]
  49. KaurA. NigamK. BhatnagarI. SukhpalH. AwasthyS. ShankarS. TyagiA. DangS. Treatment of Alzheimer’s diseases using donepezil nanoemulsion: An intranasal approach.Drug Deliv. Transl. Res.20201061862187510.1007/s13346‑020‑00754‑z32297166
    [Google Scholar]
  50. YasirM. SaraU.V.S. ChauhanI. GaurP.K. SinghA.P. PuriD. Ameeduzzafar Solid lipid nanoparticles for nose to brain delivery of donepezil: Formulation, optimization by Box–Behnken design, in vitro and in vivo evaluation.Artif. Cells Nanomed. Biotechnol.20174611410.1080/21691401.2017.1394872
    [Google Scholar]
  51. SoodS. JainK. GowthamarajanK. Curcumin-donepezil–loaded nanoemulsion for intranasal delivery in an Alzheimer’s disease model.Alzheimers Dement.2013929910.1016/j.jalz.2013.05.609
    [Google Scholar]
  52. SunenaSingh S.K.Mishra D.N. Nose to brain delivery of galantamine loaded nanoparticles: In-vivo pharmacodynamic and biochemical study in Mice.Curr. Drug. Deliv.2019161515810.2174/1567201815666181004094707
    [Google Scholar]
  53. KaurA. NigamK. SrivastavaS. TyagiA. DangS. Memantine nanoemulsion: A new approach to treat Alzheimer’s disease.J. Microencapsul.202037535536510.1080/02652048.2020.175697132293915
    [Google Scholar]
  54. KhuntD. SalaveS. RanaD. BenivalD. GayakvadB. PrajapatiB.G. Nose to brain delivery for the treatment of Alzheimer’s disease.Alzheimer’s Disease and Advanced Drug Delivery Strategies.Academic Press2024617110.1016/B978‑0‑443‑13205‑6.00001‑7
    [Google Scholar]
  55. PatelR.J. PatelA.A. TrivediN. PandyaV. AlexanderA. PatelV. ParejiyaP.B. Liposomes as carrier for drug delivery in Alzheimer’s disease.Alzheimer’s Disease and Advanced Drug Delivery Strategies.Academic Press202415317910.1016/B978‑0‑443‑13205‑6.00008‑X
    [Google Scholar]
  56. UpadhayaP.G. PulakkatS. PatravaleV.B. Nose-to-brain delivery: Exploring newer domains for glioblastoma multiforme management.Drug Deliv. Transl. Res.20201041044105610.1007/s13346‑020‑00747‑y32221847
    [Google Scholar]
  57. YoussefN.A.H.A. KassemA.A. FaridR.M. IsmailF.A. EL-MassikM.A.E. BoraieN.A. A novel nasal almotriptan loaded solid lipid nanoparticles in mucoadhesive in situ gel formulation for brain targeting: Preparation, characterization and in vivo evaluation.Int. J. Pharm.2018548160962410.1016/j.ijpharm.2018.07.01430033394
    [Google Scholar]
  58. PandyaA. VoraL. UmeyorC. SurveD. PatelA. BiswasS. PatelK. PatravaleV. Polymeric in situ forming depots for long-acting drug delivery systems.In: Advanced Drug Delivery ReviewsElsevier202311500310.1016/j.addr.2023.115003
    [Google Scholar]
  59. de Oca-ÁvalosJ.M.M. CandalR.J. HerreraM.L. Nanoemulsions: Stability and physical properties.Curr. Opin. Food Sci.201716161610.1016/j.cofs.2017.06.003
    [Google Scholar]
  60. HuangC. WangC. ZhangW. YangT. XiaM. LeiX. PengY. WuY. FengJ. LiD. ZhangG. Preparation, in vitro and in vivo evaluation of nanoemulsion in situ gel for transnasal delivery of traditional chinese medicine volatile oil from Ligusticum sinense Oliv.cv.Molecules20222721764410.3390/molecules2721764436364473
    [Google Scholar]
  61. ChandP. Pratibha GnanarajanG. KothiyalP. In situ gel: A review.Indian. J. Pharm. Biol. Res.201642111910.30750/ijpbr.4.2.2
    [Google Scholar]
  62. TinuT. LithaT. KumarA. Polymers used in ophthalmic in situ gelling system.Int. J. Pharm. Sci. Rev. Res.201320176183
    [Google Scholar]
  63. MohantyD. BakshiV. SimharajuN. HaqueM.A. SahooC. A review on in-situ gel: A novel drug delivery system.Int. J. Pharm. Sci. Rev. Res.201850175811
    [Google Scholar]
  64. MiyazakiS. SuzukiS. KawasakiN. EndoK. TakahashiA. AttwoodD. In situ gelling xyloglucan formulations for sustained release ocular delivery of pilocarpine hydrochloride.Int. J. Pharm.20012291-2293610.1016/S0378‑5173(01)00825‑011604255
    [Google Scholar]
  65. CovielloT. MatricardiP. MarianecciC. AlhaiqueF. Polysaccharide hydrogels for modified release formulations.J. Control. Release2007119152410.1016/j.jconrel.2007.01.00417382422
    [Google Scholar]
  66. GawkowskaD. CybulskaJ. ZdunekA. Structure-related gelling of pectins and linking with other natural compounds: A review.Polymers201810776210.3390/polym1007076230960687
    [Google Scholar]
  67. HaghighiM. RezaeiK. LabbafiM. KhodaiyanF. On the formulation design and rheological evaluations of pectin-based functional gels.J. Food Sci.2011761E15E2210.1111/j.1750‑3841.2010.01876.x21535667
    [Google Scholar]
  68. NisbetD.R. CromptonK.E. HamiltonS.D. ShirakawaS. PrankerdR.J. FinkelsteinD.I. HorneM.K. ForsytheJ.S. Morphology and gelation of thermosensitive xyloglucan hydrogels.Biophys. Chem.20061211142010.1016/j.bpc.2005.12.00516406645
    [Google Scholar]
  69. MokhtarzadehA. AlibakhshiA. HejaziM. OmidiY. Ezzati Nazhad DolatabadiJ. Bacterial-derived biopolymers: Advanced natural nanomaterials for drug delivery and tissue engineering.Trends Analyt. Chem.20168236738410.1016/j.trac.2016.06.013
    [Google Scholar]
  70. AlmeidaM. MagalhãesM. VeigaF. FigueirasA. Poloxamers, poloxamines and polymeric micelles: Definition, structure and therapeutic applications in cancer.J. Polym. Res.20182513110.1007/s10965‑017‑1426‑x
    [Google Scholar]
  71. ZarrintajP. RamseyJ.D. SamadiA. AtoufiZ. YazdiM.K. GanjaliM.R. AmirabadL.M. ZangeneE. FarokhiM. FormelaK. SaebM.R. MozafariM. ThomasS. Poloxamer: A versatile tri-block copolymer for biomedical applications.Acta Biomater.2020110376710.1016/j.actbio.2020.04.02832417265
    [Google Scholar]
  72. NaL. MaoS. WangJ. SunW. Comparison of different absorption enhancers on the intranasal absorption of isosorbide dinitrate in rats.Int. J. Pharm.20103971-2596610.1016/j.ijpharm.2010.06.04820599486
    [Google Scholar]
  73. FisherA. WatlingM. SmithA. KnightA. Pharmacokinetic comparisons of three nasal fentanyl formulations; pectin, chitosan and chitosan-poloxamer 188.Int. J. Clin. Pharmacol. Ther.201048213814510.5414/CPP4813820137766
    [Google Scholar]
  74. RanchK.M. MaulviF.A. KoliA.R. DesaiD.T. ParikhR.K. ShahD.O. Tailored doxycycline hyclate loaded in situ gel for the treatment of periodontitis: Optimization, in vitro characterization, and antimicrobial studies.AAPS. Pharm. Sci. Tech.20212237710.1208/s12249‑021‑01950‑x33595740
    [Google Scholar]
  75. RathnamG. NarayananN. IlavarasanR. Carbopol-based gels for nasal delivery of progesterone.AAPS Pharm. Sci. Tech.2008941078108210.1208/s12249‑008‑9144‑718850277
    [Google Scholar]
  76. PaulA. FathimaK.M. NairS.C. Intra nasal in situ gelling system of lamotrigine using ion activated mucoadhesive polymer.Open Med. Chem. J.20171122224410.2174/187410450171101022229399211
    [Google Scholar]
  77. CirriM. MaestrelliF. NerliG. MenniniN. D’AmbrosioM. LuceriC. MuraP.A. Development of a cyclodextrin-based mucoadhesive-thermosensitive in situ gel for clonazepam intranasal delivery.Pharmaceutics202113796910.3390/pharmaceutics1307096934206967
    [Google Scholar]
  78. ShahV. SharmaM. PandyaR. ParikhR.K. BharatiyaB. ShuklaA. TsaiH.C. Quality by Design approach for an in situ gelling microemulsion of Lorazepam via intranasal route.Mater. Sci. Eng. C2017751231124110.1016/j.msec.2017.03.00228415411
    [Google Scholar]
  79. GalgatteU.C. KumbharA.B. ChaudhariP.D. Development of in situ gel for nasal delivery: Design, optimization, in vitro and in vivo evaluation.Drug Deliv.2014211627310.3109/10717544.2013.84977824191774
    [Google Scholar]
  80. VerekarR.R. GuravS.S. BolmalU. Thermosensitive mucoadhesive in situ gel for intranasal delivery of Almotriptan malate: Formulation, characterization, and evaluation.J. Drug Deliv. Sci. Technol.20205810177810.1016/j.jddst.2020.101778
    [Google Scholar]
  81. ShelkeS. ShahiS. JadhavK. DhamechaD. TiwariR. PatilH. Thermoreversible nanoethosomal gel for the intranasal delivery of Eletriptan hydrobromide.J. Mater. Sci. Mater. Med.201627610310.1007/s10856‑016‑5713‑627091045
    [Google Scholar]
  82. ShelkeS. PathanI. ShindeG. AgrawalG. DamaleM. ChoutheR. PanzadeP. KulkarniD. Poloxamer-based in situ nasal gel of naratriptan hydrochloride deformable vesicles for brain targeting.Bionanoscience202010363364810.1007/s12668‑020‑00767‑5
    [Google Scholar]
  83. NairA.B. ChaudharyS. JacobS. PatelD. ShinuP. ShahH. ChaudharyA. AldhubiabB. AlmuqbilR.M. AlnaimA.S. AlqattanF. ShahJ. Intranasal administration of dolutegravir-loaded nanoemulsion-based in situ gel for enhanced bioavailability and direct brain targeting.Gels20239213010.3390/gels902013036826300
    [Google Scholar]
  84. ThakkarH. VaghelaD. PatelB.P. Brain targeted intranasal in-situ gelling spray of paroxetine: Formulation, characterization and in-vivo evaluation.J. Drug Deliv. Sci. Technol.20216210231710.1016/j.jddst.2020.102317
    [Google Scholar]
  85. SalatinS. Alami-MilaniM. DaneshgarR. JelvehgariM. Box–Behnken experimental design for preparation and optimization of the intranasal gels of selegiline hydrochloride.Drug Dev. Ind. Pharm.201844101613162110.1080/03639045.2018.148338729932793
    [Google Scholar]
  86. ElShageaH.N. MakarR.R. SalamaA.H. ElkasabgyN.A. BasaliousE.B. Investigating the targeting power to brain tissues of intranasal rasagiline mesylate-loaded transferosomal in situ gel for efficient treatment of Parkinson’s disease.Pharmaceutics202315253310.3390/pharmaceutics1502053336839855
    [Google Scholar]
  87. UppuluriC.T. RaviP.R. DalviA.V. Design, optimization and pharmacokinetic evaluation of Piribedil loaded solid lipid nanoparticles dispersed in nasal in situ gelling system for effective management of Parkinson’s disease.Int. J. Pharm.202160612088110.1016/j.ijpharm.2021.12088134273426
    [Google Scholar]
  88. LinH. XieL. LvL. ChenJ. FengF. LiuW. HanL. LiuF. Intranasally administered thermosensitive gel for brain-targeted delivery of rhynchophylline to treat Parkinson’s disease.Colloids Surf. B Biointerfaces202322211306510.1016/j.colsurfb.2022.11306536473372
    [Google Scholar]
  89. NagarajaS. BasavarajappaG.M. KarnatiR.K. BakirE.M. PundS. Ion-triggered in situ gelling nanoemulgel as a platform for nose-to-brain delivery of small lipophilic molecules.Pharmaceutics2021138121610.3390/pharmaceutics1308121634452177
    [Google Scholar]
  90. WangY. JiangS. WangH. BieH. A mucoadhesive, thermoreversible in situ nasal gel of geniposide for neurodegenerative diseases.PLoS One20171212e018947810.1371/journal.pone.018947829240797
    [Google Scholar]
  91. HosnyK.M. BanjarZ.M. The formulation of a nasal nanoemulsion zaleplon in situ gel for the treatment of insomnia.Expert Opin. Drug Deliv.20131081033104110.1517/17425247.2013.81206923795561
    [Google Scholar]
  92. MathureD. MadanJ.R. GujarK.N. TupsamundreA. RanpiseH.A. DuaK. Formulation and evaluation of niosomal in situ nasal gel of a serotonin receptor agonist, buspirone hydrochloride for the brain delivery via intranasal route.Pharm. Nanotechnol.201861697810.2174/221173850666618013010591929380709
    [Google Scholar]
  93. AbdullaN.A. BalataG.F. El-ghamryH.A. GomaaE. Intranasal delivery of Clozapine using nanoemulsion-based in-situ gels: An approach for bioavailability enhancement.Saudi Pharm. J.202129121466148510.1016/j.jsps.2021.11.00635002385
    [Google Scholar]
  94. BayanatiM. KhosroshahiA.G. AlvandiM. MahboobianM.M. Fabrication of a thermosensitive in situ gel nanoemulsion for nose to brain delivery of temozolomide.J. Nanomater.2021202111110.1155/2021/1546798
    [Google Scholar]
  95. RajputA. BariyaA. AllamA. OthmanS. ButaniS.B. In situ nanostructured hydrogel of resveratrol for brain targeting: In vitro-in vivo characterization.Drug Deliv. Transl. Res.2018851460147010.1007/s13346‑018‑0540‑629785574
    [Google Scholar]
  96. SunY. LiL. XieH. WangY. GaoS. ZhangL. BoF. YangS. FengA. Primary studies on construction and evaluation of ion-sensitive in situ gel loaded with paeonol-solid lipid nanoparticles for intranasal drug delivery.Int. J. Nanomedicine2020153137316010.2147/IJN.S24793532440115
    [Google Scholar]
  97. HaoJ. ZhaoJ. ZhangS. TongT. ZhuangQ. JinK. ChenW. TangH. Fabrication of an ionic-sensitive in situ gel loaded with resveratrol nanosuspensions intended for direct nose-to-brain delivery.Colloids Surf. B Biointerfaces201614737638610.1016/j.colsurfb.2016.08.01127566226
    [Google Scholar]
  98. BakrM.M. ShukrM.H. ElMeshadA.N. In Situ hexosomal gel as a promising tool to ameliorate the transnasal brain delivery of vinpocetine: central composite optimization and in vivo biodistribution.J. Pharm. Sci.202010972213222310.1016/j.xphs.2020.03.03032259532
    [Google Scholar]
  99. AgrawalM. PradhanM. SinghviG. PatelR. Ajazuddin AlexanderA. Thermoresponsive in situ gel of curcumin loaded solid lipid nanoparticle: Design, optimization and in vitro characterization.J. Drug Deliv. Sci. Technol.20227110337610.1016/j.jddst.2022.103376
    [Google Scholar]
  100. ElkomyM.H. ZakiR.M. AlsaidanO.A. ElmowafyM. ZafarA. ShalabyK. AbdelgawadM.A. Abo El-ElaF.I. RatebM.E. NaguibI.A. EidH.M. Intranasal nanotransferosomal gel for quercetin brain targeting: Optimization, characterization, brain localization, and cytotoxic studies.Pharmaceutics2023157180510.3390/pharmaceutics15071805
    [Google Scholar]
  101. SalatinS. BararJ. Barzegar-JalaliM. AdibkiaK. JelvehgariM. Thermosensitive in situ nanocomposite of rivastigmine hydrogen tartrate as an intranasal delivery system: Development, characterization, ex vivo permeation and cellular studies.Colloids Surf. B Biointerfaces201715962963810.1016/j.colsurfb.2017.08.03128865359
    [Google Scholar]
  102. WavikarP.R. VaviaP.R. Rivastigmine-loaded in situ gelling nanostructured lipid carriers for nose to brain delivery.J. Liposome Res.201525214114910.3109/08982104.2014.95412925203610
    [Google Scholar]
  103. GevaM. BassanI. MerabhaydenM. Use of pridopidine to improve cognitive function and to treat Alzheimer’s disease.JP Patent 7210620B22023
  104. VinceR MoreS Hypersectral imaging for early detection of Alzheimers disease.US Patent 9585558B22023
  105. GotoT WangC Information processing device , program , trained model diagnostic support device , learning device , and prediction model generation method.US Patent 20220122253A12022
  106. PanQ ChenD WangM ZhangJ WangY ZhangX Alzheimer disease multi-classification diagnosis system based on deep learning.US Patent 011101039B22021
  107. JackA Machine - Learning - Based forecasting of the progression of Alzheimer's disease.US Patent 011101039B22021
  108. RosesA TanejaR Methods and drug products for treating Alzheimer's disease.US Patent 011179375B22021
  109. NovakM Protein-based therapy and diagnosis of tau-mediated pathology in Alzheimer’s disease.Korea Patent2020KR102130439B1
    [Google Scholar]
  110. NovakM KontsekovaE KovacechB SkrabanaR Humanized tau antibodies in alzheimer's disease.US Patent 10745469B22020
  111. KoronyoY KoronyoM BlackK SchwartzM FarkasD Optical method for the detection of Alzheimer's disease using Curcumin.US Patent 010512699B22019
  112. Urfer R Use of APOE4 Motif - mediated genes for diagnosis and treatment of alzheimer's disease.US Patent 20190338363A12019
  113. SamanthaC Burnham Noel Fox SimonM. Method for detection of a neurological disease. CN Patent 103827671B2017
  114. KhanT AlkonD Alzheimer 's disease: Specific alterations of the ERK1 / ERK2 phosphorylation ratio - Alzheimer's disease - specific molecular biomarkersUS Patent 9797913B22017
  115. Temtzin-KreizG. Dry powder composition for intranasal delivery.2023 JP Patent 7334145B2.
    [Google Scholar]
  116. DjupeshlandP MohmoudR AndreassenO WestlyeL QuitanaD SmerudK SheldrakeC Intranasal administration2023 US Patent 11730904B2.
  117. ThomasM ChristopherJ Intranasal compositions comprising betahistine.JP Patent 2022051872A.2022
  118. ClaudiaM Nasal pharmaceutical compositions with porous excipient.JP Patent 2022092061A2022
  119. AhmedT In situ gelling composition containing tocopherol - loaded micelles as an intranasal drug delivery system. US Patent 010736843B12020
  120. FreyW HansonL DhuriaS Pharmaceutical compositions and methods for enhancing targeting of therapeutic compounds to the central nervous system.US Patent 010098928B22018
  121. BoyeteyM.J.B. ChoiY. LeeH.Y. ChoiJ. Nanotechnology-based delivery of therapeutics through the intranasal pathway and the blood–brain barrier for Alzheimer’s disease treatment.Biomater. Sci.20241282007201810.1039/D3BM02003G38456516
    [Google Scholar]
  122. TekadeA. KadamP. JagdaleS. SurwadeS. GaikwadA. PawarP. ShindeR. Exploring potential of nano-formulations in the treatment of alzheimer’s disease through nasal route.Curr. Alzheimer Res.20242110.2174/011567205029046224022209230338425107
    [Google Scholar]
  123. SonwaniA. PathakA. JainK. Nanocarriers-mediated nose-to-brain drug delivery: A novel approach for the management of Alzheimer’s disease.J. Drug Deliv. Sci. Technol.20249810585510585510.1016/j.jddst.2024.105855
    [Google Scholar]
  124. de la HarpeK. KondiahP. ChoonaraY. MarimuthuT. du ToitL. PillayV. The hemocompatibility of nanoparticles: A review of cell–nanoparticle interactions and hemostasis.Cells2019810120910.3390/cells810120931591302
    [Google Scholar]
/content/journals/cnsnddt/10.2174/0118715273335978250127070434
Loading
/content/journals/cnsnddt/10.2174/0118715273335978250127070434
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test