Skip to content
2000
Volume 24, Issue 2
  • ISSN: 1871-5273
  • E-ISSN: 1996-3181

Abstract

Neuropathies, which encompass a wide array of peripheral nervous system disorders, present significant challenges due to their varied causes, such as metabolic diseases, toxic exposures, and genetic mutations. This review article, focused on the critical role of neurotrophins in peripheral neuropathy, highlights the intricate balance of neurotrophins necessary for nerve health and the pathophysiological consequences when this balance is disturbed. Neurotrophins, including Nerve Growth Factor (NGF), Brain-Derived Neurotrophic Factor (BDNF), Neurotrophin-3 (NT-3), and Neurotrophin-4 (NT-4), are essential for neuronal survival, axonal growth, and synaptic plasticity. Their signaling pathways are crucial for maintaining peripheral nervous system integrity, primarily the Tropomyosin receptor kinase (Trk) receptors and the p75 neurotrophin receptor p75(NTR). Dysregulation of neurotrophins is implicated in various neuropathies, such as diabetic neuropathy and chemotherapy-induced peripheral neuropathy, leading to impaired nerve function and regeneration. Understanding neurotrophin signaling intricacies and their alterations in neuropathic conditions is crucial for identifying novel therapeutic targets. Recent advancements illuminate neurotrophins' potential as therapeutic agents, promising disease-modifying treatments by promoting neuronal survival, enhancing axonal regeneration, and improving functional recovery post-nerve injury. However, translating these molecular insights into effective clinical applications faces challenges, including delivery methods, target specificity, and the instability of protein-based therapies.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/0118715273327121240820074049
2024-09-05
2025-10-13
Loading full text...

Full text loading...

References

  1. HanewinckelR. IkramM.A. Van DoornP.A. Peripheral neuropathies. Handbook of Clinical Neurology.AmsterdamElsevier201626328210.1016/B978‑0‑12‑802973‑2.00015‑X
    [Google Scholar]
  2. KleinC.J. DuanX. ShyM.E. Inherited neuropathies: Clinical overview and update.Muscle Nerve201348460462210.1002/mus.23775 23801417
    [Google Scholar]
  3. OdajiuI. CovantsevS. SivapalanP. Peripheral neuropathy: A neglected cause of disability in COPD - A narrative review.Respir. Med.202220110695210.1016/j.rmed.2022.106952 36029697
    [Google Scholar]
  4. GirachA. JulianT.H. VarrassiG. PaladiniA. VadaloukaA. ZisP. Quality of Life in Painful Peripheral Neuropathies: A Systematic Review.Pain Res. Manag.201920191910.1155/2019/2091960 31249636
    [Google Scholar]
  5. HicksC.W. SelvinE. Epidemiology of Peripheral Neuropathy and Lower Extremity Disease in Diabetes. Current Diabetes Reports.Berlin, HeidelbergSpringer Link201910.1007/s11892‑019‑1212‑8
    [Google Scholar]
  6. YangH. SloanG. YeY. New Perspective in Diabetic Neuropathy: From the Periphery to the Brain, a Call for Early Detection, and Precision Medicine.Front. Endocrinol. (Lausanne)20201092910.3389/fendo.2019.00929 32010062
    [Google Scholar]
  7. BondarA. PopaA. PapanasN. Diabetic neuropathy: A narrative review of risk factors, classification, screening and current pathogenic treatment options (Review).Exp. Ther. Med.202122169010.3892/etm.2021.10122 33986855
    [Google Scholar]
  8. StaffN.P. GrisoldA. GrisoldW. WindebankA.J. Chemotherapy‐induced peripheral neuropathy: A current review.Ann. Neurol.201781677278110.1002/ana.24951 28486769
    [Google Scholar]
  9. ColvinL.A. Chemotherapy-induced peripheral neuropathy: Where are we now?Pain20191601Suppl. 1S1S1010.1097/j.pain.0000000000001540 31008843
    [Google Scholar]
  10. CavalliE. MammanaS. NicolettiF. BramantiP. MazzonE. The neuropathic pain: An overview of the current treatment and future therapeutic approaches.Int. J. Immunopathol. Pharmacol.2019333838310.1177/2058738419838383 30900486
    [Google Scholar]
  11. M F G, M M, S H, Khan WS. Peripheral nerve injury: Principles for repair and regeneration.Open Orthop. J.2014819920310.2174/1874325001408010199 25067975
    [Google Scholar]
  12. BoxyP. NykjærA. KisiswaL. Building better brains: The pleiotropic function of neurotrophic factors in postnatal cerebellar development.Front. Mol. Neurosci.202316118139710.3389/fnmol.2023.1181397 37251644
    [Google Scholar]
  13. SiniscalcoD. GiordanoC. RossiF. MaioneS. de NovellisV. Role of neurotrophins in neuropathic pain.Curr. Neuropharmacol.20119452352910.2174/157015911798376208 22654713
    [Google Scholar]
  14. HuangE.J. ReichardtL.F. Neurotrophins: Roles in neuronal development and function.Annu. Rev. Neurosci.200124167773610.1146/annurev.neuro.24.1.677 11520916
    [Google Scholar]
  15. BothwellM. NGF, BDNF, NT3, and NT4.Neurotrophic Factors.Berlin, HeidelbergSpringer Link201431510.1007/978‑3‑642‑45106‑5_1
    [Google Scholar]
  16. ConroyJ.N. CoulsonE.J. High-affinity TrkA and p75 neurotrophin receptor complexes: A twisted affair.J. Biol. Chem.2022298310156810.1016/j.jbc.2022.101568 35051416
    [Google Scholar]
  17. BaltruschS. The Role of Neurotropic B Vitamins in Nerve Regeneration.BioMed Res. Int.202120211910.1155/2021/9968228 34337067
    [Google Scholar]
  18. KhanN. SmithM. Neurotrophins and Neuropathic Pain: Role in Pathobiology.Molecules2015206106571068810.3390/molecules200610657 26065639
    [Google Scholar]
  19. SkaperS.D. The Neurotrophin Family of Neurotrophic Factors: An Overview.Neurotrophic Factors.Berlin, HeidelbergSpringer Link201210.1007/978‑1‑61779‑536‑7_1
    [Google Scholar]
  20. CeniC. UnsainN. ZeiniehM.P. BarkerP.A. Neurotrophins in the regulation of cellular survival and death.Neurotrophic Factors.Berlin, HeidelbergSpringer Link201410.1007/978‑3‑642‑45106‑5_8
    [Google Scholar]
  21. TengK.K. FeliceS. KimT. HempsteadB.L. Understanding proneurotrophin actions: Recent advances and challenges.Dev. Neurobiol.201070535035910.1002/dneu.20768 20186707
    [Google Scholar]
  22. SchindowskiK. BelarbiK. BuéeL. Neurotrophic factors in Alzheimer’s disease: Role of axonal transport.Genes Brain Behav.20087s1Suppl. 1435610.1111/j.1601‑183X.2007.00378.x 18184369
    [Google Scholar]
  23. KangS.S. WuZ. LiuX. Edgington-MitchellL. YeK. Treating Parkinson’s Disease via Activation of BDNF/TrkB Signaling Pathways and Inhibition of Delta-Secretase.Neurotherapeutics20221941283129710.1007/s13311‑022‑01248‑1 35595958
    [Google Scholar]
  24. RioloG. RicciC. De AngelisN. BDNF and Pro-BDNF in Amyotrophic Lateral Sclerosis: A New Perspective for Biomarkers of Neurodegeneration.Brain Sci.202212561710.3390/brainsci12050617 35625004
    [Google Scholar]
  25. PatapoutianA. ReichardtL.F. Trk receptors: Mediators of neurotrophin action.Curr. Opin. Neurobiol.200111327228010.1016/S0959‑4388(00)00208‑7 11399424
    [Google Scholar]
  26. DaviesA.M. MinichielloL. KleinR. Developmental changes in NT3 signalling via TrkA and TrkB in embryonic neurons.EMBO J.199514184482448910.1002/j.1460‑2075.1995.tb00127.x 7556091
    [Google Scholar]
  27. LewinG.R. NykjaerA. Pro‐neurotrophins, sortilin, and nociception.Eur. J. Neurosci.201439336337410.1111/ejn.12466 24494677
    [Google Scholar]
  28. NykjaerA. WillnowT.E. Sortilin: A receptor to regulate neuronal viability and function.Trends Neurosci.201235426127010.1016/j.tins.2012.01.003 22341525
    [Google Scholar]
  29. MasoudiR. IoannouM.S. CoughlinM.D. Biological activity of nerve growth factor precursor is dependent upon relative levels of its receptors.J. Biol. Chem.200928427184241843310.1074/jbc.M109.007104 19389705
    [Google Scholar]
  30. FayardB. LoefflerS. WeisJ. VögelinE. KrüttgenA. The secreted brain-derived neurotrophic factor precursor pro-BDNF binds to TrkB and p75NTR but not to TrkA or TrkC.J. Neurosci. Res.2005801182810.1002/jnr.20432 15704182
    [Google Scholar]
  31. SatoC. SakaiA. IkedaY. SuzukiH. SakamotoA. The prolonged analgesic effect of epidural ropivacaine in a rat model of neuropathic pain.Anesth Analg.2008106131332010.1213/01.ane.0000296460.91012.51
    [Google Scholar]
  32. ShuX.Q. MendellL.M. Neurotrophins and hyperalgesia.Proc. Natl. Acad. Sci. USA199996147693769610.1073/pnas.96.14.7693 10393882
    [Google Scholar]
  33. MatsushitaY. ManabeM. KitamuraN. ShibuyaI. Adrenergic receptors inhibit TRPV1 activity in the dorsal root ganglion neurons of rats.PLoS One2018131e019103210.1371/journal.pone.0191032 29304162
    [Google Scholar]
  34. HerzbergU. EliavE. DorseyJ.M. GracelyR.H. KopinI.J. NGF involvement in pain induced by chronic constriction injury of the rat sciatic nerve.Neuroreport1997871613161810.1097/00001756‑199705060‑00012 9189901
    [Google Scholar]
  35. SvenssonP. CairnsB.E. WangK. Arendt-NielsenL. Injection of nerve growth factor into human masseter muscle evokes long-lasting mechanical allodynia and hyperalgesia.Pain2003104124124710.1016/S0304‑3959(03)00012‑5 12855334
    [Google Scholar]
  36. TaiwoY.O. LevineJ.D. BurchR.M. WooJ.E. MobleyW.C. Hyperalgesia induced in the rat by the amino-terminal octapeptide of nerve growth factor.Proc. Natl. Acad. Sci. USA199188125144514810.1073/pnas.88.12.5144 1647026
    [Google Scholar]
  37. CerveroF. LairdJ. Role of ion channels in mechanisms controlling gastrointestinal pain pathways.Curr. Opin. Pharmacol.20033660861210.1016/j.coph.2003.06.007 14644012
    [Google Scholar]
  38. SiniscalcoD. RossiF. Molecular approaches for neuropathic pain treatment.Curr. Med. Chem.200714161783178710.2174/092986707781058913
    [Google Scholar]
  39. Wilson-GerwingT.D. StuckyC.L. McCombG.W. VergeV.M.K. Neurotrophin-3 significantly reduces sodium channel expression linked to neuropathic pain states.Exp. Neurol.2008213230331410.1016/j.expneurol.2008.06.002 18601922
    [Google Scholar]
  40. JingY.Y. WangJ.Y. LiX.L. Nerve growth factor of red nucleus involvement in pain induced by spared nerve injury of the rat sciatic nerve.Neurochem. Res.20093491612161810.1007/s11064‑009‑9950‑7 19288273
    [Google Scholar]
  41. ChienC.C. FuW.M. HuangH.I. Expression of neurotrophic factors in neonatal rats after peripheral inflammation.J. Pain20078216116710.1016/j.jpain.2006.07.004 17010673
    [Google Scholar]
  42. VivoliE. Di Cesare MannelliL. SalvicchiA. Acetyl-l-carnitine increases artemin level and prevents neurotrophic factor alterations during neuropathy.Neuroscience201016741168117410.1016/j.neuroscience.2010.03.017 20302919
    [Google Scholar]
  43. MousaS.A. CheppudiraB.P. ShaquraM. Nerve growth factor governs the enhanced ability of opioids to suppress inflammatory pain.Brain2007130250251310.1093/brain/awl330 17142830
    [Google Scholar]
  44. WinstonJ. TomaH. ShenoyM. PasrichaP.J. Nerve growth factor regulates VR-1 mRNA levels in cultures of adult dorsal root ganglion neurons.Pain200189218118610.1016/S0304‑3959(00)00370‑5 11166474
    [Google Scholar]
  45. XieW. StrongJ.A. ZhangJ.M. Early blockade of injured primary sensory afferents reduces glial cell activation in two rat neuropathic pain models.Neuroscience2009160484785710.1016/j.neuroscience.2009.03.016 19303429
    [Google Scholar]
  46. WuC. BoustanyL. LiangH. BrennanT.J. Nerve growth factor expression after plantar incision in the rat.Anesthesiology2007107112813510.1097/01.anes.0000267512.08619.bd 17585224
    [Google Scholar]
  47. HeftiF.F. RosenthalA. WalickeP.A. Novel class of pain drugs based on antagonism of NGF.Trends Pharmacol. Sci.2006272859110.1016/j.tips.2005.12.001 16376998
    [Google Scholar]
  48. WatsonJ.J. AllenS.J. DawbarnD. Targeting nerve growth factor in pain: What is the therapeutic potential?BioDrugs200822634935910.2165/0063030‑200822060‑00002 18998753
    [Google Scholar]
  49. SabsovichI. WeiT. GuoT.Z. Effect of anti-NGF antibodies in a rat tibia fracture model of complex regional pain syndrome type I.Pain20081381476010.1016/j.pain.2007.11.004 18083307
    [Google Scholar]
  50. GengS.J. LiaoF.F. DangW.H. Contribution of the spinal cord BDNF to the development of neuropathic pain by activation of the NR2B-containing NMDA receptors in rats with spinal nerve ligation.Exp. Neurol.2010222225626610.1016/j.expneurol.2010.01.003 20079352
    [Google Scholar]
  51. LiL. XianC.J. ZhongJ.H. ZhouX.F. Upregulation of brain-derived neurotrophic factor in the sensory pathway by selective motor nerve injury in adult rats.Neurotox. Res.20069426928310.1007/BF03033317 16782586
    [Google Scholar]
  52. ObataK. NoguchiK. BDNF in sensory neurons and chronic pain.Neurosci. Res.200655111010.1016/j.neures.2006.01.005 16516994
    [Google Scholar]
  53. YajimaY. NaritaM. NaritaM. MatsumotoN. SuzukiT. Involvement of a spinal brain-derived neurotrophic factor/full-length TrkB pathway in the development of nerve injury-induced thermal hyperalgesia in mice.Brain Res.2002958233834610.1016/S0006‑8993(02)03666‑1 12470870
    [Google Scholar]
  54. WangX. RatnamJ. ZouB. EnglandP.M. BasbaumA.I. TrkB. TrkB signaling is required for both the induction and maintenance of tissue and nerve injury-induced persistent pain.J. Neurosci.200929175508551510.1523/JNEUROSCI.4288‑08.2009 19403818
    [Google Scholar]
  55. CraggJ.J. ScottA.L. RamerM.S. Depletion of spinal 5-HT accelerates mechanosensory recovery in the deafferented rat spinal cord.Exp. Neurol.2010222227728410.1016/j.expneurol.2010.01.005 20079735
    [Google Scholar]
  56. HayashidaK. ClaytonB.A. JohnsonJ.E. EisenachJ.C. Brain derived nerve growth factor induces spinal noradrenergic fiber sprouting and enhances clonidine analgesia following nerve injury in rats.Pain2008136334835510.1016/j.pain.2007.07.014 17822849
    [Google Scholar]
  57. CiobanuC. ReidG. BabesA. Acute and chronic effects of neurotrophic factors BDNF and GDNF on responses mediated by thermo-sensitive TRP channels in cultured rat dorsal root ganglion neurons.Brain Res.20091284546710.1016/j.brainres.2009.06.014 19524560
    [Google Scholar]
  58. DrayA. Neuropathic pain: Emerging treatments.Br. J. Anaesth.20081011485810.1093/bja/aen107 18511441
    [Google Scholar]
  59. FujitaR. MaY. UedaH. Lysophosphatidic acid-induced membrane ruffling and brain-derived neurotrophic factor gene expression are mediated by ATP release in primary microglia.J. Neurochem.2008107115216010.1111/j.1471‑4159.2008.05599.x 18680554
    [Google Scholar]
  60. UlmannL. HatcherJ.P. HughesJ.P. Up-regulation of P2X4 receptors in spinal microglia after peripheral nerve injury mediates BDNF release and neuropathic pain.J. Neurosci.20082844112631126810.1523/JNEUROSCI.2308‑08.2008 18971468
    [Google Scholar]
  61. QuintãoN.L.M. SantosA.R.S. CamposM.M. CalixtoJ.B. The role of neurotrophic factors in genesis and maintenance of mechanical hypernociception after brachial plexus avulsion in mice.Pain2008136112513310.1016/j.pain.2007.06.027 17706869
    [Google Scholar]
  62. EatonM.J. BlitsB. RuitenbergM.J. VerhaagenJ. OudegaM. Amelioration of chronic neuropathic pain after partial nerve injury by adeno-associated viral (AAV) vector-mediated over-expression of BDNF in the rat spinal cord.Gene Ther.20029201387139510.1038/sj.gt.3301814 12365004
    [Google Scholar]
  63. KobayashiM. MatsuokaI. Enhancement of sympathetic neuron survival by synergistic action of NT3 and GDNF.Neuroreport200011112541254510.1097/00001756‑200008030‑00039 10943719
    [Google Scholar]
  64. Wilson-GerwingT.D. DmyterkoM.V. ZochodneD.W. JohnstonJ.M. VergeV.M.K. Neurotrophin-3 suppresses thermal hyperalgesia associated with neuropathic pain and attenuates transient receptor potential vanilloid receptor-1 expression in adult sensory neurons.J. Neurosci.200525375876710.1523/JNEUROSCI.3909‑04.2005 15659614
    [Google Scholar]
  65. BradburyE.J. KhemaniS. VonR. King, Priestley JV, McMahon SB. NT-3 promotes growth of lesioned adult rat sensory axons ascending in the dorsal columns of the spinal cord.Eur. J. Neurosci.199911113873388310.1046/j.1460‑9568.1999.00809.x 10583476
    [Google Scholar]
  66. SiniscalcoD. NovellisV. RossiF. MaioneS. Neuropathic pain: Is the end of suffering starting in the gene therapy?Curr. Drug Targets200561758010.2174/1389450053344966 15720215
    [Google Scholar]
  67. PradatP.F. KennelP. Naimi-SadaouiS. Continuous delivery of neurotrophin 3 by gene therapy has a neuroprotective effect in experimental models of diabetic and acrylamide neuropathies.Hum. Gene Ther.200112182237224910.1089/10430340152710577 11779407
    [Google Scholar]
  68. WhiteD.M. Neurotrophin-3 antisense oligonucleotide attenuates nerve injury-induced Aβ-fibre sprouting.Brain Res.20008851798610.1016/S0006‑8993(00)02940‑1 11121532
    [Google Scholar]
  69. IpN.Y. IbáñezC.F. NyeS.H. Mammalian neurotrophin-4: Structure, chromosomal localization, tissue distribution, and receptor specificity.Proc. Natl. Acad. Sci. USA19928973060306410.1073/pnas.89.7.3060 1313578
    [Google Scholar]
  70. MinichielloL. CasagrandaF. TatcheR.S. Point mutation in trkB causes loss of NT4-dependent neurons without major effects on diverse BDNF responses.Neuron199821233534510.1016/S0896‑6273(00)80543‑7 9728915
    [Google Scholar]
  71. ThorntonM.R. ShawcrossS.G. MantovaniC. KinghamP.J. BirchallM.A. TerenghiG. Neurotrophins 3 and 4 differentially regulate NCAM, L1 and N-cadherin expression during peripheral nerve regeneration.Biotechnol. Appl. Biochem.200849216517410.1042/BA20070040 17640175
    [Google Scholar]
  72. YinQ. KempG.J. YuL.G. WagstaffS.C. FrostickS.P. Expression of Schwann cell-specific proteins and low-molecular-weight neurofilament protein during regeneration of sciatic nerve treated with neurotrophin-4.Neuroscience2001105377978310.1016/S0306‑4522(01)00216‑0 11516841
    [Google Scholar]
  73. FunakoshiH. FrisénJ. BarbanyG. Differential expression of mRNAs for neurotrophins and their receptors after axotomy of the sciatic nerve.J. Cell Biol.1993123245546510.1083/jcb.123.2.455 8408225
    [Google Scholar]
  74. ShuX. MendellL.M. Nerve growth factor acutely sensitizes the response of adult rat sensory neurons to capsaicin.Neurosci. Lett.1999274315916210.1016/S0304‑3940(99)00701‑6 10548414
    [Google Scholar]
  75. MalcangioM. Spinal mechanisms of neuropathic pain: Is there a P2X4-BDNF controversy?Neurobiol. Pain201711510.1016/j.ynpai.2017.04.001 30272037
    [Google Scholar]
  76. Rodríguez-PeñaA. BotanaM. GonzálezM. RequejoF. Expression of neurotrophins and their receptors in sciatic nerve of experimentally diabetic rats.Neurosci. Lett.19952001374010.1016/0304‑3940(95)12067‑E 8584261
    [Google Scholar]
  77. AharoniR. EilamR. DomevH. LabunskayG. SelaM. ArnonR. The immunomodulator glatiramer acetate augments the expression of neurotrophic factors in brains of experimental autoimmune encephalomyelitis mice.Proc. Natl. Acad. Sci. USA200510252190451905010.1073/pnas.0509438102 16365293
    [Google Scholar]
  78. WebbM. HelanderE. MenardB. UrmanR. KayeA. Tanezumab: A selective humanized mAb for chronic lower back pain.Ther. Clin. Risk Manag.20181436136710.2147/TCRM.S144125 29503555
    [Google Scholar]
  79. AlastraG. AloeL. BaldassarroV.A. Nerve growth factor biodelivery: A limiting step in moving toward extensive clinical application?Front. Neurosci.20211569559210.3389/fnins.2021.695592 34335170
    [Google Scholar]
  80. SpeidellA. Bin AbidN. YanoH. Brain-Derived Neurotrophic Factor Dysregulation as an Essential Pathological Feature in Huntington’s Disease: Mechanisms and Potential Therapeutics.Biomedicines2023118227510.3390/biomedicines11082275 37626771
    [Google Scholar]
/content/journals/cnsnddt/10.2174/0118715273327121240820074049
Loading
/content/journals/cnsnddt/10.2174/0118715273327121240820074049
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test