Skip to content
2000
Volume 24, Issue 2
  • ISSN: 1871-5273
  • E-ISSN: 1996-3181

Abstract

Amyotrophic Lateral Sclerosis (ALS) is a rare, progressive, and incurable disease. Sporadic (sALS) accounts for ninety percent of ALS cases, while familial ALS (fALS) accounts for around ten percent. Reports have identified over 30 different forms of familial ALS. Multiple types of fALS exhibit comparable symptoms with mutations in different genes and possibly with different predominant metabolic signals. Clinical diagnosis takes into account patient history but not genetic mutations, misfolded proteins, or metabolic signaling. As research on genetics and metabolic pathways advances, it is expected that the intricate complexity of ALS will compound further. Clinicians discuss whether a gene's presence is a cause of the disease or just an association or consequence. They believe that a mutant gene alone is insufficient to diagnose ALS. ALS, often perceived as a single disease, appears to be a complex collection of diseases with similar symptoms. This review highlights gene mutations, metabolic pathways, and muscle-neuron interactions.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/0118715273315891240801065231
2024-08-21
2025-10-14
Loading full text...

Full text loading...

References

  1. RowlandL.P. ShneiderN.A. Amyotrophic lateral sclerosis.N. Engl. J. Med.2001344221688170010.1056/NEJM200105313442207 11386269
    [Google Scholar]
  2. RothsteinJ.D. Current hypotheses for the underlying biology of amyotrophic lateral sclerosis.Ann. Neurol.200965S1Suppl. 1S3S910.1002/ana.21543 19191304
    [Google Scholar]
  3. SouzaP.V.S. PintoW.B.V.R. ChieiaM.A.T. OliveiraA.S.B. Clinical and genetic basis of familial amyotrophic lateral sclerosis.Arq. Neuropsiquiatr.201573121026103710.1590/0004‑282X20150161 26465287
    [Google Scholar]
  4. NIHNational Institute of Neurological Disorders and Stroke.2023Available From: https://www.ninds.nih.gov/
    [Google Scholar]
  5. SanjakM. KonopackiR. CapassoR. RoelkeK.A. PeperS.M. HoudekA.M. Dissociation between mechanical and myoelectrical manifestation of muscle fatigue in amyotrophic lateral sclerosis.Amyotroph. Lateral Scler. Other Motor Neuron Disord.200451263210.1080/14660820310017551
    [Google Scholar]
  6. LiM. OnaV.O. GuéganC. Functional role of caspase-1 and caspase-3 in an ALS transgenic mouse model.Science2000288546433533910.1126/science.288.5464.335 10764647
    [Google Scholar]
  7. WijesekeraL.C. Nigel LeighP. Amyotrophic lateral sclerosis.Orphanet J. Rare Dis.200941310.1186/1750‑1172‑4‑3 19192301
    [Google Scholar]
  8. ZareiS. CarrK. ReileyL. A comprehensive review of amyotrophic lateral sclerosis.Surg. Neurol. Int.20156117110.4103/2152‑7806.169561 26629397
    [Google Scholar]
  9. HardimanO. Al-ChalabiA. ChioA. CorrE.M. LogroscinoG. RobberechtW. Amyotrophic lateral sclerosis.Nat. Rev. Dis. Primers2017317071
    [Google Scholar]
  10. BrownR.H. Al-ChalabiA. Amyotrophic Lateral Sclerosis.N. Engl. J. Med.2017377216217210.1056/NEJMra1603471 28700839
    [Google Scholar]
  11. van EsM.A. HardimanO. ChioA. Amyotrophic lateral sclerosis.Lancet2017390101072084209810.1016/S0140‑6736(17)31287‑4 28552366
    [Google Scholar]
  12. Le GallL. AnakorE. ConnollyO. VijayakumarU. DuddyW. DuguezS. Molecular and cellular mechanisms affected in ALS.J. Pers. Med.202010310110.3390/jpm10030101 32854276
    [Google Scholar]
  13. KurlandL.T. MulderD.W. Epidemiologic investigations of amyotrophic lateral sclerosis. 2. Familial aggregations indicative of dominant inheritance. I.Neurology19555318219610.1212/WNL.5.3.182 14356347
    [Google Scholar]
  14. MyrianthopoulosN.C. BrownI.A. A genetic study of progressive spinal muscular atrophy.Am. J. Hum. Genet.195464387411 14349945
    [Google Scholar]
  15. HortonW.A. EldridgeR. BrodyJ.A. Familial motor neuron disease.Neurology197626546046510.1212/WNL.26.5.460 944398
    [Google Scholar]
  16. LeeY.B. ChenH.J. PeresJ.N. Hexanucleotide repeats in ALS/FTD form length-dependent RNA foci, sequester RNA binding proteins, and are neurotoxic.Cell Rep.2013551178118610.1016/j.celrep.2013.10.049 24290757
    [Google Scholar]
  17. SennfältS. KläppeU. ThamsS. The path to diagnosis in ALS: Delay, referrals, alternate diagnoses, and clinical progression.Amyotroph. Lateral Scler. Frontotemporal Degener.2023241-2455310.1080/21678421.2022.2053722 35343340
    [Google Scholar]
  18. DenglerR. TrögerM. Classification of ALS--do we know enough?Amyotroph. Lateral Scler. Other Motor Neuron Disord.2000126869
    [Google Scholar]
  19. ThomeJ. SteinbachR. GrosskreutzJ. DurstewitzD. KoppeG. Classification of amyotrophic lateral sclerosis by brain volume, connectivity, and network dynamics.Hum. Brain Mapp.202243268169910.1002/hbm.25679 34655259
    [Google Scholar]
  20. IazzolinoB. PainD. PeottaL. Validation of the revised classification of cognitive and behavioural impairment in ALS.J. Neurol. Neurosurg. Psychiatry201990773473910.1136/jnnp‑2018‑319696 30733331
    [Google Scholar]
  21. van EsM.A. GoedeeH.S. WestenengH.J. NijboerT.C.W. van den BergL.H. Is it accurate to classify ALS as a neuromuscular disorder?Expert Rev. Neurother.202020989590610.1080/14737175.2020.1806061 32749157
    [Google Scholar]
  22. ByrneS. BedeP. ElaminM. KennaK. LynchC. McLaughlinR. Proposed criteria for familial amyotrophic lateral sclerosis.Amyotroph. Lateral Scler.201112315715910.3109/17482968.2010.545420
    [Google Scholar]
  23. VucicS. FergusonT.A. CummingsC. Gold Coast diagnostic criteria: Implications for ALS diagnosis and clinical trial enrollment.Muscle Nerve202164553253710.1002/mus.27392 34378224
    [Google Scholar]
  24. MathisS. GoizetC. SoulagesA. VallatJ.M. MassonG.L. Genetics of amyotrophic lateral sclerosis: A review.J. Neurol. Sci.201939921722610.1016/j.jns.2019.02.030 30870681
    [Google Scholar]
  25. AndersenP.M. Al-ChalabiA. Clinical genetics of amyotrophic lateral sclerosis: What do we really know?Nat. Rev. Neurol.201171160361510.1038/nrneurol.2011.150 21989245
    [Google Scholar]
  26. DengH.X. ChenW. HongS.T. Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/] dementia.Nature2011477736321121510.1038/nature10353 21857683
    [Google Scholar]
  27. BerdyńskiM. MisztaP. SafranowK. SOD1 mutations associated with amyotrophic lateral sclerosis analysis of variant severity.Sci. Rep.202212110310.1038/s41598‑021‑03891‑8 34996976
    [Google Scholar]
  28. Da CruzS. ClevelandD.W. Understanding the role of TDP-43 and FUS/TLS in ALS and beyond.Curr. Opin. Neurobiol.201121690491910.1016/j.conb.2011.05.029 21813273
    [Google Scholar]
  29. StrongM.J. AbrahamsS. GoldsteinL.H. Amyotrophic lateral sclerosis - frontotemporal spectrum disorder (ALS-FTSD): Revised diagnostic criteria.Amyotroph. Lateral Scler. Frontotemporal Degener.2017183-415317410.1080/21678421.2016.1267768 28054827
    [Google Scholar]
  30. WuJ.J. CaiA. GreensladeJ.E. ALS/FTD mutations in UBQLN2 impede autophagy by reducing autophagosome acidification through loss of function.Proc. Natl. Acad. Sci. USA202011726152301524110.1073/pnas.1917371117 32513711
    [Google Scholar]
  31. NementzikL.R. ThumbadooK.M. MurrayH.C. Distribution of ubiquilin 2 and TDP ‐43 aggregates throughout the CNS inUBQLN2 p. T487I ‐linked amyotrophic lateral sclerosis and frontotemporal dementia.Brain Pathol.2024343e1323010.1111/bpa.13230 38115557
    [Google Scholar]
  32. KoyamaA. SugaiA. KatoT. Increased cytoplasmic TARDBP mRNA in affected spinal motor neurons in ALS caused by abnormal autoregulation of TDP-43.Nucleic Acids Res.201644125820583610.1093/nar/gkw499 27257061
    [Google Scholar]
  33. LattanteS. RouleauG.A. KabashiE. TARDBP and FUS mutations associated with amyotrophic lateral sclerosis: Summary and update.Hum. Mutat.201334681282610.1002/humu.22319 23559573
    [Google Scholar]
  34. GoutmanS.A. ChenK.S. Paez-ColasanteX. FeldmanE.L. Emerging understanding of the genotype–phenotype relationship in amyotrophic lateral sclerosis.Handb. Clin. Neurol.201814860362310.1016/B978‑0‑444‑64076‑5.00039‑9 29478603
    [Google Scholar]
  35. CappellaM. CiottiC. Cohen-TannoudjiM. BiferiM.G. Gene therapy for ALS-A perspective.Int. J. Mol. Sci.20192018438810.3390/ijms20184388 31500113
    [Google Scholar]
  36. ZouZ.Y. ZhouZ.R. CheC.H. LiuC.Y. HeR.L. HuangH.P. Genetic epidemiology of amyotrophic lateral sclerosis: A systematic review and meta-analysis.J. Neurol. Neurosurg. Psychiatry201788754054910.1136/jnnp‑2016‑315018 28057713
    [Google Scholar]
  37. AkçimenF. LopezE.R. LandersJ.E. Amyotrophic lateral sclerosis: Translating genetic discoveries into therapies.Nat. Rev. Genet.202324964265810.1038/s41576‑023‑00592‑y 37024676
    [Google Scholar]
  38. KimG. GautierO. Tassoni-TsuchidaE. MaX.R. GitlerA.D. ALS Genetics: Gains, losses, and implications for future therapies.Neuron2020108582284210.1016/j.neuron.2020.08.022 32931756
    [Google Scholar]
  39. FeldmanE.L. GoutmanS.A. PetriS. Amyotrophic lateral sclerosis.Lancet2022400103601363138010.1016/S0140‑6736(22)01272‑7 36116464
    [Google Scholar]
  40. GomesNA das Chagas Lima e Silva F de Oliveira Volpe CM Overexpression of mTOR in leukocytes from ALS8 patients.Curr. Neuropharmacol.202321348249010.2174/1570159X21666230201151016 36722478
    [Google Scholar]
  41. PetersO.M. GhasemiM. BrownR.H.Jr Emerging mechanisms of molecular pathology in ALS.J. Clin. Invest.201512551767177910.1172/JCI71601 25932674
    [Google Scholar]
  42. CirulliE.T. LasseigneB.N. PetrovskiS. Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways.Science201534762291436144110.1126/science.aaa3650 25700176
    [Google Scholar]
  43. FreischmidtA. WielandT. RichterB. Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia.Nat. Neurosci.201518563163610.1038/nn.4000 25803835
    [Google Scholar]
  44. OakesJ.A. DaviesM.C. CollinsM.O. TBK1: A new player in ALS linking autophagy and neuroinflammation.Mol. Brain2017101510.1186/s13041‑017‑0287‑x 28148298
    [Google Scholar]
  45. DeJesus-HernandezM. MackenzieI.R. BoeveB.F. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS.Neuron201172224525610.1016/j.neuron.2011.09.011 21944778
    [Google Scholar]
  46. NishimuraA.L. Mitne-NetoM. SilvaH.C.A. A mutation in the vesicle-trafficking protein VAPB causes late-onset spinal muscular atrophy and amyotrophic lateral sclerosis.Am. J. Hum. Genet.200475582283110.1086/425287 15372378
    [Google Scholar]
  47. Mitne-NetoM. Machado-CostaM. MarchettoM.C.N. Downregulation of VAPB expression in motor neurons derived from induced pluripotent stem cells of ALS8 patients.Hum. Mol. Genet.201120183642365210.1093/hmg/ddr284 21685205
    [Google Scholar]
  48. RehorstW.A. ThelenM.P. NolteH. Muscle regulates mTOR dependent axonal local translation in motor neurons via CTRP3 secretion: Implications for a neuromuscular disorder, spinal muscular atrophy.Acta Neuropathol. Commun.20197115410.1186/s40478‑019‑0806‑3 31615574
    [Google Scholar]
  49. PrasadA. BharathiV. SivalingamV. GirdharA. PatelB.K. Molecular mechanisms of TDP-43 misfolding and pathology in amyotrophic lateral sclerosis.Front. Mol. Neurosci.2019122510.3389/fnmol.2019.00025 30837838
    [Google Scholar]
  50. BurkK. PasterkampR.J. Disrupted neuronal trafficking in amyotrophic lateral sclerosis.Acta Neuropathol.2019137685987710.1007/s00401‑019‑01964‑7 30721407
    [Google Scholar]
  51. ChuaJ.P. De CalbiacH. KabashiE. BarmadaS.J. Autophagy and ALS: Mechanistic insights and therapeutic implications.Autophagy202218225428210.1080/15548627.2021.1926656 34057020
    [Google Scholar]
  52. IlievaH. VullagantiM. KwanJ. Advances in molecular pathology, diagnosis, and treatment of amyotrophic lateral sclerosis.BMJ2023383e07503710.1136/bmj‑2023‑075037 37890889
    [Google Scholar]
  53. HeathP.R. ShawP.J. Update on the glutamatergic neurotransmitter system and the role of excitotoxicity in amyotrophic lateral sclerosis.Muscle Nerve200226443845810.1002/mus.10186 12362409
    [Google Scholar]
  54. BarberS.C. MeadR.J. ShawP.J. Oxidative stress in ALS: A mechanism of neurodegeneration and a therapeutic target.Biochim. Biophys. Acta Mol. Basis Dis.2006176211-121051106710.1016/j.bbadis.2006.03.008 16713195
    [Google Scholar]
  55. TriasE. IbarburuS. Barreto-NúñezR. Post-paralysis tyrosine kinase inhibition with masitinib abrogates neuroinflammation and slows disease progression in inherited amyotrophic lateral sclerosis.J. Neuroinflammation201613117710.1186/s12974‑016‑0620‑9 27400786
    [Google Scholar]
  56. RussellA.J. HartmanJ.J. HinkenA.C. Activation of fast skeletal muscle troponin as a potential therapeutic approach for treating neuromuscular diseases.Nat. Med.201218345245510.1038/nm.2618 22344294
    [Google Scholar]
  57. HansenR. SaikaliK.G. ChouW. Tirasemtiv amplifies skeletal muscle response to nerve activation in humans.Muscle Nerve201450692593110.1002/mus.24239 24634285
    [Google Scholar]
  58. HweeD.T. KennedyA. RyansJ. Fast skeletal muscle troponin activator tirasemtiv increases muscle function and performance in the B6SJL-SOD1G93A ALS mouse model.PLoS One201495e9692110.1371/journal.pone.0096921 24805850
    [Google Scholar]
  59. NeefD.W. JaegerA.M. ThieleD.J. Heat shock transcription factor 1 as a therapeutic target in neurodegenerative diseases.Nat. Rev. Drug Discov.2011101293094410.1038/nrd3453 22129991
    [Google Scholar]
  60. RavikumarB. VacherC. BergerZ. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease.Nat. Genet.200436658559510.1038/ng1362 15146184
    [Google Scholar]
  61. DonnellyP.S. CaragounisA. DuT. Selective intracellular release of copper and zinc ions from bis(thiosemicarbazonato) complexes reduces levels of Alzheimer disease amyloid-beta peptide.J. Biol. Chem.200828384568457710.1074/jbc.M705957200 18086681
    [Google Scholar]
  62. ParkerS.J. MeyerowitzJ. JamesJ.L. Inhibition of TDP-43 accumulation by bis(thiosemicarbazonato)-copper complexes.PLoS One201278e4227710.1371/journal.pone.0042277 22879928
    [Google Scholar]
  63. StoicaR. PaillussonS. Gomez-SuagaP. ALS/FTD‐associated FUS activates GSK‐3β to disrupt the VAPB - PTPIP 51 interaction and ER-mitochondria associations.EMBO Rep.20161791326134210.15252/embr.201541726 27418313
    [Google Scholar]
  64. Costa-MattioliM. SossinW.S. KlannE. SonenbergN. Translational control of long-lasting synaptic plasticity and memory.Neuron2009611102610.1016/j.neuron.2008.10.055 19146809
    [Google Scholar]
  65. GhasemiM. BrownR.H.Jr Genetics of amyotrophic lateral sclerosis.Cold Spring Harb. Perspect. Med.201885a02412510.1101/cshperspect.a024125 28270533
    [Google Scholar]
  66. Rodrigues Lima-JuniorJ. SulzerD. Lindestam ArlehamnC.S. SetteA. The role of immune-mediated alterations and disorders in ALS disease.Hum. Immunol.202182315516110.1016/j.humimm.2021.01.017 33583639
    [Google Scholar]
  67. BeersD.R. ZhaoW. LiaoB. Neuroinflammation modulates distinct regional and temporal clinical responses in ALS mice.Brain Behav. Immun.20112551025103510.1016/j.bbi.2010.12.008 21176785
    [Google Scholar]
  68. López-ErauskinJ. TadokoroT. BaughnM.W. ALS/FTD-Linked mutation in FUS suppresses intra-axonal protein synthesis and drives disease without nuclear loss-of-function of FUS.Neuron20181004816830.e710.1016/j.neuron.2018.09.044 30344044
    [Google Scholar]
  69. KubinskiS. ClausP. Protein network analysis reveals a functional connectivity of dysregulated processes in ALS and SMA.Neurosci. Insights20221710.1177/26331055221087740 35372839
    [Google Scholar]
  70. KyeM.J. NiederstE.D. WertzM.H. SMN regulates axonal local translation via miR-183/mTOR pathway.Hum. Mol. Genet.201423236318633110.1093/hmg/ddu350 25055867
    [Google Scholar]
  71. BiondiO. BranchuJ. Ben SalahA. IGF-1R reduction triggers neuroprotective signaling pathways in spinal muscular atrophy mice.J. Neurosci.20153534120631207910.1523/JNEUROSCI.0608‑15.2015 26311784
    [Google Scholar]
  72. ShiY. ShenH.M. GopalakrishnanV. GordonN. Epigenetic regulation of autophagy beyond the cytoplasm: A review.Front. Cell Dev. Biol.2021967559910.3389/fcell.2021.675599 34195194
    [Google Scholar]
  73. YinS. LiuL. GanW. The roles of post-translational modifications on mTOR signaling.Int. J. Mol. Sci.2021224178410.3390/ijms22041784 33670113
    [Google Scholar]
  74. Gómez-SuagaP. Pérez-NievasB.G. GlennonE.B. The VAPB-PTPIP51 endoplasmic reticulum-mitochondria tethering proteins are present in neuronal synapses and regulate synaptic activity.Acta Neuropathol. Commun.2019713510.1186/s40478‑019‑0688‑4 30841933
    [Google Scholar]
  75. RameshN. PandeyU.B. Autophagy dysregulation in ALS: When protein aggregates get out of hand.Front. Mol. Neurosci.20171026310.3389/fnmol.2017.00263 28878620
    [Google Scholar]
  76. DingW.X. NiH.M. GaoW. Differential effects of endoplasmic reticulum stress-induced autophagy on cell survival.J. Biol. Chem.200728274702471010.1074/jbc.M609267200 17135238
    [Google Scholar]
  77. HanS.M. El OussiniH. Scekic-ZahirovicJ. VAPB/ALS8 MSP ligands regulate striated muscle energy metabolism critical for adult survival in caenorhabditis elegans.PLoS Genet.201399e100373810.1371/journal.pgen.1003738 24039594
    [Google Scholar]
  78. BriniM. CalìT. OttoliniD. CarafoliE. Neuronal calcium signaling: Function and dysfunction.Cell. Mol. Life Sci.201471152787281410.1007/s00018‑013‑1550‑7 24442513
    [Google Scholar]
  79. FinkelN. A forma pseudomiopática tardia da atrofia muscular progressiva heredo-familial.Arq. Neuropsiquiatr.196220430732210.1590/S0004‑282X1962000400005
    [Google Scholar]
/content/journals/cnsnddt/10.2174/0118715273315891240801065231
Loading
/content/journals/cnsnddt/10.2174/0118715273315891240801065231
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test