Skip to content
2000
Volume 24, Issue 2
  • ISSN: 1871-5273
  • E-ISSN: 1996-3181

Abstract

Parkinson's Disease (PD) is a progressive disorder worldwide and its etiology remains unidentified. Over the last few decades, animal models of PD have been extensively utilized to explore the development and mechanisms of this neurodegenerative condition. Toxic and transgenic animal models for PD possess unique characteristics and constraints, necessitating careful consideration when selecting the appropriate model for research purposes. Animal models have played a significant role in uncovering the causes and development of PD, including its cellular and molecular processes. These models suggest that the disorder arises from intricate interplays between genetic predispositions and environmental influences. Every model possesses its unique set of strengths and weaknesses. This review provides a critical examination of animal models for PD and compares them with the features observed in the human manifestation of the disease.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/0118715273326866240922193029
2024-10-01
2025-10-14
Loading full text...

Full text loading...

References

  1. LeesA.J. HardyJ. ReveszT. Parkinson’s disease.Lancet200937396802055206610.1016/S0140‑6736(09)60492‑X 19524782
    [Google Scholar]
  2. SamiiA. NuttJ.G. RansomB.R. Parkinson’s disease.Lancet200436394231783179310.1016/S0140‑6736(04)16305‑8 15172778
    [Google Scholar]
  3. ClarkeC.E. Parkinson’s disease.BMJ2007335761744144510.1136/bmj.39289.437454.AD 17762036
    [Google Scholar]
  4. BloemB.R. OkunM.S. KleinC. Parkinson’s disease.Lancet2021397102912284230310.1016/S0140‑6736(21)00218‑X 33848468
    [Google Scholar]
  5. Munoz-SorianoV. ParicioN. Drosophila models of Parkinson’s disease: Discovering relevant pathways and novel therapeutic strategies.Parkinsons Dis.2011201152064010.4061/2011/520640
    [Google Scholar]
  6. KaliaL.V. LangA.E. Parkinson’s disease.Lancet2015386999689691210.1016/S0140‑6736(14)61393‑3 25904081
    [Google Scholar]
  7. GoldmanS.M. Environmental toxins and Parkinson’s disease.Annu. Rev. Pharmacol. Toxicol.201454114116410.1146/annurev‑pharmtox‑011613‑135937 24050700
    [Google Scholar]
  8. ThomasB. BealM.F. Parkinson’s disease.Hum. Mol. Genet.200716R2R183R19410.1093/hmg/ddm159 17911161
    [Google Scholar]
  9. VellingiriB. ChandrasekharM. Sri SabariS. Neurotoxicity of pesticides – A link to neurodegeneration.Ecotoxicol. Environ. Saf.202224311397210.1016/j.ecoenv.2022.113972 36029574
    [Google Scholar]
  10. LiuY. YangH. Environmental toxins and α-synuclein in Parkinson’s disease.Mol. Neurobiol.2005311-327328210.1385/MN:31:1‑3:273 15953827
    [Google Scholar]
  11. Gómez-BenitoM. GranadoN. García-SanzP. MichelA. DumoulinM. MoratallaR. Modeling Parkinson’s disease with the alpha-synuclein protein.Front. Pharmacol.20201135610.3389/fphar.2020.00356 32390826
    [Google Scholar]
  12. DutyS. JennerP. Animal models of Parkinson’s disease: a source of novel treatments and clues to the cause of the disease.Br. J. Pharmacol.201116441357139110.1111/j.1476‑5381.2011.01426.x 21486284
    [Google Scholar]
  13. XicoyH. WieringaB. MartensG.J.M. The SH-SY5Y cell line in Parkinson’s disease research: a systematic review.Mol. Neurodegener.20171211010.1186/s13024‑017‑0149‑0 28118852
    [Google Scholar]
  14. XieH.R. HuL.S. LiG.Y. SH-SY5Y human neuroblastoma cell line: in vitro cell model of dopaminergic neurons in Parkinson’s disease.Chin. Med. J. (Engl.)2010123810861092 20497720
    [Google Scholar]
  15. AlrashidiH. EatonS. HealesS. Biochemical characterization of proliferative and differentiated SH-SY5Y cell line as a model for Parkinson’s disease.Neurochem. Int.202114510500910.1016/j.neuint.2021.105009 33684546
    [Google Scholar]
  16. LopesF.M. SchröderR. JúniorM.L.C.F. Comparison between proliferative and neuron-like SH-SY5Y cells as an in vitro model for Parkinson disease studies.Brain Res.20101337859410.1016/j.brainres.2010.03.102 20380819
    [Google Scholar]
  17. BellucciA. ColloG. SarnicoI. BattistinL. MissaleC. SpanoP. Alpha‐synuclein aggregation and cell death triggered by energy deprivation and dopamine overload are counteracted by D 2/D 3 receptor activation.J. Neurochem.2008106256057710.1111/j.1471‑4159.2008.05406.x 18410503
    [Google Scholar]
  18. DiógenesM.J. DiasR.B. RomboD.M. Extracellular alpha-synuclein oligomers modulate synaptic transmission and impair LTP via NMDA-receptor activation.J. Neurosci.20123234117501176210.1523/JNEUROSCI.0234‑12.2012 22915117
    [Google Scholar]
  19. MalageladaC. GreeneL.A. PC12 cells as a model for Parkinson’s disease research.Parkinsons Dis.2008375387
    [Google Scholar]
  20. AbeH. InoK. LiC.Z. Electrochemical imaging of dopamine release from three-dimensional-cultured PC12 cells using large-scale integration-based amperometric sensors.Anal. Chem.201587126364637010.1021/acs.analchem.5b01307 25971414
    [Google Scholar]
  21. ÖzA. Experimental cell culture models for investigating neurodegenerative diseases.Journal of Cellular Neuroscience and Oxidative Stress201911283585110.37212/jcnos.683400
    [Google Scholar]
  22. HarringtonA.J. HamamichiS. CaldwellG.A. CaldwellK.A. C. elegans as a model organism to investigate molecular pathways involved with Parkinson’s disease.Dev. Dyn.201023951282129510.1002/dvdy.22231 20108318
    [Google Scholar]
  23. MaL. LiX. LiuC. Modelling Parkinson’s Disease in C. elegans: Strengths and Limitations.Curr. Pharm. Des.202228373033304810.2174/1381612828666220915103502 36111767
    [Google Scholar]
  24. RoussosA. KitopoulouK. BorbolisF. PalikarasK. Caenorhabditis elegans as a model system to study human neurodegenerative disorders.Biomolecules202313347810.3390/biom13030478 36979413
    [Google Scholar]
  25. LaksoM. VartiainenS. MoilanenA.M. Dopaminergic neuronal loss and motor deficits in Caenorhabditis elegans overexpressing human α‐synuclein.J. Neurochem.200386116517210.1046/j.1471‑4159.2003.01809.x 12807436
    [Google Scholar]
  26. LiJ. LeW. Modeling neurodegenerative diseases in Caenorhabditis elegans.Exp. Neurol.20132509410310.1016/j.expneurol.2013.09.024 24095843
    [Google Scholar]
  27. SchmidtE. SeifertM. BaumeisterR. Caenorhabditis elegans as a model system for Parkinson’s disease.Neurodegener. Dis.200742-319921710.1159/000101845 17596715
    [Google Scholar]
  28. PalikarasK. SenGuptaT. NilsenH. TavernarakisN.C. elegans as a model organism to investigate molecular pathways involved with Parkinson’s disease.Developmental Dynamics: An official publication of the American Association of Anatomists2022239512821295
    [Google Scholar]
  29. CooperJ.F. Van RaamsdonkJ.M. Modeling Parkinson’s Disease in C. elegans.J. Parkinsons Dis.201881173210.3233/JPD‑171258 29480229
    [Google Scholar]
  30. OmarN.A. KumarJ. TeohS.L. Parkinson’s disease model in zebrafish using intraperitoneal MPTP injection.Front. Neurosci.202317123604910.3389/fnins.2023.1236049 37694115
    [Google Scholar]
  31. BarrosT.P. AldertonW.K. ReynoldsH.M. RoachA.G. BerghmansS. Zebrafish: an emerging technology for in vivo pharmacological assessment to identify potential safety liabilities in early drug discovery.Br. J. Pharmacol.200815471400141310.1038/bjp.2008.249 18552866
    [Google Scholar]
  32. MakhijaD.T. JagtapA.G. Studies on sensitivity of zebrafish as a model organism for Parkinson’s disease: Comparison with rat model.J. Pharmacol. Pharmacother.201451394610.4103/0976‑500X.124422 24554909
    [Google Scholar]
  33. XiY. RyanJ. NobleS. YuM. YilbasA.E. EkkerM. Impaired dopaminergic neuron development and locomotor function in zebrafish with loss of pink1 function.Eur. J. Neurosci.201031462363310.1111/j.1460‑9568.2010.07091.x 20141529
    [Google Scholar]
  34. FlinnL.J. KeatingeM. BretaudS. TigarB causes mitochondrial dysfunction and neuronal loss in PINK1 deficiency.Ann. Neurol.201374683784710.1002/ana.23999 24027110
    [Google Scholar]
  35. PriyadarshiniM. OroscoL.A. PanulaP.J. Oxidative stress and regulation of Pink1 in zebrafish (Danio rerio).PLoS One2013811e8185110.1371/journal.pone.0081851 24324558
    [Google Scholar]
  36. BaiQ. MullettS.J. GarverJ.A. HinkleD.A. BurtonE.A. Zebrafish DJ-1 is evolutionarily conserved and expressed in dopaminergic neurons.Brain Res.200611131334410.1016/j.brainres.2006.07.057 16942755
    [Google Scholar]
  37. DoyleJ.M. CrollR.P. A critical review of zebrafish models of Parkinson’s disease.Front. Pharmacol.20221383582710.3389/fphar.2022.835827 35370740
    [Google Scholar]
  38. BilenJ. BoniniN.M. Drosophila as a model for human neurodegenerative disease.Annu. Rev. Genet.200539115317110.1146/annurev.genet.39.110304.095804 16285856
    [Google Scholar]
  39. NazF. SiddiqueY.H. Drosophila melanogaster a versatile model of Parkinson’s disease.CNS Neurol. Disord. Drug Targets202120648753010.2174/1871527320666210208125912 33557742
    [Google Scholar]
  40. SiddiqueY.H. NazF. JyotiS. Effect of Centella asiatica leaf extract on the dietary supplementation in transgenic drosophila model of Parkinson’s disease.Parkinsons Dis.20142014262058
    [Google Scholar]
  41. SiddiqueY.H. Role of luteolin in overcoming Parkinson’s disease.Biofactors202147219820610.1002/biof.1706 33443305
    [Google Scholar]
  42. SiddiqueY.H. AraG. JyotiS. AfzalM. Protective effect of curcumin in transgenic Drosophila melanogaster model of Parkinson’s disease.Alternative Medicine Studies201221310.4081/ams.2012.e3
    [Google Scholar]
  43. SiddiqueY.H. NazF. Rahul, Rashid M, Tajuddin. Effect of Majun Baladur on life span, climbing ability, oxidative stress and dopaminergic neurons in the transgenic Drosophila model of Parkinson’s disease.Heliyon201954e0148310.1016/j.heliyon.2019.e01483 31011645
    [Google Scholar]
  44. SangT.K. JacksonG.R. Drosophila models of neurodegenerative disease.NeuroRx20052343844610.1602/neurorx.2.3.438 16389307
    [Google Scholar]
  45. LuB. VogelH. Drosophila models of neurodegenerative diseases.Annu. Rev. Pathol.20094131534210.1146/annurev.pathol.3.121806.151529 18842101
    [Google Scholar]
  46. SiddiqueY.H. NazF. JyotiS. Protective effect of Geraniol on the transgenic Drosophila model of Parkinson’s disease.Environ. Toxicol. Pharmacol.20164322523110.1016/j.etap.2016.03.018 27026137
    [Google Scholar]
  47. FatimaA. KhanamS. RahulR. Protective effect of tangeritin in transgenic Drosophila model of Parkinson’s disease.Front. Biosci. (Elite Ed.)2017914453 27814588
    [Google Scholar]
  48. Shaltiel-KaryoR. DavidiD. MenuchinY. A novel, sensitive assay for behavioral defects in Parkinson’s disease model Drosophila.Parkinsons Dis.201220121610.1155/2012/697564 22888468
    [Google Scholar]
  49. WhitworthA.J. Drosophila models of Parkinson’s disease.Adv. Genet.20117315010.1016/B978‑0‑12‑380860‑8.00001‑X 21310293
    [Google Scholar]
  50. VargaS.J. QiC. PodolskyE. LeeD. A new Drosophila model to study the interaction between genetic and environmental factors in Parkinson׳s disease.Brain Res.2014158327728610.1016/j.brainres.2014.08.021 25130663
    [Google Scholar]
  51. ChesseletM.F. RichterF. Modelling of Parkinson’s disease in mice.Lancet Neurol.201110121108111810.1016/S1474‑4422(11)70227‑7 22094131
    [Google Scholar]
  52. BlesaJ PhaniS Jackson-LewisV PrzedborskiS Classic and new animal models of Parkinson's disease.BioMed Res Int2012201210.1155/2012/845618
    [Google Scholar]
  53. VisanjiN.P. BrotchieJ.M. KaliaL.V. α-Synuclein-based animal models of Parkinson’s disease: challenges and opportunities in a new era.Trends Neurosci.2016391175076210.1016/j.tins.2016.09.003 27776749
    [Google Scholar]
  54. ChesseletM.F. RichterF. ZhuC. MagenI. WatsonM.B. SubramaniamS.R. A progressive mouse model of Parkinson’s disease: the Thy1-aSyn (“Line 61”) mice.Neurotherapeutics20129229731410.1007/s13311‑012‑0104‑2 22350713
    [Google Scholar]
  55. AkundiR.S. HuangZ. EasonJ. Increased mitochondrial calcium sensitivity and abnormal expression of innate immunity genes precede dopaminergic defects in Pink1-deficient mice.PLoS One201161e1603810.1371/journal.pone.0016038 21249202
    [Google Scholar]
  56. GispertS. RicciardiF. KurzA. Parkinson phenotype in aged PINK1-deficient mice is accompanied by progressive mitochondrial dysfunction in absence of neurodegeneration.PLoS One200946e577710.1371/journal.pone.0005777 19492057
    [Google Scholar]
  57. RockensteinE. MalloryM. HashimotoM. Differential neuropathological alterations in transgenic mice expressing α‐synuclein from the platelet‐derived growth factor and Thy‐1 promoters.J. Neurosci. Res.200268556857810.1002/jnr.10231 12111846
    [Google Scholar]
  58. TaylorT.N. GreeneJ.G. MillerG.W. Behavioral phenotyping of mouse models of Parkinson’s disease.Behav. Brain Res.2010211111010.1016/j.bbr.2010.03.004 20211655
    [Google Scholar]
  59. XuQ. ShenoyS. LiC. Mouse models for LRRK2 Parkinson’s disease.Parkinsonism Relat. Disord.201218Suppl. 1S186S18910.1016/S1353‑8020(11)70058‑X 22166430
    [Google Scholar]
  60. GoldbergM.S. FlemingS.M. PalacinoJ.J. Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons.J. Biol. Chem.200327844436284363510.1074/jbc.M308947200 12930822
    [Google Scholar]
  61. PalacinoJ.J. SagiD. GoldbergM.S. Mitochondrial dysfunction and oxidative damage in parkin-deficient mice.J. Biol. Chem.200427918186141862210.1074/jbc.M401135200 14985362
    [Google Scholar]
  62. PickrellA.M. YouleR.J. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease.Neuron201585225727310.1016/j.neuron.2014.12.007 25611507
    [Google Scholar]
  63. DawsonT.M. DawsonV.L. The role of parkin in familial and sporadic Parkinson’s disease.Mov. Disord.201025S1S32S3910.1002/mds.22798 20187240
    [Google Scholar]
  64. LuX.H. FlemingS.M. MeurersB. Bacterial artificial chromosome transgenic mice expressing a truncated mutant parkin exhibit age-dependent hypokinetic motor deficits, dopaminergic neuron degeneration, and accumulation of proteinase K-resistant alpha-synuclein.J. Neurosci.20092971962197610.1523/JNEUROSCI.5351‑08.2009 19228951
    [Google Scholar]
  65. CreedR.B. GoldbergM.S. New developments in genetic rat models of Parkinson’s disease.Mov. Disord.201833571772910.1002/mds.27296 29418019
    [Google Scholar]
  66. WelchkoR.M. LévêqueX.T. DunbarG.L. Genetic rat models of Parkinson’s disease.Parkinsons Dis.201220121128356 22550609
    [Google Scholar]
  67. DehayB. FernagutP.O. Alpha-synuclein-based models of Parkinson’s disease.Rev. Neurol. (Paris)20161726-737137810.1016/j.neurol.2016.04.003 27158042
    [Google Scholar]
  68. RecchiaA. RotaD. DebettoP. Generation of a α-synuclein-based rat model of Parkinson’s disease.Neurobiol. Dis.200830181810.1016/j.nbd.2007.11.002 18313315
    [Google Scholar]
  69. NuberS. HarmuthF. KohlZ. A progressive dopaminergic phenotype associated with neurotoxic conversion of α-synuclein in BAC-transgenic rats.Brain2013136241243210.1093/brain/aws358 23413261
    [Google Scholar]
  70. HealyD.G. FalchiM. O’SullivanS.S. Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson’s disease: a case-control study.Lancet Neurol.20087758359010.1016/S1474‑4422(08)70117‑0 18539534
    [Google Scholar]
  71. DusonchetJ. KochubeyO. StafaK. A rat model of progressive nigral neurodegeneration induced by the Parkinson’s disease-associated G2019S mutation in LRRK2.J. Neurosci.201131390791210.1523/JNEUROSCI.5092‑10.2011 21248115
    [Google Scholar]
  72. GrantL.M. Kelm-NelsonC.A. HilbyB.L. Evidence for early and progressive ultrasonic vocalization and oromotor deficits in a PINK1 gene knockout rat model of Parkinson’s disease.J. Neurosci. Res.201593111713172710.1002/jnr.23625 26234713
    [Google Scholar]
  73. VilleneuveL.M. PurnellP.R. BoskaM.D. FoxH.S. Early expression of Parkinson’s disease-related mitochondrial abnormalities in PINK1 knockout rats.Mol. Neurobiol.201653117118610.1007/s12035‑014‑8927‑y 25421206
    [Google Scholar]
  74. DaveK.D. De SilvaS. ShethN.P. Phenotypic characterization of recessive gene knockout rat models of Parkinson’s disease.Neurobiol. Dis.20147019020310.1016/j.nbd.2014.06.009 24969022
    [Google Scholar]
  75. TieuK. A guide to neurotoxic animal models of Parkinson’s disease.Cold Spring Harb. Perspect. Med.201111a00931610.1101/cshperspect.a009316 22229125
    [Google Scholar]
  76. SmeyneR.J. Jackson-LewisV. The MPTP model of Parkinson’s disease.Brain Res. Mol. Brain Res.20051341576610.1016/j.molbrainres.2004.09.017 15790530
    [Google Scholar]
  77. KonnovaE.A. SwanbergM. Animal models of Parkinson’s disease.Exon Publication201883106
    [Google Scholar]
  78. PasqualiL. IencoE.C. FornaiF. MPTP Neurotoxicity: Actions, Mechanisms, and Animal Modelling of Parkinson’s Disease. In: Handbook of Neurotoxicity.Springer2014237275
    [Google Scholar]
  79. BerryC. La VecchiaC. NicoteraP. Paraquat and Parkinson’s disease.Cell Death Differ.20101771115112510.1038/cdd.2009.217 20094060
    [Google Scholar]
  80. FernagutP.O. HutsonC.B. FlemingS.M. Behavioral and histopathological consequences of paraquat intoxication in mice: Effects of α‐synuclein over‐expression.Synapse20076112991100110.1002/syn.20456 17879265
    [Google Scholar]
  81. RappoldP.M. CuiM. ChesserA.S. Paraquat neurotoxicity is mediated by the dopamine transporter and organic cation transporter-3.Proc. Natl. Acad. Sci. USA201110851207662077110.1073/pnas.1115141108 22143804
    [Google Scholar]
  82. McCormackA.L. ThiruchelvamM. Manning-BogA.B. Environmental risk factors and Parkinson’s disease: selective degeneration of nigral dopaminergic neurons caused by the herbicide paraquat.Neurobiol. Dis.200210211912710.1006/nbdi.2002.0507 12127150
    [Google Scholar]
  83. BovéJ. ProuD. PerierC. PrzedborskiS. Toxin-induced models of Parkinson’s disease.NeuroRx20052348449410.1602/neurorx.2.3.484 16389312
    [Google Scholar]
  84. CannonJ.R. TapiasV. NaH.M. HonickA.S. DroletR.E. GreenamyreJ.T. A highly reproducible rotenone model of Parkinson’s disease.Neurobiol. Dis.200934227929010.1016/j.nbd.2009.01.016 19385059
    [Google Scholar]
  85. TannerC.M. KamelF. RossG.W. Rotenone, paraquat, and Parkinson’s disease.Environ. Health Perspect.2011119686687210.1289/ehp.1002839 21269927
    [Google Scholar]
  86. ShererT.B. BetarbetR. TestaC.M. Mechanism of toxicity in rotenone models of Parkinson’s disease.J. Neurochem.20071006146910.1111/j.1471‑4159.2006.04333.x 17241123
    [Google Scholar]
  87. AscherioA. ChenH. WeisskopfM.G. Pesticide exposure and risk for Parkinson’s disease.Ann. Neurol.200660219720310.1002/ana.20904 16802290
    [Google Scholar]
  88. RasheedM.Z. AndrabiS.S. SalmanM. Melatonin improves behavioral and biochemical outcomes in a rotenone-induced rat model of Parkinson’s disease.J. Environ. Pathol. Toxicol. Oncol.201837213915010.1615/JEnvironPatholToxicolOncol.2018025666 30055549
    [Google Scholar]
  89. RadadK. MoldzioR. RauschW.D. Rapamycin protects dopaminergic neurons against rotenone-induced cell death in primary mesencephalic cell culture.Folia Neuropathol.20153325026110.5114/fn.2015.54426 26443316
    [Google Scholar]
  90. RadadK. Al-ShraimM. Al-EmamA. Rotenone: from modelling to implication in Parkinson’s disease.Folia Neuropathol.201957431732610.5114/fn.2019.89857 32337944
    [Google Scholar]
  91. BovéJ. PerierC. Neurotoxin-based models of Parkinson’s disease.Neuroscience2012211517610.1016/j.neuroscience.2011.10.057 22108613
    [Google Scholar]
  92. MonteD.A.D. The environment and Parkinson’s disease: is the nigrostriatal system preferentially targeted by neurotoxins?Lancet Neurol.20032953153810.1016/S1474‑4422(03)00501‑5 12941575
    [Google Scholar]
  93. SimolaN. MorelliM. CartaA.R. The 6-Hydroxydopamine model of parkinson’s disease.Neurotox. Res.2007113-415116710.1007/BF03033565 17449457
    [Google Scholar]
  94. SchoberA. Classic toxin-induced animal models of Parkinson?s disease: 6-OHDA and MPTP.Cell Tissue Res.2004318121522410.1007/s00441‑004‑0938‑y 15503155
    [Google Scholar]
  95. IancuR. MohapelP. BrundinP. PaulG. Behavioral characterization of a unilateral 6-OHDA-lesion model of Parkinson’s disease in mice.Behav. Brain Res.2005162111010.1016/j.bbr.2005.02.023 15922062
    [Google Scholar]
  96. ZhangX. YinM. ZhangM. Cell-based assays for Parkinson’s disease using differentiated human LUHMES cells.Acta Pharmacol. Sin.201435794595610.1038/aps.2014.36 24989254
    [Google Scholar]
  97. CalaminiB. GeyerN. Huss-BraunN. Development of a physiologically relevant and easily scalable LUHMES cell-based model of G2019S LRRK2-driven Parkinson’s disease.Dis. Model. Mech.2021146dmm04801710.1242/dmm.048017 34114604
    [Google Scholar]
  98. BeeversJ.E. CaffreyT.M. Wade-MartinsR. Induced pluripotent stem cell (iPSC)-derived dopaminergic models of Parkinson’s disease.Biochem. Soc. Trans.20134161503150810.1042/BST20130194 24256244
    [Google Scholar]
  99. Martínez-MoralesPL ListeI Stem cells as in vitro model of Parkinson's disease.Stem Cells Int20122012
    [Google Scholar]
  100. SahaS. GuillilyM.D. FerreeA. LRRK2 modulates vulnerability to mitochondrial dysfunction in Caenorhabditis elegans.J. Neurosci.200929299210921810.1523/JNEUROSCI.2281‑09.2009 19625511
    [Google Scholar]
  101. KuwaharaT. KoyamaA. Gengyo-AndoK. Familial Parkinson mutant alpha-synuclein causes dopamine neuron dysfunction in transgenic Caenorhabditis elegans.J. Biol. Chem.2006281133434010.1074/jbc.M504860200 16260788
    [Google Scholar]
  102. ZhangL. ShimojiM. ThomasB. Mitochondrial localization of the Parkinson’s disease related protein DJ-1: implications for pathogenesis.Hum. Mol. Genet.200514142063207310.1093/hmg/ddi211 15944198
    [Google Scholar]
  103. WangY.M. PuP. LeW.D. ATP depletion is the major cause of MPP+ induced dopamine neuronal death and worm lethality in α-synuclein transgenic C. elegans.Neurosci. Bull.200723632933510.1007/s12264‑007‑0049‑3 18064062
    [Google Scholar]
  104. MarvanovaM. NicholsC.D. Identification of neuroprotective compounds of Caenorhabditis elegans dopaminergic neurons against 6-OHDA.J. Mol. Neurosci.200731212713710.1385/JMN/31:02:127 17478886
    [Google Scholar]
  105. NassR. HallD.H. MillerD.M.III BlakelyR.D. Neurotoxin-induced degeneration of dopamine neurons in Caenorhabditis elegans.Proc. Natl. Acad. Sci. USA20029953264326910.1073/pnas.042497999 11867711
    [Google Scholar]
  106. SagerJ.J. BaiQ. BurtonE.A. Transgenic zebrafish models of neurodegenerative diseases.Brain Struct. Funct.20102142-328530210.1007/s00429‑009‑0237‑1 20162303
    [Google Scholar]
  107. ShengD. QuD. KwokK.H.H. Deletion of the WD40 domain of LRRK2 in Zebrafish causes Parkinsonism-like loss of neurons and locomotive defect.PLoS Genet.201064e100091410.1371/journal.pgen.1000914 20421934
    [Google Scholar]
  108. HoweK. ClarkM.D. TorrojaC.F. The zebrafish reference genome sequence and its relationship to the human genome.Nature2013496744649850310.1038/nature12111 23594743
    [Google Scholar]
  109. VijayanathanY. LimF.T. LimS.M. 6-OHDA-lesioned adult zebrafish as a useful Parkinson’s disease model for dopaminergic neuroregeneration.Neurotox. Res.201732349650810.1007/s12640‑017‑9778‑x 28707266
    [Google Scholar]
  110. RobeaM.A. StrungaruS.A. LenziC. The importance of rotenone in generating neurological and psychiatric features in zebrafish-relevance for a Parkinson’s disease model.AOSR2018715967
    [Google Scholar]
  111. KhotimahH. SumitroS.B. WidodoM.A. Zebrafish Parkinson’s model: rotenone decreases motility, and dopamine, and increase α-synuclein aggregation and apoptosis of zebrafish brain.Int. J. Pharm. Tech. Res.20154614621
    [Google Scholar]
  112. BortolottoJ.W. CognatoG.P. ChristoffR.R. Long-term exposure to paraquat alters behavioral parameters and dopamine levels in adult zebrafish (Danio rerio).Zebrafish201411214215310.1089/zeb.2013.0923 24568596
    [Google Scholar]
  113. AnichtchikO.V. KaslinJ. PeitsaroN. ScheininM. PanulaP. Neurochemical and behavioural changes in zebrafish Danio rerio after systemic administration of 6‐hydroxydopamine and 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine.J. Neurochem.200488244345310.1111/j.1471‑4159.2004.02190.x 14690532
    [Google Scholar]
  114. MizunoH FujikakeN WadaK NagaiY. α-Synuclein transgenic Drosophila as a model of Parkinson's disease and related synucleinopathies.Parkinson’s Dis20112011
    [Google Scholar]
  115. HaywoodA.F.M. StaveleyB.E. Parkin counteracts symptoms in a Drosophila model of Parkinson’s disease.BMC Neurosci.2004511410.1186/1471‑2202‑5‑14 15090075
    [Google Scholar]
  116. HayashiT. IshimoriC. Takahashi-NikiK. DJ-1 binds to mitochondrial complex I and maintains its activity.Biochem. Biophys. Res. Commun.2009390366767210.1016/j.bbrc.2009.10.025 19822128
    [Google Scholar]
  117. AryalB. LeeY. Disease model organism for Parkinson disease: Drosophila melanogaster.BMB Rep.201952425025810.5483/BMBRep.2019.52.4.204 30545438
    [Google Scholar]
  118. CoulomH. BirmanS. Chronic exposure to rotenone models sporadic Parkinson’s disease in Drosophila melanogaster.J. Neurosci.20042448109931099810.1523/JNEUROSCI.2993‑04.2004 15574749
    [Google Scholar]
  119. NavarroJ.A. HeßnerS. YenisettiS.C. Analysis of dopaminergic neuronal dysfunction in genetic and toxin‐induced models of Parkinson’s disease in Drosophila.J. Neurochem.2014131336938210.1111/jnc.12818 25040725
    [Google Scholar]
  120. KirikD. RosenbladC. BurgerC. Parkinson-like neurodegeneration induced by targeted overexpression of α-synuclein in the nigrostriatal system.J. Neurosci.20022272780279110.1523/JNEUROSCI.22‑07‑02780.2002 11923443
    [Google Scholar]
  121. YamadaM. IwatsuboT. MizunoY. MochizukiH. Overexpression of α‐synuclein in rat substantia nigra results in loss of dopaminergic neurons, phosphorylation of α‐synuclein and activation of caspase‐9: resemblance to pathogenetic changes in Parkinson’s disease.J. Neurochem.200491245146110.1111/j.1471‑4159.2004.02728.x 15447678
    [Google Scholar]
  122. LelanF. BoyerC. ThinardR. Effects of human alpha-synuclein A53T-A30P mutations on SVZ and local olfactory bulb cell proliferation in a transgenic rat model of Parkinson disease.Parkinsons Dis.2011201198708411110.4061/2011/987084 21766003
    [Google Scholar]
  123. ZhouH. HuangC. TongJ. HongW.C. LiuY.J. XiaX.G. Temporal expression of mutant LRRK2 in adult rats impairs dopamine reuptake.Int. J. Biol. Sci.20117675376110.7150/ijbs.7.753 21698001
    [Google Scholar]
  124. AllenM.T. LevyL.S. Parkinson’s disease and pesticide exposure – A new assessment.Crit. Rev. Toxicol.201343651553410.3109/10408444.2013.798719 23844699
    [Google Scholar]
/content/journals/cnsnddt/10.2174/0118715273326866240922193029
Loading
/content/journals/cnsnddt/10.2174/0118715273326866240922193029
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): animal models; cell lines; genes; neurotoxin; Parkinson’s disease; transgenic models
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test