Skip to content
2000
Volume 24, Issue 2
  • ISSN: 1871-5273
  • E-ISSN: 1996-3181

Abstract

Repurposing drugs (DR) has become a viable approach to hasten the search for cures for neurodegenerative diseases (NDs). This review examines different off-target and on-target drug discovery techniques and how they might be used to find possible treatments for non-diagnostic depressions. Off-target strategies look at the known or unknown side effects of currently approved drugs for repositioning, whereas on-target strategies connect disease pathways to targets that can be treated with drugs. The review highlights the potential of experimental and computational methodologies, such as machine learning, proteomic techniques, network and genomics-based approaches, and screening, in uncovering new drug-disease correlations. It also looks at difficulties and failed attempts at drug repurposing for NDs, highlighting the necessity of exact and standardised procedures to increase success rates. This review's objectives are to address the purpose of drug repurposing in human disorders, particularly neurological diseases, and to provide an overview of repurposing candidates that are presently undergoing clinical trials for neurological conditions, along with any possible causes and early findings. We then include a list of drug repurposing strategies, restrictions, and difficulties for upcoming research.

Loading

Article metrics loading...

/content/journals/cnsnddt/10.2174/0118715273329531240911075309
2024-09-25
2025-10-13
Loading full text...

Full text loading...

References

  1. CottlerL.B. ZuntJ. WeissB. KamalA.K. VaddipartiK. Building global capacity for brain and nervous system disorders research.Nature20155277578S207S21310.1038/nature16037 26580329
    [Google Scholar]
  2. ChinJ.H. VoraN. The global burden of neurologic diseases.Neurology201483434935110.1212/WNL.0000000000000610 25049303
    [Google Scholar]
  3. WhitefordH.A. DegenhardtL. RehmJ. Global burden of disease attributable to mental and substance use disorders: Findings from the Global Burden of Disease Study 2010.Lancet201338299041575158610.1016/S0140‑6736(13)61611‑6 23993280
    [Google Scholar]
  4. NugentR.A. YachD. FeiglA.B. Non-communicable diseases and the Paris Declaration.Lancet2009374969278478510.1016/S0140‑6736(09)61589‑0 19733778
    [Google Scholar]
  5. LaneC.A. HardyJ. SchottJ.M. Alzheimer’s disease.Eur. J. Neurol.2018251597010.1111/ene.13439 28872215
    [Google Scholar]
  6. RadderD.L.M. SturkenboomI.H. van NimwegenM. KeusS.H. BloemB.R. de VriesN.M. Physical therapy and occupational therapy in Parkinson’s disease.Int. J. Neurosci.20171271093094310.1080/00207454.2016.1275617 28007002
    [Google Scholar]
  7. ShorvonS.D. The epidemiology and treatment of chronic and refractory epilepsy.Epilepsia199637Suppl. 2S1S310.1111/j.1528‑1157.1996.tb06027.x
    [Google Scholar]
  8. LöscherW. BrandtC. Prevention or modification of epileptogenesis after brain insults: Experimental approaches and translational research.Pharmacol. Rev.201062466870010.1124/pr.110.003046 21079040
    [Google Scholar]
  9. HolmesG.L. NoebelsJ.L. The epilepsy spectrum: Targeting future research challenges.Cold Spring Harb. Perspect. Med.201667a02804310.1101/cshperspect.a028043 27371672
    [Google Scholar]
  10. HemphillC.S. SampatB.N. Evergreening, patent challenges, and effective market life in pharmaceuticals.J. Health Econ.20123122393910.1016/j.jhealeco.2012.01.004
    [Google Scholar]
  11. DiMasiJ.A. GrabowskiH.G. HansenR.W. Innovation in the pharmaceutical industry: New estimates of R&D costs.J. Health Econ.201647203310.1016/j.jhealeco.2016.01.012 26928437
    [Google Scholar]
  12. StrittmatterS.M. Overcoming Drug Development Bottlenecks with Repurposing: Old drugs learn new tricks.Nat. Med.201420659059110.1038/nm.3595 24901567
    [Google Scholar]
  13. ScannellJ.W. BlanckleyA. BoldonH. WarringtonB. Diagnosing the decline in pharmaceutical R&D efficiency.Nat. Rev. Drug Discov.201211319120010.1038/nrd3681 22378269
    [Google Scholar]
  14. DiMasiJ.A. FeldmanL. SecklerA. WilsonA. Trends in risks associated with new drug development: Success rates for investigational drugs.Clin. Pharmacol. Ther.201087327227710.1038/clpt.2009.295 20130567
    [Google Scholar]
  15. ArrowsmithJ. MillerP. Phase II and Phase III attrition rates 2011–2012.Nat. Rev. Drug Discov.201312856910.1038/nrd4090 23903212
    [Google Scholar]
  16. O’ConnorK.A. RothB.L. Finding new tricks for old drugs: An efficient route for public-sector drug discovery.Nat. Rev. Drug Discov.20054121005101410.1038/nrd1900 16341065
    [Google Scholar]
  17. KumarR. HarilalS. GuptaS.V. Exploring the new horizons of drug repurposing: A vital tool for turning hard work into smart work.Eur. J. Med. Chem.201918211160210.1016/j.ejmech.2019.111602 31421629
    [Google Scholar]
  18. TuranliB. GrøtliM. BorenJ. Drug repositioning for effective prostate cancer treatment.Front. Physiol.2018950010.3389/fphys.2018.00500 29867548
    [Google Scholar]
  19. LagoS.G. BahnS. Clinical trials and therapeutic rationale for drug repurposing in Schizophrenia.ACS Chem. Neurosci.2019101587810.1021/acschemneuro.8b00205 29944339
    [Google Scholar]
  20. MaoX.Y. Drug Repurposing in Neurological Diseases: Opportunities and Challenges.Drug Repurposing - Hypothesis, Molecular Aspects and Therapeutic Applications2020
    [Google Scholar]
  21. RosenblatJ.D. McIntyreR.S. Efficacy and tolerability of minocycline for depression: A systematic review and meta-analysis of clinical trials.J. Affect. Disord.201822721922510.1016/j.jad.2017.10.042 29102836
    [Google Scholar]
  22. AbrahamJ. FoxP.D. CondelloC. BartoliniA. KohS. Minocycline attenuates microglia activation and blocks the long-term epileptogenic effects of early-life seizures.Neurobiol. Dis.2012462425430
    [Google Scholar]
  23. HeoK. Minocycline inhibits caspase-dependent and -independent cell death pathways and is neuroprotective against hippocampal damage after treatment with kainic acid in mice.Neurosci. Lett.2006398319520010.1016/j.neulet.2006.01.027
    [Google Scholar]
  24. Beheshti NasrS.M. MoghimiA. Mohammad-ZadehM. ShamsizadehA. NoorbakhshS.M. The effect of minocycline on seizures induced by amygdala kindling in rats.Seizure201322867067410.1016/j.seizure.2013.05.005
    [Google Scholar]
  25. KumarA. NOX2 drives M1-like microglial/macrophage activation and neurodegeneration following experimental traumatic brain injury.Brain Behav. Immun.201658291309
    [Google Scholar]
  26. PeregoC. Macrophages are essential for maintaining a M2 protective response early after ischemic brain injury.Neurobiol. Dis.20169628429310.1016/j.nbd.2016.09.017
    [Google Scholar]
  27. WanS. ChengY. JinH. Microglia activation and polarization after intracerebral hemorrhage in mice: The role of protease-activated receptor-1.Transl. Stroke Res.20167647848710.1007/s12975‑016‑0472‑8 27206851
    [Google Scholar]
  28. MiaoH. LiR. HanC. LuX. ZhangH. Minocycline promotes posthemorrhagic neurogenesis via M2 microglia polarization via upregulation of the TrkB/BDNF pathway in rats.J. Neurophysiol.201812031307131710.1152/jn.00234.2018 29790836
    [Google Scholar]
  29. CaiZ. WangC. ChenY. HeW. An antioxidant role by minocycline via enhancing the activation of LKB1/AMPK signaling in the process of cerebral ischemia injury.Curr. Mol. Med.201818314215110.2174/1566524018666180907161504 30198433
    [Google Scholar]
  30. ScottG. ZetterbergH. JollyA. Minocycline reduces chronic microglial activation after brain trauma but increases neurodegeneration.Brain2018141245947110.1093/brain/awx339 29272357
    [Google Scholar]
  31. BidabadiE. MashoufM. A randomized trial of propranolol versus sodium valproate for the prophylaxis of migraine in pediatric patients.Paediatr. Drugs201012426927510.2165/11316270‑000000000‑00000 20593910
    [Google Scholar]
  32. RabkinR. StablesD.P. LevinN.W. SuzmanM.M. The prophylactic value of propranolol in angina pectoris.Am. J. Cardiol.196618337038010.1016/0002‑9149(66)90056‑7 4958813
    [Google Scholar]
  33. KoA. HaradaM.Y. BarmparasG. Early propranolol after traumatic brain injury is associated with lower mortality.J. Trauma Acute Care Surg.201680463764210.1097/TA.0000000000000959 26808028
    [Google Scholar]
  34. ArmsteadW.M. VavilalaM.S. Propranolol protects cerebral autoregulation and reduces hippocampal neuronal cell death through inhibition of interleukin-6 upregulation after traumatic brain injury in pigs.Br. J. Anaesth.2019123561061710.1016/j.bja.2019.07.017 31542162
    [Google Scholar]
  35. BarnumC.J. BhideN. LindenbachD. Effects of noradrenergic denervation on L-DOPA-induced dyskinesia and its treatment by α- and β-adrenergic receptor antagonists in hemiparkinsonian rats.Pharmacol. Biochem. Behav.2012100360761510.1016/j.pbb.2011.09.009 21978941
    [Google Scholar]
  36. WaeberC. RigoM. ChinagliaG. ProbstA. PalaciosJ.M. Beta‐adrenergic receptor subtypes in the basal ganglia of patients with Huntington’s chorea and Parkinson’s disease.Synapse19918427028010.1002/syn.890080405 1656540
    [Google Scholar]
  37. MüllerT. KuhnW. MöhrJ.D. Evaluating ADS5102 (amantadine) for the treatment of Parkinson’s disease patients with dyskinesia.Expert Opin. Pharmacother.201920101181118710.1080/14656566.2019.1612365 31058557
    [Google Scholar]
  38. SchwabR.S. EnglandA.C.Jr PoskanzerD.C. YoungR.R. Amantadine in the treatment of Parkinson’s disease.JAMA196920871168117010.1001/jama.1969.03160070046011 5818715
    [Google Scholar]
  39. BaileyE.V. StoneT.W. The mechanism of action of amantadine in Parkinsonism: A review.Arch. Int. Pharmacodyn. Ther.19752162246262 1180616
    [Google Scholar]
  40. ChaseT.N. BibbianiF. OhJ.D. Striatal glutamatergic mechanisms and extrapyramidal movement disorders.Neurotox. Res.200351-213914510.1007/BF03033378 12832228
    [Google Scholar]
  41. NastukW.L. SuP.C. DoubiletP. Anticholinergic and membrane activities of amantadine in neuromuscular transmission.Nature19762645581767910.1038/264076a0 187945
    [Google Scholar]
  42. WrightJ.W. HardingJ.W. Brain renin-angiotensin—a new look at an old system.Prog. Neurobiol.2011954967
    [Google Scholar]
  43. WangJ. HoL. ChenL. Valsartan lowers brain β-amyloid protein levels and improves spatial learning in a mouse model of Alzheimer disease.J. Clin. Invest.2007117113393340210.1172/JCI31547 17965777
    [Google Scholar]
  44. MogiM. Telmisartan prevented cognitive decline partly due to PPARgamma activation.J. Cardiol.2008606489494
    [Google Scholar]
  45. DanielyanL. KleinR. HansonL.R. Protective effects of intranasal losartan in the APP/PS1 transgenic mouse model of Alzheimer disease.Rejuvenation Res.2010132-319520110.1089/rej.2009.0944 20370487
    [Google Scholar]
  46. LiNC LeeA WhitmerRA Use of angiotensin receptor blockers and risk of dementia in a predominantly male population: Prospective cohort analysis.BMJ2010340(jan12 1): b5465.10.1136/bmj.b5465 20068258
    [Google Scholar]
  47. DaviesN.M. KehoeP.G. Ben-ShlomoY. MartinR.M. Associations of anti-hypertensive treatments with Alzheimer’s disease, vascular dementia, and other dementias.J. Alzheimers Dis.201126469970810.3233/JAD‑2011‑110347 21709373
    [Google Scholar]
  48. XiongL. ChinaekeE.E. LuK. LenihanD.J. MerrittT.E. CoxZ.L. Evaluation of severe myalgia induced by continuous-infusion bumetanide in patients with acute heart failure.Pharmacotherapy201939885486010.1002/phar.2297 31225921
    [Google Scholar]
  49. KailaK. PriceT.J. PayneJ.A. PuskarjovM. VoipioJ. Cation-chloride cotransporters in neuronal development, plasticity and disease.Nat. Rev. Neurosci.2014151063765410.1038/nrn3819 25234263
    [Google Scholar]
  50. HochmanD.W. The extracellular space and epileptic activity in the adult brain: Explaining the antiepileptic effects of furosemide and bumetanide.Epilepsia201253s1Suppl. 1182510.1111/j.1528‑1167.2012.03471.x 22612805
    [Google Scholar]
  51. RheimsS. MinlebaevM. IvanovA. Excitatory GABA in rodent developing neocortex in vitro.J. Neurophysiol.2008100260961910.1152/jn.90402.2008 18497364
    [Google Scholar]
  52. LöscherW. PuskarjovM. KailaK. Cation-chloride cotransporters NKCC1 and KCC2 as potential targets for novel antiepileptic and antiepileptogenic treatments.Neuropharmacology201369627410.1016/j.neuropharm.2012.05.045 22705273
    [Google Scholar]
  53. DzhalaV.I. BrumbackA.C. StaleyK.J. Bumetanide enhances phenobarbital efficacy in a neonatal seizure model.Ann. Neurol.200863222223510.1002/ana.21229 17918265
    [Google Scholar]
  54. LiuY. ShangguanY. BarksJ.D.E. SilversteinF.S. Bumetanide augments the neuroprotective efficacy of phenobarbital plus hypothermia in a neonatal hypoxia–ischemia model.Pediatr. Res.201271555956510.1038/pr.2012.7 22398701
    [Google Scholar]
  55. EftekhariS. Mehvari HabibabadiJ. Najafi ZiaraniM. Bumetanide reduces seizure frequency in patients with temporal lobe epilepsy.Epilepsia2013541e9e1210.1111/j.1528‑1167.2012.03654.x 23061490
    [Google Scholar]
  56. LemonnierE. DegrezC. PhelepM. A randomised controlled trial of bumetanide in the treatment of autism in children.Transl. Psychiatry2012212e20210.1038/tp.2012.124 23233021
    [Google Scholar]
  57. TöllnerK. BrandtC. TöpferM. A novel prodrug‐based strategy to increase effects of bumetanide in epilepsy.Ann. Neurol.201475455056210.1002/ana.24124 24615913
    [Google Scholar]
  58. HatipogluG. HockS.W. WeissR. Sunitinib impedes brain tumor progression and reduces tumor‐induced neurodegeneration in the microenvironment.Cancer Sci.2015106216017010.1111/cas.12580 25458015
    [Google Scholar]
  59. AddeoR. CaragliaM. The oral tyrosine kinase inhibitors lapatinib and sunitinib: New opportunities for the treatment of brain metastases from breast cancer?Expert Rev. Anticancer Ther.201111213914210.1586/era.10.190 21342029
    [Google Scholar]
  60. HuangL. LinJ. XiangS. Sunitinib, a clinically used anticancer drug. Is a potent AChE inhibitor and attenuates cognitive impairments in mice.ACS Chem. Neurosci.2016781047105610.1021/acschemneuro.5b00329 27046396
    [Google Scholar]
  61. CuiW. Sunitinib produces neuroprotective effect via inhibiting nitric oxide overproduction.CNS Neurosci. Ther.201420324425210.1111/cns.12203
    [Google Scholar]
  62. AmanM.G. KernR.A. Review of fenfluramine in the treatment of the developmental disabilities.J. Am. Acad. Child Adolesc. Psychiatry198928454956510.1097/00004583‑198907000‑00014 2670881
    [Google Scholar]
  63. BagdyG. KecskemetiV. RibaP. JakusR. Serotonin and epilepsy.J. Neurochem.2007100485787310.1111/j.1471‑4159.2006.04277.x 17212700
    [Google Scholar]
  64. CeulemansB. BoelM. LeyssensK. Successful use of fenfluramine as an add-on treatment for Dravet syndrome.Epilepsia20125371131113910.1111/j.1528‑1167.2012.03495.x 22554283
    [Google Scholar]
  65. BoelM. CasaerP. Add-on therapy of fenfluramine in intractable self-induced epilepsy.Neuropediatrics199627417117310.1055/s‑2007‑973781 8892363
    [Google Scholar]
  66. Garcia PierceJ. MithalD.S. Fenfluramine: New treatment for seizures in Dravet Syndrome.Pediatr. Neurol. Briefs2020340810.15844/pedneurbriefs‑34‑8 32189958
    [Google Scholar]
  67. LagaeL. SullivanJ. KnuppK. Fenfluramine hydrochloride for the treatment of seizures in Dravet syndrome: A randomised, double-blind, placebo-controlled trial.Lancet2019394102162243225410.1016/S0140‑6736(19)32500‑0 31862249
    [Google Scholar]
  68. BishopC. MDMA and fenfluramine reduce L-DOPA-induced dyskinesia via indirect 5-HT1A receptor stimulation.Eur. J. Neurosci.200623102669267610.1111/j.1460‑9568.2006.04790.x
    [Google Scholar]
  69. DelaneyB. LoyJ. KellyA.M. The relative efficacy of adenosine versus verapamil for the treatment of stable paroxysmal supraventricular tachycardia in adults: A meta-analysis.Official J European Soc Emerg Med20111814815210.1097/MEJ.0b013e3283400ba2
    [Google Scholar]
  70. RobeyR.W. LazarowskiA. BatesS.E. P-glycoprotein--a clinical target in drug-refractory epilepsy?Mol. Pharmacol.20087351343134610.1124/mol.108.046680 18314494
    [Google Scholar]
  71. SummersM.A. MooreJ.L. McAuleyJ.W. Use of verapamil as a potential P-glycoprotein inhibitor in a patient with refractory epilepsy.Ann. Pharmacother.200438101631163410.1345/aph.1E068
    [Google Scholar]
  72. de KlerkO.L. WillemsenA.T.M. RoosinkM. Locally increased P-glycoprotein function in major depression: A PET study with [11C]verapamil as a probe for P-glycoprotein function in the blood-brain barrier.Int. J. Neuropsychopharmacol.200912789590410.1017/S1461145709009894 19224656
    [Google Scholar]
  73. KeuskampJ. MuraliR. ChaoK.H. High-dose intraarterial verapamil in the treatment of cerebral vasospasm after aneurysmal subarachnoid hemorrhage.J. Neurosurg.2008108345846310.3171/JNS/2008/108/3/0458 18312091
    [Google Scholar]
  74. FraserJ.F. ManiskasM. TroutA. Intra-arterial verapamil post-thrombectomy is feasible, safe, and neuroprotective in stroke.J. Cereb. Blood Flow Metab.201737113531354310.1177/0271678X17705259 28429604
    [Google Scholar]
  75. EardleyI. EllisP. BoolellM. WulffM. Onset and duration of action of sildenafil for the treatment of erectile dysfunction.Br. J. Clin. Pharmacol.200253s1Suppl. 161S65S10.1046/j.0306‑5251.2001.00034.x 11879261
    [Google Scholar]
  76. GoldsteinI. LueT.F. Padma-NathanH. RosenR.C. SteersW.D. WickerP.A. Oral sildenafil in the treatment of erectile dysfunction.N. Engl. J. Med.1998338201397140410.1056/NEJM199805143382001 9580646
    [Google Scholar]
  77. MontorsiF. McDermottT.E.D. MorganR. Efficacy and safety of fixed-dose oral sildenafil in the treatment of erectile dysfunction of various etiologies.Urology19995351011101810.1016/S0090‑4295(98)00643‑8 10223498
    [Google Scholar]
  78. DinsmoreW.W. HodgesM. HargreavesC. OsterlohI.H. SmithM.D. RosenR.C. Sildenafil citrate (viagra) in erectile dysfunction: Near normalization in men with broad-spectrum erectile dysfunction compared with age-matched healthy control subjects.Urology199953480080510.1016/S0090‑4295(98)00586‑X 10197860
    [Google Scholar]
  79. StuckeyB.G.A. JadzinskyM.N. MurphyL.J. Sildenafil citrate for treatment of erectile dysfunction in men with type 1 diabetes: Results of a randomized controlled trial.Diabetes Care200326227928410.2337/diacare.26.2.279 12547849
    [Google Scholar]
  80. RendellM.S. RajferJ. WickerP.A. SmithM.D. Sildenafil for treatment of erectile dysfunction in men with diabetes: A randomized controlled trial.JAMA1999281542142610.1001/jama.281.5.421 9952201
    [Google Scholar]
  81. OlssonA.M. PerssonC-A. Efficacy and safety of sildenafil citrate for the treatment of erectile dysfunction in men with cardiovascular disease.Int. J. Clin. Pract.200155317117610.1111/j.1742‑1241.2001.tb11009.x 11351770
    [Google Scholar]
  82. FowlerC.J. MillerJ.R. ShariefM.K. HussainI.F. StecherV.J. SweeneyM. A double blind, randomised study of sildenafil citrate for erectile dysfunction in men with multiple sclerosis.J. Neurol. Neurosurg. Psychiatry200576570070510.1136/jnnp.2004.038695 15834030
    [Google Scholar]
  83. DerryF.A. DinsmoreW.W. FraserM. Efficacy and safety of oral sildenafil (Viagra) in men with erectile dysfunction caused by spinal cord injury.Neurology19985161629163310.1212/WNL.51.6.1629 9855514
    [Google Scholar]
  84. OguraK. IchiokaK. TeradaN. YoshimuraK. TeraiA. AraiY. Role of sildenafil citrate in treatment of erectile dysfunction after radical retropubic prostatectomy.Int. J. Urol.200411315916310.1111/j.1442‑2042.2003.00759.x 15009364
    [Google Scholar]
  85. MoralesA. GingellC. CollinsM. WickerP.A. OsterlohI.H. Clinical safety of oral sildenafil citrate (VIAGRATM) in the treatment of erectile dysfunction.Int. J. Impot. Res.1998102697310.1038/sj.ijir.3900354 9647940
    [Google Scholar]
  86. GbekorE. BethellS. FawcettL. MountN. PhillipsS. Phosphodiesterase 5 inhibitor profiles against all human phosphodiesterase families: Implications for use as pharmacological tools.J. Urol.2002167S246
    [Google Scholar]
  87. LatiesA.M. ZrennerE. Viagra® (sildenafil citrate) and ophthalmology.Prog. Retin. Eye Res.200221548550610.1016/S1350‑9462(02)00013‑7 12207947
    [Google Scholar]
  88. MarmorM.F. KesslerR. Sildenafil (Viagra) and ophthalmology.Surv. Ophthalmol.199944215316210.1016/S0039‑6257(99)00079‑X 10541153
    [Google Scholar]
  89. AbbottD. CombyP. CharuelC. Preclinical safety profile of sildenafil.Int. J. Impot. Res.200416649850410.1038/sj.ijir.3901232 15057260
    [Google Scholar]
  90. WarnockD.W. Itraconazole and fluconazole: New drugs for deep fungal infection.J. Antimicrob. Chemother.198924327527610.1093/jac/24.3.275 2553654
    [Google Scholar]
  91. BosscheH.V. MarichalP. GorrensJ. GeertsH. JanssenP.A.J. Mode of action studies. Basis for the search of new antifungal drugs.Ann. N. Y. Acad. Sci.1988544119120710.1111/j.1749‑6632.1988.tb40404.x 2850749
    [Google Scholar]
  92. Barrett-BeeK. DixonG. Ergosterol biosynthesis inhibition: A target for antifungal agents.Acta Biochim. Pol.199542446547910.18388/abp.1995_4900 8852337
    [Google Scholar]
  93. Vanden BosscheH. MarichalP. Le JeuneL. CoeneM.C. GorrensJ. CoolsW. Effects of itraconazole on cytochrome P-450-dependent sterol 14 alpha-demethylation and reduction of 3-ketosteroids in Cryptococcus neoformans.Antimicrob. Agents Chemother.199337102101210510.1128/AAC.37.10.2101 8257130
    [Google Scholar]
  94. RestrepoA. RobledoJ. GómezI. TabaresA.M. GutiérrezR. Itraconazole therapy in lymphangitic and cutaneous sporotrichosis.Arch. Dermatol.1986122441341710.1001/archderm.1986.01660160069021 3006602
    [Google Scholar]
  95. ChongC.R. XuJ. LuJ. BhatS. SullivanD.J.Jr LiuJ.O. Inhibition of angiogenesis by the antifungal drug itraconazole.ACS Chem. Biol.20072426327010.1021/cb600362d 17432820
    [Google Scholar]
  96. KimJ. TangJ.Y. GongR. Itraconazole, a commonly used antifungal that inhibits Hedgehog pathway activity and cancer growth.Cancer Cell201017438839910.1016/j.ccr.2010.02.027 20385363
    [Google Scholar]
  97. AftabB.T. DobromilskayaI. LiuJ.O. RudinC.M. Itraconazole inhibits angiogenesis and tumor growth in non-small cell lung cancer.Cancer Res.201171216764677210.1158/0008‑5472.CAN‑11‑0691 21896639
    [Google Scholar]
  98. RudinC.M. BrahmerJ.R. JuergensR.A. Phase 2 study of pemetrexed and itraconazole as second-line therapy for metastatic nonsquamous non-small-cell lung cancer.J. Thorac. Oncol.20138561962310.1097/JTO.0b013e31828c3950 23546045
    [Google Scholar]
  99. AntonarakisE.S. HeathE.I. SmithD.C. Repurposing itraconazole as a treatment for advanced prostate cancer: A noncomparative randomized phase II trial in men with metastatic castration-resistant prostate cancer.Oncologist201318216317310.1634/theoncologist.2012‑314 23340005
    [Google Scholar]
  100. KimD.J. KimJ. SpaunhurstK. Open-label, exploratory phase II trial of oral itraconazole for the treatment of basal cell carcinoma.J. Clin. Oncol.201432874575110.1200/JCO.2013.49.9525 24493717
    [Google Scholar]
  101. LestnerJ.M. RobertsS.A. MooreC.B. HowardS.J. DenningD.W. HopeW.W. Toxicodynamics of itraconazole: Implications for therapeutic drug monitoring.Clin. Infect. Dis.200949692893010.1086/605499 19681707
    [Google Scholar]
  102. XuJ. DangY. RenY.R. LiuJ.O. Cholesterol trafficking is required for mTOR activation in endothelial cells.Proc. Natl. Acad. Sci. USA2010107104764476910.1073/pnas.0910872107 20176935
    [Google Scholar]
  103. NacevB.A. GrassiP. DellA. HaslamS.M. LiuJ.O. The antifungal drug itraconazole inhibits vascular endothelial growth factor receptor 2 (VEGFR2) glycosylation, trafficking, and signaling in endothelial cells.J. Biol. Chem.201128651440454405610.1074/jbc.M111.278754 22025615
    [Google Scholar]
  104. MoyleG.J. YouleM. HiggsC. Safety, pharmacokinetics, and antiretroviral activity of the potent, specific human immunodeficiency virus protease inhibitor nelfinavir: Results of a phase I/II trial and extended follow-up in patients infected with human immunodeficiency virus.J. Clin. Pharmacol.199838873674310.1002/j.1552‑4604.1998.tb04814.x 9725550
    [Google Scholar]
  105. MarzoliniC. BuclinT. DecosterdL.A. BiollazJ. TelentiA. Nelfinavir plasma levels under twice-daily and three-times-daily regimens: High interpatient and low intrapatient variability.Ther. Drug Monit.200123439439810.1097/00007691‑200108000‑00012 11477322
    [Google Scholar]
  106. Bardsley-ElliotA. PloskerG.L. Nelfinavir.Drugs200059358162010.2165/00003495‑200059030‑00014 10776836
    [Google Scholar]
  107. SgadariC. MoniniP. BarillariG. EnsoliB. Use of HIV protease inhibitors to block Kaposi’s sarcoma and tumour growth.Lancet Oncol.20034953754710.1016/S1470‑2045(03)01192‑6 12965274
    [Google Scholar]
  108. IkezoeT. SaitoT. BandobashiK. YangY. KoefflerH.P. TaguchiH. HIV-1 protease inhibitor induces growth arrest and apoptosis of human multiple myeloma cells via inactivation of signal transducer and activator of transcription 3 and extracellular signal-regulated kinase 1/2.Mol. Cancer Ther.20043447347910.1158/1535‑7163.473.3.4 15078991
    [Google Scholar]
  109. GillsJ.J. LoPiccoloJ. TsurutaniJ. Nelfinavir, A lead HIV protease inhibitor, is a broad-spectrum, anticancer agent that induces endoplasmic reticulum stress, autophagy, and apoptosis in vitro and in vivo.Clin. Cancer Res.200713175183519410.1158/1078‑0432.CCR‑07‑0161 17785575
    [Google Scholar]
  110. YangY. IkezoeT. NishiokaC. NFV, an HIV-1 protease inhibitor, induces growth arrest, reduced Akt signalling, apoptosis and docetaxel sensitisation in NSCLC cell lines.Br. J. Cancer200695121653166210.1038/sj.bjc.6603435 17133272
    [Google Scholar]
  111. YangY. IkezoeT. TakeuchiT. HIV‐1 protease inhibitor induces growth arrest and apoptosis of human prostate cancer LNCaP cells in vitro and in vivo in conjunction with blockade of androgen receptor STAT3 and AKT signaling.Cancer Sci.200596742543310.1111/j.1349‑7006.2005.00063.x 16053514
    [Google Scholar]
  112. BrüningA. FrieseK. BurgesA. MylonasI. Tamoxifen enhances the cytotoxic effects of nelfinavir in breast cancer cells.Breast Cancer Res.2010124R4510.1186/bcr2602 20594311
    [Google Scholar]
  113. ShimJ.S. RaoR. BeebeK. Selective inhibition of HER2-positive breast cancer cells by the HIV protease inhibitor nelfinavir.J. Natl. Cancer Inst.2012104201576159010.1093/jnci/djs396 23042933
    [Google Scholar]
  114. BrunnerT.B. GeigerM. GrabenbauerG.G. Phase I trial of the human immunodeficiency virus protease inhibitor nelfinavir and chemoradiation for locally advanced pancreatic cancer.J. Clin. Oncol.200826162699270610.1200/JCO.2007.15.2355 18509182
    [Google Scholar]
  115. NetzerW.J. DouF. CaiD. Gleevec inhibits β-amyloid production but not Notch cleavage.Proc. Natl. Acad. Sci. USA200310021124441244910.1073/pnas.1534745100 14523244
    [Google Scholar]
  116. CulmanJ. BlumeA. GohlkeP. UngerT. The renin-angiotensin system in the brain: Possible therapeutic implications for AT1-receptor blockers.J. Hum. Hypertens.200216S3Suppl. 3S64S7010.1038/sj.jhh.1001442 12140731
    [Google Scholar]
  117. The Economic TimesWorld population grew by 74 million over past year: US Census Bureau.2021Available From: https://economictimes.indiatimes.com/news/international/world-news/worldpopulation-grew-by-74-million-over-past-year-us-census-bureau/articleshow/
  118. HouY. DanX. BabbarM. Ageing as a risk factor for neurodegenerative disease.Nat. Rev. Neurol.2019151056558110.1038/s41582‑019‑0244‑7 31501588
    [Google Scholar]
  119. KarlawishJ. JackC.R.Jr RoccaW.A. SnyderH.M. CarrilloM.C. Alzheimer’s disease: The next frontier—Special Report 2017.Alzheimers Dement.201713437438010.1016/j.jalz.2017.02.006 28314660
    [Google Scholar]
  120. KatsnelsonA. De StrooperB. ZoghbiH.Y. Neurodegeneration: From cellular concepts to clinical applications.Sci. Transl. Med.20168364364ps18610.1126/scitranslmed.aal2074 27831899
    [Google Scholar]
  121. CorrealeJ. GaitánM.I. YsrraelitM.C. FiolM.P. Progressive multiple sclerosis: From pathogenic mechanisms to treatment.Brain20161403aww25810.1093/brain/aww258 27794524
    [Google Scholar]
  122. BarnesL.L. Alzheimer disease in African American individuals: Increased incidence or not enough data?Nat. Rev. Neurol.2022181566210.1038/s41582‑021‑00589‑3 34873310
    [Google Scholar]
  123. BirksJ.S. HarveyR.J. Donepezil for dementia due to Alzheimer’s disease.Cochrane Database Syst. Rev.201866CD00119010.1002/14651858.CD001190.pub3
    [Google Scholar]
  124. DurãesF. PintoM. SousaE. Old drugs as new treatments for neurodegenerative diseases.Pharmaceuticals (Basel)20181124410.3390/ph11020044 29751602
    [Google Scholar]
  125. TanoliZ. Vähä-KoskelaM. AittokallioT. Artificial intelligence, machine learning, and drug repurposing in cancer.Expert Opin. Drug Discov.202116997798910.1080/17460441.2021.1883585 33543671
    [Google Scholar]
  126. RudrapalM. KhairnarS.J. JadhavA.G. Drug repurposing (DR): An emerging approach in drug discovery.Drug repurposing.London, UKIntechOpen202012010.5772/intechopen.93193
    [Google Scholar]
  127. WishartD.S. FeunangY.D. GuoA.C. DrugBank 5.0: A major update to the DrugBank database for 2018.Nucleic Acids Res.201846D1D1074D108210.1093/nar/gkx1037 29126136
    [Google Scholar]
  128. Technology NetworksDrug repurposing strategies, challenges and successes.2024Available From: https://www.technologynetworks.com/drug-discovery/articles/drug-repurposing-strategies
  129. BrehmerD. GreffZ. GodlK. Cellular targets of gefitinib.Cancer Res.200565237938210.1158/0008‑5472.379.65.2 15695376
    [Google Scholar]
  130. MolinaD.M. JafariR. IgnatushchenkoM. Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay.Science20133416141848710.1126/science.1233606 23828940
    [Google Scholar]
  131. KlaegerS. GohlkeB. PerrinJ. Chemical proteomics reveals ferrochelatase as a common off-target of kinase inhibitors.ACS Chem. Biol.20161151245125410.1021/acschembio.5b01063 26863403
    [Google Scholar]
  132. TroutmanS. MoleirinhoS. KotaS. Crizotinib inhibits NF2-associated schwannoma through inhibition of focal adhesion kinase 1.Oncotarget2016734545155452510.18632/oncotarget.10248 27363027
    [Google Scholar]
  133. BlankeC.D. DemetriG.D. von MehrenM. Long-term results from a randomized phase II trial of standard- versus higher-dose imatinib mesylate for patients with unresectable or metastatic gastrointestinal stromal tumors expressing KIT.J. Clin. Oncol.200826462062510.1200/JCO.2007.13.4403 18235121
    [Google Scholar]
  134. MoffatJ.G. VincentF. LeeJ.A. EderJ. PrunottoM. Opportunities and challenges in phenotypic drug discovery: An industry perspective.Nat. Rev. Drug Discov.201716853154310.1038/nrd.2017.111 28685762
    [Google Scholar]
  135. SwinneyD.C. AnthonyJ. How were new medicines discovered?Nat. Rev. Drug Discov.201110750751910.1038/nrd3480 21701501
    [Google Scholar]
  136. EderJ. SedraniR. WiesmannC. The discovery of first-in-class drugs: Origins and evolution.Nat. Rev. Drug Discov.201413857758710.1038/nrd4336 25033734
    [Google Scholar]
  137. CousinM.A. EbbertJ.O. WiinamakiA.R. Larval zebrafish model for FDA-approved drug repositioning for tobacco dependence treatment.PLoS One201493e9046710.1371/journal.pone.0090467 24658307
    [Google Scholar]
  138. HorvathP. AulnerN. BickleM. Screening out irrelevant cell-based models of disease.Nat. Rev. Drug Discov.2016151175176910.1038/nrd.2016.175 27616293
    [Google Scholar]
  139. De BenedettiP.G. FanelliF. Computational modeling approaches to quantitative structure–binding kinetics relationships in drug discovery.Drug Discov. Today20182371396140610.1016/j.drudis.2018.03.010 29574212
    [Google Scholar]
  140. ChenB. MaL. PaikH. Reversal of cancer gene expression correlates with drug efficacy and reveals therapeutic targets.Nat. Commun.2017811602210.1038/ncomms16022 28699633
    [Google Scholar]
  141. LuoY. ZhaoX. ZhouJ. A network integration approach for drug-target interaction prediction and computational drug repositioning from heterogeneous information.Nat. Commun.20178157310.1038/s41467‑017‑00680‑8 28924171
    [Google Scholar]
  142. YangL. AgarwalP. Systematic drug repositioning based on clinical side-effects.PLoS One2011612e2802510.1371/journal.pone.0028025 22205936
    [Google Scholar]
  143. LeeS.Y. SongM.Y. KimD. A proteotranscriptomic-based computational drug-repositioning method for Alzheimer’s disease.Front. Pharmacol.202010165310.3389/fphar.2019.01653 32063857
    [Google Scholar]
  144. GabathulerR. Approaches to transport therapeutic drugs across the blood-brain barrier to treat brain diseases.Neurobiol. Dis.2010371485710.1016/j.nbd.2009.07.028 19664710
    [Google Scholar]
  145. AlamM.I. BegS. SamadA. Strategy for effective brain drug delivery.Eur. J. Pharm. Sci.201040538540310.1016/j.ejps.2010.05.003 20497904
    [Google Scholar]
  146. van RooyI. Cakir-TasciogluS. HenninkW.E. StormG. SchiffelersR.M. MastrobattistaE. In vivo methods to study uptake of nanoparticles into the brain.Pharm. Res.201128345647110.1007/s11095‑010‑0291‑7 20924653
    [Google Scholar]
  147. ReichelA. Addressing central nervous system (CNS) penetration in drug discovery: Basics and implications of the evolving new concept.Chem. Biodivers.20096112030204910.1002/cbdv.200900103 19937839
    [Google Scholar]
  148. BonateP.L. Animal models for studying transport across the blood-brain barrier.J. Neurosci. Methods199556111510.1016/0165‑0270(94)00081‑Q 7715240
    [Google Scholar]
  149. ArturssonP. Epithelial transport of drugs in cell culture. I: A model for studying the passive diffusion of drugs over intestinal absorptive (Caco-2) cells.J. Pharm. Sci.199079647648210.1002/jps.2600790604 1975619
    [Google Scholar]
  150. MaoX-Y. Drug Repurposing in Neurological Diseases: Opportunities and Challenges.LondonIntechOpen202010.5772/intechopen.93093
    [Google Scholar]
  151. TaleviA. Drug repositioning: Current approaches and their implications in the precision medicine era.Expert Rev. Precis. Med. Drug Dev.201831496110.1080/23808993.2018.1424535
    [Google Scholar]
  152. ZhangM. Schmitt-UlmsG. SatoC. Drug repositioning for Alzheimer’s disease based on systematic “omics” data mining.PLoS One20161112e016881210.1371/journal.pone.0168812 28005991
    [Google Scholar]
  153. WishartD.S. FeunangY.D. MarcuA. HMDB 4.0: The human metabolome database for 2018.Nucleic Acids Res.201846D1D608D61710.1093/nar/gkx1089 29140435
    [Google Scholar]
  154. BunielloA. MacArthurJ.A.L. CerezoM. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019.Nucleic Acids Res.201947D1D1005D101210.1093/nar/gky1120 30445434
    [Google Scholar]
  155. WishartD.S. KnoxC. GuoA.C. DrugBank: A comprehensive resource for in silico drug discovery and exploration.Nucleic Acids Res.20063490001D668D67210.1093/nar/gkj067 16381955
    [Google Scholar]
  156. LiY.H. YuC.Y. LiX.X. Therapeutic target database update 2018: Enriched resource for facilitating bench-to-clinic research of targeted therapeutics.Nucleic Acids Res.201846D1D1121D112710.1093/nar/gkx1076 29140520
    [Google Scholar]
  157. GeifmanN. BrintonR.D. KennedyR.E. SchneiderL.S. ButteA.J. Evidence for benefit of statins to modify cognitive decline and risk in Alzheimer’s disease.Alzheimers Res. Ther.2017911010.1186/s13195‑017‑0237‑y 28212683
    [Google Scholar]
  158. WangL. XiY. SungS. QiaoH. RNA-seq assistant: Machine learning based methods to identify more transcriptional regulated genes.BMC Genomics201819154610.1186/s12864‑018‑4932‑2 30029596
    [Google Scholar]
  159. SmithA.M. Deep learning of representations for transcriptomics-based phenotype prediction.BioRxiv201910.1101/574723
    [Google Scholar]
  160. KadurinA. NikolenkoS. KhrabrovK. AliperA. ZhavoronkovA. druGAN: An advanced generative adversarial autoencoder model for de novo generation of new molecules with desired molecular properties in silico.Mol. Pharm.20171493098310410.1021/acs.molpharmaceut.7b00346 28703000
    [Google Scholar]
  161. ButlerK.T. DaviesD.W. CartwrightH. IsayevO. WalshA. Machine learning for molecular and materials science.Nature2018559771554755510.1038/s41586‑018‑0337‑2 30046072
    [Google Scholar]
  162. PopovaM. IsayevO. TropshaA. Deep reinforcement learning for de novo drug design.Sci. Adv.201847eaap788510.1126/sciadv.aap7885 30050984
    [Google Scholar]
  163. ManiS. ChenY. ElasyT. ClaytonW. DennyJ. Type 2 diabetes risk forecasting from EMR data using machine learning.AMIA Annu. Symp. Proc.20122012606615
    [Google Scholar]
  164. NematiS. HolderA. RazmiF. StanleyM.D. CliffordG.D. BuchmanT.G. An Interpretable Machine Learning Model for Accurate Prediction of Sepsis in the ICU.Crit. Care Med.201846454755310.1097/CCM.0000000000002936 29286945
    [Google Scholar]
  165. ShameerK. Predictive modeling of hospital readmission rates using electronic medical record-wide machine learning: A case-study using mount sinai heart failure cohort.Pac. Symp. Biocomput.201722276287
    [Google Scholar]
  166. BakkarN. Artificial intelligence in neurodegenerative disease research: Use of IBM Watson to identify additional RNA-binding proteins altered in amyotrophic lateral sclerosis.Acta Neuropathologica201813522724710.1007/s00401‑017‑1785‑8
    [Google Scholar]
  167. NapolitanoF. ZhaoY. MoreiraV.M. Drug repositioning: A machine-learning approach through data integration.J. Cheminform.2013513010.1186/1758‑2946‑5‑30 23800010
    [Google Scholar]
  168. KimD.H. WitH. ThurstonM. Artificial intelligence in the diagnosis of Parkinson’s disease from ioflupane-123 single-photon emission computed tomography dopamine transporter scans using transfer learning.Nucl. Med. Commun.2018391088789310.1097/MNM.0000000000000890 30080748
    [Google Scholar]
  169. BlahutaJ. SoukupT. Ultrasound medical image recognition with artificial intelligence for Parkinson's disease classification. 2012 Proceedings of the 35th International Convention MIPRO.21-25 May 2012; Opatija, Croatia. 2012.
    [Google Scholar]
  170. ZhaoY. HealyB.C. RotsteinD. Exploration of machine learning techniques in predicting multiple sclerosis disease course.PLoS One2017124e017486610.1371/journal.pone.0174866 28379999
    [Google Scholar]
  171. YooY. Deep learning of brain lesion patterns for predicting future disease activity in patients with early symptoms of multiple sclerosis. In: Deep Learning and Data Labeling for Medical Applications.ChamSpringer201610.1007/978‑3‑319‑46976‑8_10
    [Google Scholar]
  172. MoradiE. PepeA. GaserC. HuttunenH. TohkaJ. Machine learning framework for early MRI-based Alzheimer’s conversion prediction in MCI subjects.Neuroimage201510439841210.1016/j.neuroimage.2014.10.002 25312773
    [Google Scholar]
  173. ZhangD. ShenD. Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer’s disease.Neuroimage201259289590710.1016/j.neuroimage.2011.09.069 21992749
    [Google Scholar]
  174. LiH. HabesM. FanY. O4‐04‐02: A deep learning prognostic model for early prediction of alzheimer’s disease based on hippocampal MRI data.Alzheimers Dement.2018146292810.1016/j.jalz.2018.06.2928
    [Google Scholar]
  175. BarabásiA-L. Network Science.Cambridge, UKCambridge University Press2016
    [Google Scholar]
  176. RecanatiniM. CabrelleC. Drug Research Meets Network Science: Where Are We?J. Med. Chem.202063168653866610.1021/acs.jmedchem.9b01989 32338900
    [Google Scholar]
  177. CsermelyP. KorcsmárosT. KissH.J.M. LondonG. NussinovR. Structure and dynamics of molecular networks: A novel paradigm of drug discovery.Pharmacol. Ther.2013138333340810.1016/j.pharmthera.2013.01.016 23384594
    [Google Scholar]
  178. AlbertR. Network inference, analysis, and modeling in systems biology.Plant Cell200719113327333810.1105/tpc.107.054700 18055607
    [Google Scholar]
  179. KitanoH. Systems biology: A brief overview.Science200229555601662166410.1126/science.1069492 11872829
    [Google Scholar]
  180. VidalM. CusickM.E. BarabásiA.L. Interactome networks and human disease.Cell2011144698699810.1016/j.cell.2011.02.016 21414488
    [Google Scholar]
  181. Network MedicineComplex Systems in Human Disease and Therapeutics.Cambridge, MA, USAHarvard University Press2017
    [Google Scholar]
  182. BarabásiA.L. AlbertR. Emergence of scaling in random networks.Science1999286543950951210.1126/science.286.5439.509 10521342
    [Google Scholar]
  183. SeebacherJ. GavinA.C. SnapShot: Protein-protein interaction networks.Cell201114461000100010.1016/j.cell.2011.02.025 21414489
    [Google Scholar]
  184. BarabásiA.L. OltvaiZ.N. Network biology: Understanding the cell’s functional organization.Nat. Rev. Genet.20045210111310.1038/nrg1272 14735121
    [Google Scholar]
  185. PenrodN.M. Cowper-Sal-lariR. MooreJ.H. Systems genetics for drug target discovery.Trends Pharmacol. Sci.2011321062363010.1016/j.tips.2011.07.002 21862141
    [Google Scholar]
  186. SwansonD.R. Fish oil, Raynaud’s syndrome, and undiscovered public knowledge.Perspect. Biol. Med.198630171810.1353/pbm.1986.0087 3797213
    [Google Scholar]
  187. BaekS.H. LeeD. KimM. LeeJ.H. SongM. Enriching plausible new hypothesis generation in PubMed.PLoS One2017127e018053910.1371/journal.pone.0180539 28678852
    [Google Scholar]
  188. WeeberM. KleinH. de Jong-van den BergL.T.W. VosR. Using concepts in literature‐based discovery: Simulating Swanson’s Raynaud–fish oil and migraine–magnesium discoveries.J. Am. Soc. Inf. Sci. Technol.200152754855710.1002/asi.1104
    [Google Scholar]
  189. ChiangA.P. ButteA.J. Systematic evaluation of drug-disease relationships to identify leads for novel drug uses.Clin. Pharmacol. Ther.200986550751010.1038/clpt.2009.103 19571805
    [Google Scholar]
  190. AndronisC. SharmaA. VirvilisV. DeftereosS. PersidisA. Literature mining, ontologies and information visualization for drug repurposing.Brief. Bioinform.201112435736810.1093/bib/bbr005 21712342
    [Google Scholar]
  191. LekkaE DeftereosSN PersidisA PersidisA AndronisC Literature analysis for systematic drug repurposing: A case study from Biovista.Drug Discov Today Ther Strateg201183-410310810.1016/j.ddstr.2011.06.005
    [Google Scholar]
  192. KrassowskiM. DasV. SahuS.K. MisraB.B. State of the Field in Multi-Omics Research: From Computational Needs to Data Mining and Sharing.Front. Genet.20201161079810.3389/fgene.2020.610798 33362867
    [Google Scholar]
  193. University of Maryland Medical System Neurological Diseases and Movement RehabilitationNeurological diseases and movement rehabilitation.2023Available From: https://www.umms.org/health-services/rehabilitation/services/neuro/neurological-diseases-movement-rehabilitation
  194. VerkhratskyA. ButtA. Glial Physiology and Pathophysiology.EnglandJohn Wiley & Sons, Ltd.201310.1002/9781118402061
    [Google Scholar]
  195. HanischU.K. KettenmannH. Microglia: Active sensor and versatile effector cells in the normal and pathologic brain.Nat. Neurosci.200710111387139410.1038/nn1997 17965659
    [Google Scholar]
  196. BeersD.R. HenkelJ.S. XiaoQ. Wild-type microglia extend survival in PU.1 knockout mice with familial amyotrophic lateral sclerosis.Proc. Natl. Acad. Sci. USA200610343160211602610.1073/pnas.0607423103 17043238
    [Google Scholar]
  197. GongY.H. ParsadanianA.S. AndreevaA. SniderW.D. ElliottJ.L. Restricted expression of G86R Cu/Zn superoxide dismutase in astrocytes results in astrocytosis but does not cause motoneuron degeneration.J. Neurosci.200020266066510.1523/JNEUROSCI.20‑02‑00660.2000 10632595
    [Google Scholar]
  198. NguyenM.D. JulienJ.P. RivestS. Induction of proinflammatory molecules in mice with amyotrophic lateral sclerosis: No requirement for proapoptotic interleukin‐1β in neurodegeneration.Ann. Neurol.200150563063910.1002/ana.1256 11706969
    [Google Scholar]
  199. GowingG. DequenF. SoucyG. JulienJ.P. Absence of tumor] necrosis factor-alpha does not affect motor neuron disease caused by superoxide dismutase 1 mutations.J. Neurosci.20062644113971140210.1523/JNEUROSCI.0602‑06.2006 17079668
    [Google Scholar]
  200. Van DammeP. RobberechtW. Recent advances in motor neuron disease.Curr. Opin. Neurol.200922548649210.1097/WCO.0b013e32832ffbe3 19593125
    [Google Scholar]
  201. GarcíaJ.C. BustosR.H. The Genetic Diagnosis of Neurodegenerative Diseases and Therapeutic Perspectives.Brain Sci.201881222210.3390/brainsci8120222 30551598
    [Google Scholar]
  202. BezprozvannyI. The rise and fall of Dimebon.Drug News Perspect.201023851852310.1358/dnp.2010.23.8.1500435 21031168
    [Google Scholar]
  203. DoodyR.S. GavrilovaS.I. SanoM. Effect of dimebon on cognition, activities of daily living, behaviour, and global function in patients with mild-to-moderate Alzheimer’s disease: A randomised, double-blind, placebo-controlled study.Lancet2008372963420721510.1016/S0140‑6736(08)61074‑0 18640457
    [Google Scholar]
  204. SanoM. BellK.L. GalaskoD. A randomized, double-blind, placebo-controlled trial of simvastatin to treat Alzheimer disease.Neurology201177655656310.1212/WNL.0b013e318228bf11 21795660
    [Google Scholar]
  205. NebesR.D. PollockB.G. HouckP.R. Persistence of cognitive impairment in geriatric patients following antidepressant treatment: A randomized, double-blind clinical trial with nortriptyline and paroxetine.J. Psychiatr. Res.20033729910810.1016/S0022‑3956(02)00085‑7 12842163
    [Google Scholar]
  206. CudkowiczM.E. TitusS. KearneyM. Safety and efficacy of ceftriaxone for amyotrophic lateral sclerosis: A multi-stage, randomised, double-blind, placebo-controlled trial.Lancet Neurol.201413111083109110.1016/S1474‑4422(14)70222‑4 25297012
    [Google Scholar]
  207. LeistT.P. WeissertR. Cladribine.Clin. Neuropharmacol.2011341283510.1097/WNF.0b013e318204cd90 21242742
    [Google Scholar]
  208. Amir-AslaniA. MangematinV. The future of drug discovery and development: Shifting emphasis towards personalized medicine.Technol. Forecast. Soc. Change201077220321710.1016/j.techfore.2009.09.005
    [Google Scholar]
  209. JankuF. StewartD.J. KurzrockR. Targeted therapy in non-small-cell lung cancer-is it becoming a reality?Nat. Rev. Clin. Oncol.20107740141410.1038/nrclinonc.2010.64 20551945
    [Google Scholar]
  210. ShawA.T. YasothanU. KirkpatrickP. Crizotinib.Nat. Rev. Drug Discov.2011101289789810.1038/nrd3600 22129984
    [Google Scholar]
  211. DrilonA.E. CamidgeD.R. OuS.H.I. Efficacy and safety of crizotinib in patients (pts) with advanced MET exon 14-altered non-small cell lung cancer (NSCLC).J. Clin. Oncol.20163415_suppl10810.1200/JCO.2016.34.15_suppl.108
    [Google Scholar]
  212. PushpakomS. IorioF. EyersP.A. Drug repurposing: Progress, challenges and recommendations.Nat. Rev. Drug Discov.2019181415810.1038/nrd.2018.168 30310233
    [Google Scholar]
  213. NovacN. Challenges and opportunities of drug repositioning.Trends Pharmacol. Sci.201334526727210.1016/j.tips.2013.03.004 23582281
    [Google Scholar]
  214. BegleyC.G. AshtonM. BaellJ. Drug repurposing: Misconceptions, challenges, and opportunities for academic researchers.Sci. Transl. Med.202113612eabd552410.1126/scitranslmed.abd5524 34550729
    [Google Scholar]
  215. GreenblattW. GuptaC. KaoJ. Drug repurposing during the COVID-19 pandemic: Lessons for expediting drug development and access.Health Aff. (Millwood)202342342443210.1377/hlthaff.2022.01083 36877896
    [Google Scholar]
  216. KrishnamurthyN. GrimshawA.A. AxsonS.A. ChoeS.H. MillerJ.E. Drug repurposing: A systematic review on root causes, barriers and facilitators.BMC Health Serv. Res.202222197010.1186/s12913‑022‑08272‑z 35906687
    [Google Scholar]
  217. HodosR.A. KiddB.A. ShameerK. ReadheadB.P. DudleyJ.T. In silico methods for drug repurposing and pharmacology.Wiley Interdiscip. Rev. Syst. Biol. Med.20168318621010.1002/wsbm.1337 27080087
    [Google Scholar]
  218. LoewaA. FengJ.J. HedtrichS. Human disease models in drug development.Nature Reviews Bioengineering20231854555910.1038/s44222‑023‑00063‑3 37359774
    [Google Scholar]
  219. Technology NetworksDNA molecule ointment battles allergic contact dermatitis in mice.Available From: https://www.technologynetworks.com/drug-discovery/news/dna-molecule-ointment-battles-allergic-contact-dermatitis-in-mice-388477 2024
  220. NIH LINCS ProgramsThe LINCS Consortium2024Available From: https://lincsproject.org/
  221. LoewaA. FengJ.J. HedtrichS. Human disease models in drug development.Nature Rev Bioeng20231854555910.1038/s44222‑023‑00063‑3 37359774
    [Google Scholar]
/content/journals/cnsnddt/10.2174/0118715273329531240911075309
Loading
/content/journals/cnsnddt/10.2174/0118715273329531240911075309
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test