Skip to content
2000
Volume 10, Issue 4
  • ISSN: 2405-4615
  • E-ISSN: 2405-4623

Abstract

The nanoparticle formulation technology is set to play a crucial role in the upcoming years, significantly shaping the pharmaceuticals market, nanomedicine domain, and healthcare systems. The success of employing nano crystallization strategies in industrial settings relies primarily on the technique's capacity to create active pharmaceutical ingredient nanoparticles with precise particle size, limited size variation, stability, consistency, large-scale feasibility, compatibility, and cost-effectiveness. Using nano-particles as a technological advancement has allowed for notable enhancements in various aspects. These include the substantial extension of product shelf lives, augmentation of intracellular delivery for hydrophobic molecules, and the optimization of specific therapeutics like anticancer agents, along with others. As the importance of Nano formulations emerges in the market, nanotechnology has transformed also in the field of cancer diagnosis and treatment. Nanoparticles, ranging from 1 to 100 nm in size, offer unique advantages, including biocompatibility, decreased toxicity, improved stability, enhanced permeability and retention, and precise targeting, making them an effective option for cancer therapy. This comprehensive review article delves into the various categories of nano-formulations. A brief discussion on Nano medicine in Cancer therapy and different formulation strategies meticulously examining their far-reaching influence on both the pharmaceutical industry as well as research centers dedicated to Nano formulations.

Loading

Article metrics loading...

/content/journals/cnm/10.2174/0124054615310532240813070242
2024-08-23
2026-01-02
Loading full text...

Full text loading...

References

  1. HerdianaY. WathoniN. ShamsuddinS. Scale-up polymeric-based nanoparticles drug delivery systems: Development and challenges.OpenNano20227100048
    [Google Scholar]
  2. SoppimathK.S. AminabhaviT.M. KulkarniA.R. RudzinskiW.E. Biodegradable polymeric nanoparticles as drug delivery devices.J. Control. Release2001701-212010.1016/S0168‑3659(00)00339‑411166403
    [Google Scholar]
  3. RaoJ.P. GeckelerK.E. Polymer nanoparticles: Preparation techniques and size-control parameters.Prog. Polym. Sci.201136788791310.1016/j.progpolymsci.2011.01.001
    [Google Scholar]
  4. BaydaS. AdeelM. TuccinardiT. CordaniM. RizzolioF. The history of nanoscience and nanotechnology: From chemical–physical applications to nanomedicine.Molecules201925111210.3390/molecules2501011231892180
    [Google Scholar]
  5. Mahmoud NasrollahzadehS. Chapter 1 - An introduction to nanotechnology.Interface Science and TechnologyElsevier201912710.1016/B978‑0‑12‑813586‑0.00001‑8
    [Google Scholar]
  6. NasrollahzadehM. SajadiS.M. SajjadiM. IssaabadiZ. An introduction to nanotechnology.Interface Science and Technology.Amsterdam, The NetherlandsElsevier201928127
    [Google Scholar]
  7. HosseiniSeyed Fakhreddin ZandiMojgan RezaeiMasoud FarahmandFarhid Two-step method for encapsulation of oregano essential oil in chitosan nanoparticles: Preparation, characterization and in vitro release study.Carbohydr Polym2013955056
    [Google Scholar]
  8. MalamY. LoizidouM. SeifalianA.M. Liposomes and nanoparticles: Nanosized vehicles for drug delivery in cancer.Trends Pharmacol. Sci.2009301159259910.1016/j.tips.2009.08.00419837467
    [Google Scholar]
  9. KumariS. GoyalA. Sönmez GürerE. Algın YaparE. GargM. SoodM. SindhuR.K. Bioactive loaded novel nano-formulations for targeted drug delivery and their therapeutic potential.Pharmaceutics2022145109110.3390/pharmaceutics1405109135631677
    [Google Scholar]
  10. TayebH.H. FelimbanR. AlmaghrabiS. HasaballahN. Nanoemulsions: Formulation, characterization, biological fate, and potential role against COVID-19 and other viral outbreaks.Colloid Interface Sci. Commun.20214510053310.1016/j.colcom.2021.10053334692429
    [Google Scholar]
  11. AltammarK.A. A review on nanoparticles: Characteristics, synthesis, applications, and challenges.Front. Microbiol.202314115562210.3389/fmicb.2023.115562237180257
    [Google Scholar]
  12. KhanI. SaeedK. KhanI. Nanoparticles: Properties, applications and toxicities.Arab J Chem201912790893110.1016/j.arabjc.2017.05.011
    [Google Scholar]
  13. JonesM.C. LerouxJ.C. Polymeric micelles – A new generation of colloidal drug carriers.Eur. J. Pharm. Biopharm.199948210111110.1016/S0939‑6411(99)00039‑910469928
    [Google Scholar]
  14. JeevanandamJ. San ChanY. DanquahM.K. Nano-formulations of drugs: Recent developments, impact and challenges.Biochimie2016128-1299911210.1016/j.biochi.2016.07.008
    [Google Scholar]
  15. ChenthamaraD. SubramaniamS. RamakrishnanS.G. KrishnaswamyS. EssaM.M. LinF.H. QoronflehM.W. Therapeutic efficacy of nanoparticles and routes of administration.Biomater. Res.20192312010.1186/s40824‑019‑0166‑x31832232
    [Google Scholar]
  16. ChandrakalaV. ArunaV. AngajalaG. Review on metal nanoparticles as nanocarriers: Current challenges and perspectives in drug delivery systems.Emergent Mater2022515931615
    [Google Scholar]
  17. SinghR. LillardJ.W.Jr Nanoparticle-based targeted drug delivery.Exp. Mol. Pathol.200986321522310.1016/j.yexmp.2008.12.00419186176
    [Google Scholar]
  18. HsuC-Y. An overview of nanoparticles in drug delivery: Properties and applications.South African J Chem Eng20234623327010.1016/j.sajce.2023.08.009
    [Google Scholar]
  19. YusufA. AlmotairyA.R.Z. HenidiH. AlshehriO.Y. AldughaimM.S. Nanoparticles as drug delivery systems: A review of the implication of nanoparticles’ physicochemical properties on responses in biological systems.Polymers2023157159610.3390/polym1507159637050210
    [Google Scholar]
  20. LammariN. TarhiniM. MiladiK. LouaerO. MeniaiA.H. SfarS. FessiH. ElaissariA. Chapter 14 - Encapsulation methods of active molecules for drug delivery.Developments in Biomedical Engineering and Bioelectronics, Drug Delivery Devices and Therapeutic SystemsAcademic Press202128930610.1016/B978‑0‑12‑819838‑4.00008‑0
    [Google Scholar]
  21. SánchezA. MejíaS.P. OrozcoJ. Recent advances in polymeric nanoparticle-encapsulated drugs against intracellular infections.Molecules20202516376010.3390/molecules2516376032824757
    [Google Scholar]
  22. BhalaniD.V. NutanB. KumarA. Singh ChandelA.K. Bioavailability enhancement techniques for poorly aqueous soluble drugs and therapeutics.Biomedicines2022109205510.3390/biomedicines1009205536140156
    [Google Scholar]
  23. KumariA. SinglaR. GulianiA. YadavS.K. Nanoencapsulation for drug delivery.EXCLI J.20141326528626417260
    [Google Scholar]
  24. TewabeA. AbateA. TamrieM. SeyfuA. Abdela SirajE. Targeted drug delivery — From magic bullet to nanomedicine: Principles, challenges, and future perspectives.J. Multidiscip. Healthc.2021141711172410.2147/JMDH.S31396834267523
    [Google Scholar]
  25. YetisginA.A. CetinelS. ZuvinM. KosarA. KutluO. Therapeutic nanoparticles and their targeted delivery applications.Molecules2020259219310.3390/molecules2509219332397080
    [Google Scholar]
  26. AttiaM.F. AntonN. WallynJ. OmranZ. VandammeT.F. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites.J. Pharm. Pharmacol.20197181185119810.1111/jphp.1309831049986
    [Google Scholar]
  27. SharmaS. ParveenR. ChatterjiB.P. Toxicology of nanoparticles in drug delivery.Curr. Pathobiol. Rep.20219413314410.1007/s40139‑021‑00227‑z34840918
    [Google Scholar]
  28. NeetikaM.S. ThakurP. GaurP. RaniG.M. RustagiS. TalrejaR.K. ChaudharyV. Cancer treatment and toxicity outlook of nanoparticles.Environ Res2023237Part 111687010.1016/j.envres.2023.116870
    [Google Scholar]
  29. BhatiaS. Nanoparticles types, classification, characterization, fabrication methods and drug delivery applications.Natural Polymer Drug Delivery Systems.ChamSpringer201610.1007/978‑3‑319‑41129‑3_2
    [Google Scholar]
  30. FrickensteinA.N. HagoodJ.M. BrittenC.N. AbbottB.S. McNallyM.W. VopatC.A. PattersonE.G. MacCuaigW.M. JainA. WaltersK.B. McNallyL.R. Mesoporous silica nanoparticles: Properties and strategies for enhancing clinical effect.Pharmaceutics202113457010.3390/pharmaceutics1304057033920503
    [Google Scholar]
  31. BezbaruahR. ChavdaV.P. NongrangL. AlomS. DekaK. KalitaT. AliF. BhattacharjeeB. VoraL. Nanoparticle-based delivery systems for vaccines.Vaccines20221011194610.3390/vaccines1011194636423041
    [Google Scholar]
  32. ElumalaiK. SrinivasanS. ShanmugamA. Review of the efficacy of nanoparticle-based drug delivery systems for cancer treatment.Biomed Tech2024510912210.1016/j.bmt.2023.09.001
    [Google Scholar]
  33. SahuT. Nanotechnology based drug delivery system: Current strategies and emerging therapeutic potential for medical science.J Drug Deliv Sci Technol20216310248710.1016/j.jddst.2021.102487
    [Google Scholar]
  34. NandaS.S. YiD.K. Recent advances in synergistic effect of nanoparticles and its biomedical application.Int. J. Mol. Sci.2024256326610.3390/ijms2506326638542240
    [Google Scholar]
  35. RibeiroA.I. DiasA.M. ZilleA. Synergistic effects between metal nanoparticles and commercial antimicrobial agents: A review.ACS Appl. Nano Mater.2022533030306410.1021/acsanm.1c0389136568315
    [Google Scholar]
  36. GurunathanS. KangM.H. QasimM. KimJ.H. Nanoparticle-mediated combination therapy: Two-in-one approach for cancer.Int. J. Mol. Sci.20181910326410.3390/ijms1910326430347840
    [Google Scholar]
  37. PuriA. LoomisK. SmithB. LeeJ.H. YavlovichA. HeldmanE. BlumenthalR. Lipid-based nanoparticles as pharmaceutical drug carriers: From concepts to clinic.Crit. Rev. Ther. Drug Carrier Syst.200926652358010.1615/CritRevTherDrugCarrierSyst.v26.i6.1020402623
    [Google Scholar]
  38. MusielakE. Feliczak-GuzikA. NowakI. Synthesis and potential applications of lipid nanoparticles in medicine.Materials202215268210.3390/ma1502068235057398
    [Google Scholar]
  39. KumarR. Chapter 8 - Lipid-based nanoparticles for drug-delivery systems.Micro and Nano Technologies, Nanocarriers for Drug DeliveryElsevier201924928410.1016/B978‑0‑12‑814033‑8.00008‑4
    [Google Scholar]
  40. DhimanN. AwasthiR. SharmaB. KharkwalH. KulkarniG.T. Lipid nanoparticles as carriers for bioactive delivery.Front Chem.2021958011810.3389/fchem.2021.58011833981670
    [Google Scholar]
  41. GautamM. 2 - Polymer-based nanomaterials: An introduction.Micro and Nano Technologies, Smart Polymer NanocompositesElsevier2023275910.1016/B978‑0‑323‑91611‑0.00018‑9
    [Google Scholar]
  42. NiculescuA.G. GrumezescuA.M. Polymer-based nanosystems—a versatile delivery approach.Materials20211422681210.3390/ma1422681234832213
    [Google Scholar]
  43. ModyV. SiwaleR. SinghA. ModyH. Introduction to metallic nanoparticles.J. Pharm. Bioallied Sci.20102428228910.4103/0975‑7406.7212721180459
    [Google Scholar]
  44. HammamiI. AlabdallahN.M. Gold nanoparticles: Synthesis properties and applications.J King Saud Univ - Sci202133710156010.1016/j.jksus.2021.101560
    [Google Scholar]
  45. HassanH. SharmaP. Gold nanomaterials – The golden approach from synthesis to applications.Materials Sci Energy Technol2022537539010.1016/j.mset.2022.09.004
    [Google Scholar]
  46. XuJ.J. ZhangW.C. GuoY.W. ChenX.Y. ZhangY.N. Metal nanoparticles as a promising technology in targeted cancer treatment.Drug Deliv.202229166467810.1080/10717544.2022.203980435209786
    [Google Scholar]
  47. ClaytonK.N. SalamehJ.W. WereleyS.T. Kinzer-UrsemT.L. Physical characterization of nanoparticle size and surface modification using particle scattering diffusometry.Biomicrofluidics201610505410710.1063/1.496299227703593
    [Google Scholar]
  48. BhartiC. GulatiN. NagaichU. PalA.K. Mesoporous silica nanoparticles in target drug delivery system: A review.Int. J. Pharm. Investig.20155312413310.4103/2230‑973X.16084426258053
    [Google Scholar]
  49. FarjadianF. RoointanA. Mohammadi-SamaniS. HosseiniM. Mesoporous silica nanoparticles: Synthesis, pharmaceutical applications, biodistribution, and biosafety assessment.Chem Eng J201935968470510.1016/j.cej.2018.11.156
    [Google Scholar]
  50. LiZ. ZhangY. FengN. Mesoporous silica nanoparticles: Synthesis, classification, drug loading, pharmacokinetics, biocompatibility, and application in drug delivery.Expert Opin. Drug Deliv.201916321923710.1080/17425247.2019.157580630686075
    [Google Scholar]
  51. PorrangS. DavaranS. RahemiN. AllahyariS. MostafaviE. How advancing are mesoporous silica nanoparticles? A comprehensive review of the literature.Int. J. Nanomedicine2022171803182710.2147/IJN.S35334935498391
    [Google Scholar]
  52. KazemzadehP. SayadiK. ToolabiA. SayadiJ. ZeraatiM. ChauhanN.P.S. SargaziG. Structure-property relationship for different mesoporous silica nanoparticles and its drug delivery applications: A review.Front Chem.20221082378510.3389/fchem.2022.82378535372272
    [Google Scholar]
  53. SabuC. Ameena ShirinV.K. SankarR. PramodK. Inorganic nanoparticles for drug-delivery applications.Nanomaterials and Nanotechnology in Medicine. VisakhP.M. Wiley202210.1002/9781119558026.ch14
    [Google Scholar]
  54. AlshammariB.H. LashinM.M.A. MahmoodM.A. Al-MubaddelF.S. IlyasN. RahmanN. SohailM. KhanA. AbdullaevS.S. KhanR. Organic and inorganic nanomaterials: Fabrication, properties and applications.RSC Advances20231320137351378510.1039/D3RA01421E37152571
    [Google Scholar]
  55. RashidE.U. NawazS. MunawarJ. SarkerA. HussainS. IqbalH.M.N. BilalM. 4 - Organic and inorganic nanoparticles.In micro and nano technologies, smart polymer nanocomposites,Elsevier20239311910.1016/B978‑0‑323‑91611‑0.00014‑1
    [Google Scholar]
  56. GuptaJ. QuadrosM. MominM. Mesoporous silica nanoparticles: Synthesis and multifaceted functionalization for controlled drug delivery.J Drug Deliv Sci Technol20238110430510.1016/j.jddst.2023.104305
    [Google Scholar]
  57. GradisharW.J. TjulandinS. DavidsonN. ShawH. DesaiN. BharP. HawkinsM. O’ShaughnessyJ. Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer.J. Clin. Oncol.200523317794780310.1200/JCO.2005.04.93716172456
    [Google Scholar]
  58. SabbatiniP. AghajanianC. DizonD. AndersonS. DupontJ. BrownJ.V. PetersW.A. JacobsA. MehdiA. RivkinS. EisenfeldA.J. SpriggsD. Phase II study of CT-2103 in patients with recurrent epithelial ovarian, fallopian tube, or primary peritoneal carcinoma.J. Clin. Oncol.200422224523453110.1200/JCO.2004.12.04315542803
    [Google Scholar]
  59. BhattR. de VriesP. TulinskyJ. BellamyG. BakerB. SingerJ.W. KleinP. Synthesis and in vivo antitumor activity of poly(l-glutamic acid) conjugates of 20S-camptothecin.J. Med. Chem.200346119019310.1021/jm020022r12502373
    [Google Scholar]
  60. VaseyP.A. KayeS.B. MorrisonR. TwelvesC. WilsonP. DuncanR. ThomsonA.H. MurrayL.S. HilditchT.E. MurrayT. BurtlesS. FraierD. FrigerioE. CassidyJ. Cancer Research Campaign Phase I/II Committee Phase I clinical and pharmacokinetic study of PK1 [N-(2-hydroxypropyl)methacrylamide copolymer doxorubicin]: First member of a new class of chemotherapeutic agents-drug-polymer conjugates.Clin. Cancer Res.19995183949918206
    [Google Scholar]
  61. MarkmanM. Pegylated liposomal doxorubicin in the treatment of cancers of the breast and ovary.Expert Opin. Pharmacother.20067111469147410.1517/14656566.7.11.146916859430
    [Google Scholar]
  62. RiveraE. Current status of liposomal anthracycline therapy in metastatic breast cancer.Clin. Breast Cancer20034Suppl. 2S76S8310.3816/CBC.2003.s.01914667278
    [Google Scholar]
  63. RosenthalE. Poizot-MartinI. Saint-MarcT. SpanoJ.P. CacoubP. DNX Study Group Phase IV study of liposomal daunorubicin (DaunoXome) in AIDS-related Kaposi sarcoma.Am. J. Clin. Oncol.2002251575910.1097/00000421‑200202000‑0001211823698
    [Google Scholar]
  64. BatrakovaE.V. DorodnychT.Y. KlinskiiE.Y. KliushnenkovaE.N. ShemchukovaO.B. GoncharovaO.N. ArjakovS.A. AlakhovV.Y. KabanovA.V. Anthracycline antibiotics non-covalently incorporated into the block copolymer micelles: In vivo evaluation of anti-cancer activity.Br. J. Cancer199674101545155210.1038/bjc.1996.5878932333
    [Google Scholar]
  65. NakanishiT. FukushimaS. OkamotoK. SuzukiM. MatsumuraY. YokoyamaM. OkanoT. SakuraiY. KataokaK. Development of the polymer micelle carrier system for doxorubicin.J. Control. Release2001741-329530210.1016/S0168‑3659(01)00341‑811489509
    [Google Scholar]
  66. KimT.Y. KimD.W. ChungJ.Y. ShinS.G. KimS.C. HeoD.S. KimN.K. BangY.J. Phase I and pharmacokinetic study of Genexol-PM, a cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies.Clin. Cancer Res.200410113708371610.1158/1078‑0432.CCR‑03‑065515173077
    [Google Scholar]
  67. PastorinG. WuW. WieckowskiS. BriandJ.P. KostarelosK. PratoM. BiancoA. Double functionalisation of carbon nanotubes for multimodal drug delivery.Chem. Commun.2006111182118410.1039/b516309a16518484
    [Google Scholar]
  68. FlennikenM.L. WillitsD.A. HarmsenA.L. LiepoldL.O. HarmsenA.G. YoungM.J. DouglasT. Melanoma and lymphocyte cell-specific targeting incorporated into a heat shock protein cage architecture.Chem. Biol.200613216117010.1016/j.chembiol.2005.11.00716492564
    [Google Scholar]
  69. FlennikenM.L. LiepoldL.O. CrowleyB.E. WillitsD.A. YoungM.J. DouglasT. Selective attachment and release of a chemotherapeutic agent from the interior of a protein cage architecture.Chem. Commun.2005444744910.1039/b413435d15654365
    [Google Scholar]
  70. MalikN. EvagorouE.G. DuncanR. Dendrimer-platinate.Anticancer Drugs199910876777610.1097/00001813‑199909000‑0001010573209
    [Google Scholar]
  71. GhaferiM. ZahraW. AkbarzadehA. Ebrahimi ShahmabadiH. AlaviS.E. Enhancing the efficacy of albendazole for liver cancer treatment using mesoporous silica nanoparticles: An in vitro study.EXCLI J.20222123624935221842
    [Google Scholar]
  72. FanD. CaoY. CaoM. WangY. CaoY. GongT. Nanomedicine in cancer therapy.Signal Transduct. Target. Ther.20238129310.1038/s41392‑023‑01536‑y37544972
    [Google Scholar]
  73. GermainM. CaputoF. MetcalfeS. TosiG. SpringK. ÅslundA.K.O. PottierA. SchiffelersR. CeccaldiA. SchmidR. Delivering the power of nanomedicine to patients today.J. Control. Release202032616417110.1016/j.jconrel.2020.07.00732681950
    [Google Scholar]
  74. KempJ.A. KwonY.J. Cancer nanotechnology: Current status and perspectives.Nano Converg.2021813410.1186/s40580‑021‑00282‑734727233
    [Google Scholar]
  75. MediciS. PeanaM. CoradduzzaD. ZorodduM.A. Gold nanoparticles and cancer: Detection, diagnosis and therapy.Semin Cancer Biol202176273710.1016/j.semcancer.2021.06.017
    [Google Scholar]
  76. AlrushaidN. KhanF.A. Al-SuhaimiE.A. ElaissariA. Nanotechnology in cancer diagnosis and treatment.Pharmaceutics2023153102510.3390/pharmaceutics1503102536986885
    [Google Scholar]
  77. NirmalaM.J. KizhuveetilU. JohnsonA. GB. NagarajanR. MuthuvijayanV. Cancer nanomedicine: A review of nano-therapeutics and challenges ahead.RSC Advances202313138606862910.1039/D2RA07863E36926304
    [Google Scholar]
  78. OverchukM. WeersinkR.A. WilsonB.C. ZhengG. Photodynamic and photothermal therapies: Synergy opportunities for nanomedicine.ACS Nano20231797979800310.1021/acsnano.3c0089137129253
    [Google Scholar]
  79. HanH.S. ChoiK.Y. Advances in nanomaterial-mediated photothermal cancer therapies: Toward clinical applications.Biomedicines20219330510.3390/biomedicines903030533809691
    [Google Scholar]
  80. GavasS. QuaziS. KarpińskiT.M. Nanoparticles for cancer therapy: Current progress and challenges.Nanoscale Res. Lett.202116117310.1186/s11671‑021‑03628‑634866166
    [Google Scholar]
  81. YaoY. ZhouY. LiuL. XuY. ChenQ. WangY. WuS. DengY. ZhangJ. ShaoA. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance.Front. Mol. Biosci.2020719310.3389/fmolb.2020.0019332974385
    [Google Scholar]
  82. ChengZ. LiM. DeyR. ChenY. Nanomaterials for cancer therapy: Current progress and perspectives.J. Hematol. Oncol.20211418510.1186/s13045‑021‑01096‑034059100
    [Google Scholar]
  83. ChehelgerdiM. ChehelgerdiM. AllelaO.Q.B. PechoR.D.C. JayasankarN. RaoD.P. ThamaraikaniT. VasanthanM. ViktorP. LakshmaiyaN. SaadhM.J. AmajdA. Abo-ZaidM.A. Castillo-AcoboR.Y. IsmailA.H. AminA.H. Akhavan-SigariR. Progressing nanotechnology to improve targeted cancer treatment: overcoming hurdles in its clinical implementation.Mol. Cancer202322116910.1186/s12943‑023‑01865‑037814270
    [Google Scholar]
  84. CarmelietP. JainR.K. Angiogenesis in cancer and other diseases.Nature2000407680124925710.1038/3502522011001068
    [Google Scholar]
  85. KutovaO.M. GuryevE.L. SokolovaE.A. AlzeibakR. BalalaevaI.V. Targeted delivery to tumors: Multidirectional strategies to improve treatment efficiency.Cancers20191116810.3390/cancers1101006830634580
    [Google Scholar]
  86. BazakR. HouriM. AchyS.E. HusseinW. RefaatT. Passive targeting of nanoparticles to cancer: A comprehensive review of the literature.Mol. Clin. Oncol.20142690490810.3892/mco.2014.35625279172
    [Google Scholar]
  87. MaedaH. The enhanced permeability and retention (EPR) effect in tumor vasculature: The key role of tumor-selective macromolecular drug targeting.Adv. Enzyme Regul.200141118920710.1016/S0065‑2571(00)00013‑311384745
    [Google Scholar]
  88. SamanH. RazaS.S. UddinS. RasulK. Inducing angiogenesis, a key step in cancer vascularization, and treatment approaches.Cancers2020125117210.3390/cancers1205117232384792
    [Google Scholar]
  89. CaritaA.C. EloyJ.O. ChorilliM. LeeR.J. LeonardiG.R. Recent advances and perspectives in liposomes for cutaneous drug delivery.Curr. Med. Chem.201825560663510.2174/092986732466617100912015428990515
    [Google Scholar]
  90. TorchilinV.P. Recent advances with liposomes as pharmaceutical carriers.Nat. Rev. Drug Discov.20054214516010.1038/nrd163215688077
    [Google Scholar]
  91. PelicanoH. MartinD.S. XuR-H. HuangP. Glycolysis inhibition for anticancer treatment.Oncogene200625344633464610.1038/sj.onc.120959716892078
    [Google Scholar]
  92. LimE.K. ChungB.H. ChungS.J. Recent advances in pH-sensitive polymeric nanoparticles for smart drug delivery in cancer therapy.Curr. Drug Targets201819430031710.2174/138945011766616060220233927262486
    [Google Scholar]
  93. JainR.K. Barriers to drug delivery in solid tumors.Sci. Am.19942711586510.1038/scientificamerican0794‑588066425
    [Google Scholar]
  94. ShiJ. XiaoZ. KamalyN. FarokhzadO.C. Self-assembled targeted nanoparticles: evolution of technologies and bench to bedside translation.Acc. Chem. Res.201144101123113410.1021/ar200054n21692448
    [Google Scholar]
  95. KandulaS. SinghP.K. KaurG.A. TiwariA. Trends in smart drug delivery systems for targeting cancer cells.Mat Sci Eng B202329711681610.1016/j.mseb.2023.116816
    [Google Scholar]
  96. KamalyN. XiaoZ. ValenciaP.M. Radovic-MorenoA.F. FarokhzadO.C. Targeted polymeric therapeutic nanoparticles: Design, development and clinical translation.Chem. Soc. Rev.20124172971301010.1039/c2cs15344k22388185
    [Google Scholar]
  97. FarokhzadO.C. LangerR. Impact of nanotechnology on drug delivery.ACS Nano200931162010.1021/nn900002m19206243
    [Google Scholar]
  98. DanhierF. FeronO. PréatV. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery.J. Control. Release2010148213514610.1016/j.jconrel.2010.08.02720797419
    [Google Scholar]
  99. BharaliD.J. SiddiquiI.A. AdhamiV.M. ChamcheuJ.C. AldahmashA.M. MukhtarH. MousaS.A. Nanoparticle delivery of natural products in the prevention and treatment of cancers: current status and future prospects.Cancers2011344024404510.3390/cancers304402424213123
    [Google Scholar]
  100. MekuyeB. AberaB. Nanomaterials: An overview of synthesis, classification, characterization, and applications.Nano Select20234848650110.1002/nano.202300038
    [Google Scholar]
  101. SharmaR.K. YadavS. DuttaS. KaleH.B. WarkadI.R. ZbořilR. VarmaR.S. GawandeM.B. Silver nanomaterials: Synthesis and (electro/photo) catalytic applications.Chem. Soc. Rev.20215020112931138010.1039/D0CS00912A34661205
    [Google Scholar]
  102. MokhenaT.C. Nanomaterials: Types, synthesis and characterization.Nanomaterials in Biofuels Research. Clean Energy Production Technologies. SrivastavaM. SrivastavaN. MishraP. GuptaV. SingaporeSpringer202010.1007/978‑981‑13‑9333‑4_5
    [Google Scholar]
  103. Prasad YadavT. Manohar YadavR. Pratap SinghD. Mechanical milling: A top down approach for the synthesis of nanomaterials and nanocomposites.Nanoscience and Nanotechnology201223224810.5923/j.nn.20120203.01
    [Google Scholar]
  104. HarishV. AnsariM.M. TewariD. GaurM. YadavA.B. García-BetancourtM.L. Abdel-HaleemF.M. BechelanyM. BarhoumA. Nanoparticle and nanostructure synthesis and controlled growth methods.Nanomaterials20221218322610.3390/nano1218322636145012
    [Google Scholar]
  105. ZhengZ. ZhangX. CarboD. ClarkC. NathanC.A. LvovY. Sonication-assisted synthesis of polyelectrolyte-coated curcumin nanoparticles.Langmuir201026117679768110.1021/la101246a20459072
    [Google Scholar]
  106. AmendolaV. MeneghettiM. Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles.Phys. Chem. Chem. Phys.200911203805382110.1039/b900654k19440607
    [Google Scholar]
  107. GrassianV.H. Introduction to nanomaterials and application of UV Visible spectroscopy for their characterization Chemical Analysis and Material Characterization by Spectrophotometry.Elsevier Inc2020147198
    [Google Scholar]
  108. DuP. SongL. XiongJ. LiN. XiZ. WangL. JinD. GuoS. YuanY. Coaxial electrospun TiO2/ZnO core–sheath nanofibers film: Novel structure for photoanode of dye-sensitized solar cells.Electrochim. Acta20127839239710.1016/j.electacta.2012.06.034
    [Google Scholar]
  109. KumarS.S. VenkateswarluP. RaoV.R. RaoG.N. Synthesis, characterization and optical properties of zinc oxide nanoparticles.Int. Nano Lett.2013313010.1186/2228‑5326‑3‑30
    [Google Scholar]
  110. AgoH. CVD growth of high-quality single-layer graphene.Frontiers of Graphene and Carbon Nanotubes. MatsumotoK. BerlinSpringer201532010.1007/978‑4‑431‑55372‑4_1
    [Google Scholar]
  111. PatilM.P. NgabireD. ThiH.H.P. KimM.D. KimG.D. Eco-friendly synthesis of gold nanoparticles and evaluation of their cytotoxic activity on cancer cells.J. Cluster Sci.201728111913210.1007/s10876‑016‑1051‑6
    [Google Scholar]
  112. DasS. SrivasatavaV.C. Synthesis and characterization of ZnO–MgOnanocomposite by co-precipitation method.Smart Science20164419019510.1080/23080477.2016.1260425
    [Google Scholar]
  113. PandeyS. OzaG. MewadaA. SharonM. Green synthesis of highly stable gold nanoparticles using momordicacharantia as nano fabricator.Arch. Appl. Sci. Res.2012411351141
    [Google Scholar]
  114. SPV. Plant-mediated green synthesis of Ag nanoparticles using rauvolfiatetraphylla (L.) flower extracts: Characterization, biological activities and screening of their catalytic activity in formylation reaction.Sci. Iran.2019
    [Google Scholar]
  115. ManjulaP. BoppellaR. ManoramaS.V. A facile and green approach for the controlled synthesis of porous SnO2 nanospheres: Application as an efficient photocatalyst and an excellent gas sensing material.ACS Appl. Mater. Interfaces20124116252626010.1021/am301840s23088260
    [Google Scholar]
  116. KhanF. ShariqM. AsifM. SiddiquiM.A. MalanP. AhmadF. Green nanotechnology: Plant-mediated nanoparticle synthesis and application.Nanomaterials202212467310.3390/nano1204067335215000
    [Google Scholar]
  117. ShaikM. KhanM. KuniyilM. Al-WarthanA. AlkhathlanH. SiddiquiM. ShaikJ. AhamedA. MahmoodA. KhanM. AdilS. Plant-extract-assisted green synthesis of silver nanoparticles using Origanum vulgare L. Extract and their microbicidal activities.Sustainability201810491310.3390/su10040913
    [Google Scholar]
/content/journals/cnm/10.2174/0124054615310532240813070242
Loading
/content/journals/cnm/10.2174/0124054615310532240813070242
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test