Skip to content
2000
Volume 10, Issue 3
  • ISSN: 2405-4615
  • E-ISSN: 2405-4623

Abstract

Background

The rise of infectious diseases especially due to drug-resistant microbes and free radicals has caused a serious threat to public health worldwide. Green synthesized nanomaterials (NMs) have emerged as promising candidates to minimize the damage due to these problems. Doping the bioactive and stable silver atom into the biocompatible CuO by capping the nanoparticles with phytochemicals from honey enhanced the biological activity. The present study aimed to synthesize Ag- CuO NCs using the honey solution for antimicrobial and antioxidant activity evaluation.

Methods

The nanoparticles (NPs) and nanocomposites (NCs) were successfully synthesized using the honey solution and characterized by spectroscopic techniques such as XRD, UV-Vis, FTIR, and SEM. The role of the secondary metabolites in honey solution is to stabilize the fabricated NMs by capping.

Results

The red shift observed with the addition of Ag dopant indicates the narrowing of the CuO band gap. FT-IR characterization confirmed the presence of various functional group bands in the synthesized NMs. The spectral band between 900–500 cm−1 displays the presence of metal-oxygen and metal-metal bonds, confirming the production of pure CuO NPs and Ag-CuO NCs. The fabricated CuO NPs and Ag-CuO NCs have crystalline structures with crystallite sizes of 14.14 and 17.40 nm respectively. SEM data showed that CuO NPs are spherical and Ag-CuO NCs have a mixture of spherical and cubic shapes. The NMs displayed concentration-dependent biological activities.

Conclusion

The successful incorporation of silver into the crystal lattice of CuO integrated with the presence of secondary metabolites on the surface improved the potential. Hence, the prepared NMs may have pharmaceutical applications in the future with some modifications for the enhancement of their potential.

Loading

Article metrics loading...

/content/journals/cnm/10.2174/0124054615284528240201105900
2024-04-03
2025-09-08
Loading full text...

Full text loading...

References

  1. AhmedN. HussainD. AbdulsattarS. Impact of copper oxide and selenium nanoparticles on the activities of myeloperoxidase and gamma-glutamyl transferase related oxidative stress of myocardial infarction patients.Nano Biomed. Eng.202113216517110.5101/nbe.v13i2.p165‑171
    [Google Scholar]
  2. Anu ThakurN. KumarK. SharmaK.K. Application of Co-doped copper oxide nanoparticles against different multidrug resistance bacteria.Inorg. Nano-Metal Chem.2020501093394310.1080/24701556.2020.1728554
    [Google Scholar]
  3. AnsarifardE. ZareshahrabadiZ. SarafrazN. ZomorodianK. Evaluation of antimicrobial and antibiofilm activities of copper oxide nanoparticles within soft denture liners against oral pathogens.Bioinorg. Chem. Appl.202120211710.1155/2021/993927534149837
    [Google Scholar]
  4. ShammoutM.W. AwwadA.M. A novel route for the synthesis of copper oxide nanoparticles using Bougainvillea plant flowers extract and antifungal activity evaluation.Chem. Int.202177178
    [Google Scholar]
  5. AminF. Fozia KhattakB. AlotaibiA. QasimM. AhmadI. UllahR. BourhiaM. GulA. ZahoorS. AhmadR. Green synthesis of copper oxide nanoparticles using Aerva javanica leaf extract and their characterization and investigation of in vitro antimicrobial potential and cytotoxic activities.Evid. Based Complement. Alternat. Med.2021202111210.1155/2021/558970334239581
    [Google Scholar]
  6. Rostami-Tapeh-EsmaeilE. GolshanM. Salami-KalajahiM. Roghani-MamaqaniH. Synthesis of copper and copper oxide nanoparticles with different morphologies using aniline as reducing agent.Solid State Commun.2021334-33511436410.1016/j.ssc.2021.114364
    [Google Scholar]
  7. KapoorD. MaheshwariN. SoniN. Metallic nanoparticles in cancer: Types, green synthesis, applications, tumor microenvironment and toxicity considerations.J. Drug Deliv. Sci. Technol.2023105307
    [Google Scholar]
  8. KeabadileO.P. AremuA.O. ElugokeS.E. FayemiO.E. Green and traditional synthesis of copper oxide nanoparticles comparative study.Nanomaterials20201012250210.3390/nano1012250233327366
    [Google Scholar]
  9. Alvarez-SuarezJ. GiampieriF. BattinoM. Honey as a source of dietary antioxidants: Structures, bioavailability and evidence of protective effects against human chronic diseases.Curr. Med. Chem.201320562163810.2174/09298671380499935823298140
    [Google Scholar]
  10. BonsignoreG. PatroneM. MartinottiS. "Green" Biomaterials: The promising role of honey.J Funct Biomater202112472
    [Google Scholar]
  11. CheraghiA. DavarF. HomayoonfalM. Hojjati-NajafabadiA. Effect of lemon juice on microstructure, phase changes, and magnetic performance of CoFe2O4 nanoparticles and their use on release of anti-cancer drugs.Ceram. Int.20214714202102021910.1016/j.ceramint.2021.04.028
    [Google Scholar]
  12. Al-GhamdiY.O. JabliM. SouryR. KhanS.A. Synthesis of copper oxide nanoparticles using Pergularia tomentosa leaves and decolorization studies.Int. J. Phytoremediat.202224211813010.1080/15226514.2021.192691434043917
    [Google Scholar]
  13. KumarK.P. DineshN.D. MurariS.K. Synthesis of CuO and Ag doped CuO nanoparticles from Muntingia calabura leaf extract and evaluation of their antimicrobial potential.Int. J. Nano. Biomater.201983/422825210.1504/IJNBM.2019.104939
    [Google Scholar]
  14. PreethiD.R.A. PhilominalA. Antimicrobial and antiurolithiatic activities of pure and silver doped copper oxide nanoparticles using Moringa Oleifera leaf extract on struvite urinary stones.Appl. Surf. Sci. Adv.20221210035110.1016/j.apsadv.2022.100351
    [Google Scholar]
  15. RanjbarM. KhakdanF. MukherjeeA. In vitro analysis of green synthesized CuO nanoparticles using Tanacetum parthenium extract for multifunctional applications.Environ. Sci. Pollut. Res. Int.20233021601806019510.1007/s11356‑023‑26706‑x37017848
    [Google Scholar]
  16. BouzekriO. El GamouzS. Ed-DraA. MoussoutH. DehmaniY. ZiyatH. El IdrissiM. ChoukradM. AbouarnadasseS. Green synthesis of nickel and copper nanoparticles doped with silver from Hammada scoparia leaf extract and evaluation of their potential to inhibit microorganisms and to remove dyes from aqueous solutions.Sustainability2023152154110.3390/su15021541
    [Google Scholar]
  17. IsmailN.A. ShameliK. WongM.M.T. TeowS.Y. ChewJ. SukriS.N.A.M. Antibacterial and cytotoxic effect of honey mediated copper nanoparticles synthesized using ultrasonic assistance.Mater. Sci. Eng. C201910410989910.1016/j.msec.2019.10989931499959
    [Google Scholar]
  18. SivakesavaS. IrudayarajJ. Classification of simple and complex sugar adulterants in honey by mid‐infrared spectroscopy.Int. J. Food Sci. Technol.200237435136010.1046/j.1365‑2621.2002.00573.x
    [Google Scholar]
  19. JadhavM.S. KulkarniS. RaikarP. BarrettoD.A. VootlaS.K. RaikarU.S. Green biosynthesis of CuO & Ag-CuO nanoparticles from Malus domestica leaf extract and evaluation of antibacterial, antioxidant and DNA cleavage activities.New J. Chem.201842120421310.1039/C7NJ02977B
    [Google Scholar]
  20. IqbalS. JavedM. BahadurA. QamarM.A. AhmadM. ShoaibM. RaheelM. AhmadN. AkbarM.B. LiH. Controlled synthesis of Ag-doped CuO nanoparticles as a core with poly(acrylic acid) microgel shell for efficient removal of methylene blue under visible light.J. Mater. Sci. Mater. Electron.202031118423843510.1007/s10854‑020‑03377‑9
    [Google Scholar]
  21. MourdikoudisS. PallaresR.M. ThanhN.T.K. Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties.Nanoscale20181027128711293410.1039/C8NR02278J29926865
    [Google Scholar]
  22. MelkamuW.W. BitewL.T. Green synthesis of silver nanoparticles using Hagenia abyssinica (Bruce) J.F. Gmel plant leaf extract and their antibacterial and anti-oxidant activities.Heliyon2021711e0845910.1016/j.heliyon.2021.e0845934901505
    [Google Scholar]
  23. PappaH. Characterization of crystalline and partially crystalline solids BY X-raypowder diffraction (XRPD).Pharmacop. Forum200935731740
    [Google Scholar]
  24. CarolingG. VinodhiniE. Mercy RanjithamA. Biosynthesis of copper nanoparticles using aqueous Phyllanthus embilica (Gooseberry) extract-characterization and study of antimicrobial effects.Int J Nanomat Chem201515363
    [Google Scholar]
  25. ChardeM. ShindeM. WelankiwarA. Development of analytical and stability testing method for vitamin A palmitate formulation.Int J Pharm Chem20155104114
    [Google Scholar]
  26. DobruckaR. Antioxidant and catalytic activity of biosynthesized CuO nanoparticles using extract of Galeopsidis herba. J. Inorg. Organomet. Polym. Mater.201828381281910.1007/s10904‑017‑0750‑2
    [Google Scholar]
  27. Hojjati-NajafabadiA. DavarF. EnteshariZ. Hosseini-KoupaeiM. Antibacterial and photocatalytic behaviour of green synthesis of Zn0.95Ag0.05O nanoparticles using herbal medicine extract.Ceram. Int.20214722316173162410.1016/j.ceramint.2021.08.042
    [Google Scholar]
  28. BalasooriyaR. JayasingheD. JayawardenaA. Honey mediated green synthesis of nanoparticles: New era of safe nanotechnology.Nanomaterials201710
    [Google Scholar]
  29. BuazarF. SweidiS. BadriM. KroushawiF. Biofabrication of highly pure copper oxide nanoparticles using wheat seed extract and their catalytic activity: A mechanistic approach.Green Proces. Synthe.20198169170210.1515/gps‑2019‑0040
    [Google Scholar]
  30. Mahfooz-ur-RehmanM. RehmanW. WaseemM. ShahB.A. ShakeelM. HaqS. ZamanU. BibiI. KhanH.D. fabrication of titanium-tin oxide nanocomposite with enhanced adsorption and antimicrobial applications.J. Chem. Eng. Data20196462436244410.1021/acs.jced.8b01243
    [Google Scholar]
  31. KhanM.A. NayanN. ShadiullahS. AhmadM.K. SoonC.F. Surface study of CuO nano petals by advanced nano-characterization techniques with enhanced optical and catalytic properties.Nanomaterials2020107129810.3390/nano10071298
    [Google Scholar]
  32. DhineshbabuN.R. RajendranV. NithyavathyN. VetumperumalR. Study of structural and optical properties of cupric oxide nanoparticles.Appl. Nanosci.20166693393910.1007/s13204‑015‑0499‑2
    [Google Scholar]
  33. UdayabhanuN.C. NethravathiP.C. Pavan KumarM.A. SureshD. LingarajuK. RajanaikaH. NagabhushanaH. SharmaS.C. Tinospora cordifolia mediated facile green synthesis of cupric oxide nanoparticles and their photocatalytic, antioxidant and antibacterial properties.Mater. Sci. Semicond. Process.201533818810.1016/j.mssp.2015.01.034
    [Google Scholar]
  34. KędzierskaM. MonikaM. ArkadiuszF. Application of FTIR spectroscopy for analysis of the quality of honey.Bio Web of Conf.20181002008
    [Google Scholar]
  35. AntonovaO. CalvoJ. SeifertA. Rapid detection of thermal treatment of honey by chemometrics-assisted FTIR spectroscopy.Foods20211011289210.3390/foods1011289234829173
    [Google Scholar]
  36. BenhammadaA. TracheD. Green synthesis of CuO nanoparticles using Malva sylvestris leaf extract with different copper precursors and their effect on nitrocellulose thermal behavior.J. Therm. Anal. Calorim.2022147211610.1007/s10973‑020‑10469‑5
    [Google Scholar]
  37. ChinnaduraiG. SubramanianR. AhamedM. Fish mucus mediated biosynthesis of copper oxide nanoparticles: Spectral characterization, morphology and biological activity.Mater. Res. Express202071212501210.1088/2053‑1591/abcee7
    [Google Scholar]
  38. Rani VermaP. KhanF. Green approach for biofabrication of CuO nanoparticles from Prunus amygdalus pericarp extract and characterization.Inorg. Nano-Metal Chem.2019493697410.1080/24701556.2019.1601738
    [Google Scholar]
  39. Reshmi Agnes PreethiD. PrabhuS. RavikumarV. PhilominalA. Anticancer activity of pure and silver doped copper oxide nanoparticles against A549 Cell line.Mater. Today Commun.20223310446210.1016/j.mtcomm.2022.104462
    [Google Scholar]
  40. PreethiDRA PhilominalA Green synthesis of pure and silver doped copper oxide nanoparticles using Moringa oleifera leaf extract.Mater. Lett.: X202213100122
    [Google Scholar]
  41. Mossa UmranN. Mustafa Abdul MajeedA. subhi sultan Examination the properties of doped copper oxide by silver: Prepared chemical method.J. Phys. Conf. Ser.20191279101207810.1088/1742‑6596/1279/1/012078
    [Google Scholar]
  42. DasB. DashS.K. MandalD. GhoshT. ChattopadhyayS. TripathyS. DasS. DeyS.K. DasD. RoyS. Green synthesized silver nanoparticles destroy multidrug resistant bacteria via reactive oxygen species mediated membrane damage.Arab. J. Chem.201710686287610.1016/j.arabjc.2015.08.008
    [Google Scholar]
  43. Esmaeili Govarchin GhalehH. ZareiL. Mansori MotlaghB. JabbariN. Using CuO nanoparticles and hyperthermia in radiotherapy of MCF-7 cell line: Synergistic effect in cancer therapy.Artif. Cells Nanomed. Biotechnol.20194711396140310.1080/21691401.2019.160052930964344
    [Google Scholar]
  44. SiddiquiH. QureshiM.S. HaqueF.Z. Structural and optical properties of CuO nanocubes prepared through simple hydrothermal route.Int. J. Sci. Eng. Res.20145173177
    [Google Scholar]
  45. TroudiB. HalimiO. SebaisM. Synthesis, structural and optical properties of CuO nanocrystals embedded in Polyvinyl Chloride (PVC) thin films.J Mech Prod. Eng.20175115119
    [Google Scholar]
  46. MehtaSBK Green synthesis of silver nanoparticles and their characterization by XRD.J Phy Conf ser P201783614
    [Google Scholar]
  47. AsamoahR.B. AnnanE. MensahB. NbelayimP. ApalangyaV. Onwona-AgyemanB. YayaA. A comparative study of antibacterial activity of CuO/Ag and ZnO/Ag nanocomposites.Adv. Mater. Sci. Eng.2020202011810.1155/2020/7814324
    [Google Scholar]
  48. ZeidE.F.A. IbrahemI.A. MohamedW.A.A. AliA.M. Study the influence of silver and cobalt on the photocatalytic activity of copper oxide nanoparticles for the degradation of methyl orange and real wastewater dyes.Mater. Res. Express20207202620110.1088/2053‑1591/ab7400
    [Google Scholar]
  49. DivyaJ. PramothkumarA. Joshua GnanamuthuS. Bernice VictoriaD.C. Jobe prabakarP.C. Structural, optical, electrical and magnetic properties of Cu and Ni doped SnO2 nanoparticles prepared via Co-precipitation approach.Physica B202058841216910.1016/j.physb.2020.412169
    [Google Scholar]
  50. ValérioA. MorelhãoS.L. Usage of Scherrer’s formula in X-ray diffraction analysis of size distribution in systems of monocrystalline nanoparticles.Mater. Sci.2019219
    [Google Scholar]
  51. YanksonA.A. KuditcherA. GebreyesusG. EgblewogbeM.N.Y.H. AmuzuJ.K.A. ArmahE.A. A low-cost synthesis and characterization of CuO nanoparticles for photovoltaic applications.Ghana J. Sci.2019601172310.4314/gjs.v60i1.2
    [Google Scholar]
  52. Fakhar-e-AlamM. ShafiqZ. MahmoodA. AtifM. AnwarH. HanifA. YaqubN. FarooqW.A. FatehmullaA. AhmadS. Abd ElgawadA.E.E. AlimgeerK.S. GiaT.N. AhmedH. Assessment of green and chemically synthesized copper oxide nanoparticles against hepatocellular carcinoma.J. King Saud Univ. Sci.202133810166910.1016/j.jksus.2021.101669
    [Google Scholar]
  53. MohamadN.A.N. ArhamN.A. JaiJ. Plant extract as reducing agent in synthesis of metallic nanoparticles: A review.Adv. Mat. Res.20148322350355
    [Google Scholar]
  54. SukumarS. RudrasenanA. Padmanabhan NambiarD. Green-synthesized rice-shaped copper oxide nanoparticles using caesalpinia bonducella seed extract and their applications.ACS Omega2020521040105110.1021/acsomega.9b0285731984260
    [Google Scholar]
  55. BadawyA.A. AbdelfattahN.A.H. SalemS.S. AwadM.F. FoudaA. Efficacy assessment of biosynthesized copper oxide nanoparticles (CuO‐NPs) on stored grain insects and their impacts on morphological and physiological traits of wheat (Triticum aestivum l.).Biology202110323310.3390/biology1003023333802973
    [Google Scholar]
  56. BabuA.T. AntonyR. Green synthesis of silver doped nano metal oxides of zinc & copper for antibacterial properties, adsorption, catalytic hydrogenation & photodegradation of aromatics.J. Environ. Chem. Eng.20197110284010.1016/j.jece.2018.102840
    [Google Scholar]
  57. MahmoodiS. ElmiA. Hallaj NezhadiS. Copper nanoparticles as antibacterial agents.J. Mol. Pharm. Org. Process Res.2018611710.4172/2329‑9053.1000140
    [Google Scholar]
  58. WangL. HuC. ShaoL. The-antimicrobial-activity-of-nanoparticles--present-situation.Int. J. Nanomed.2017121227124910.2147/IJN.S12195628243086
    [Google Scholar]
  59. MengF. TaoH. MiY. YangT. WangX. GoY. LinY. WangG. Nanocluster-mediated photothermia improves eradication efficiency and antibiotic sensitivity of Helicobacter pylori.Cancer Nanotechnol.20221311310.1186/s12645‑022‑00121‑2
    [Google Scholar]
  60. ParvathirajaC. ShailajhaS. Bioproduction of CuO and Ag/CuO heterogeneous photocatalysis-photocatalytic dye degradation and biological activities.Appl. Nanosci.20211141411142510.1007/s13204‑021‑01743‑5
    [Google Scholar]
  61. ArakhaM. PalS. SamantarraiD. PanigrahiT.K. MallickB.C. PramanikK. MallickB. JhaS. Antimicrobial activity of iron oxide nanoparticle upon modulation of nanoparticle-bacteria interface.Sci. Rep.2015511481310.1038/srep1481326437582
    [Google Scholar]
  62. SahooJ.K. PaikraS.K. BaliarsinghA. PandaD. RathS. MishraM. SahooH. Surface functionalization of graphene oxide using amino silane magnetic nanocomposite for Chromium (VI) removal and bacterial treatment.Nano Express20201101006210.1088/2632‑959X/ab9e3f
    [Google Scholar]
  63. Emima JeronsiaJ. Allwin JosephL. Annie VinoshaP. Jerline MaryA. Jerome DasS. Camellia sinensis leaf extract mediated synthesis of copper oxide nanostructures for potential biomedical applications.Mater. Today Proc.2019821422210.1016/j.matpr.2019.02.103
    [Google Scholar]
  64. TharchanaaS.B. PriyankaK. PreethiK. ShanmugavelayuthamG. Facile synthesis of Cu and CuO nanoparticles from copper scrap using plasma arc discharge method and evaluation of antibacterial activity.Mater. Technol.20213629710410.1080/10667857.2020.1734721
    [Google Scholar]
  65. Gulcinİ. Antioxidants and antioxidant methods: An updated overview.Arch Toxicol.202094376810.1007/s00204‑020‑02689‑3
    [Google Scholar]
  66. RomaniV.P. MartinsV.G. GoddardJ.M. Radical scavenging polyethylene films as antioxidant active packaging materials.Food Control202010910694610.1016/j.foodcont.2019.106946
    [Google Scholar]
  67. PisoschiA.M. PopA. IordacheF. StancaL. PredoiG. SerbanA.I. Oxidative stress mitigation by antioxidants - An overview on their chemistry and influences on health status.Eur. J. Med. Chem.202120911289110.1016/j.ejmech.2020.11289133032084
    [Google Scholar]
  68. RajeshkumarS. Green synthesis of different sized antimicrobial silver nanoparticles using different parts of plants - A review.Int. J. Chemtech Res.20169197208
    [Google Scholar]
  69. SubhashiniN. ThangathirupathiA. LavanyaN. Antioxidant activity of Trigonella foenum graecum using various in vitro and ex vivo models.Int. J. Pharm. Pharm. Sci.2011396102
    [Google Scholar]
  70. GültekD. Synthesis of copper nanoparticles using a different method: Determination of their antioxidant and antimicrobial activity.Turk Chem Society20163623636
    [Google Scholar]
  71. RehanaD. MahendiranD. KumarR.S. RahimanA.K. Evaluation of antioxidant and anticancer activity of copper oxide nanoparticles synthesized using medicinally important plant extracts.Biomed. Pharmacother.2017891067107710.1016/j.biopha.2017.02.10128292015
    [Google Scholar]
  72. WettasingheM. ShahidiF. Scavenging of reactive-oxygen species and DPPH free radicals by extracts of borage and evening primrose meals.Food Chem.2000701172610.1016/S0308‑8146(99)00269‑1
    [Google Scholar]
  73. HyslopP.A. HinshawD.B. HalseyW.A.Jr SchraufstätterI.U. SauerheberR.D. SpraggR.G. JacksonJ.H. CochraneC.G. Mechanisms of oxidant-mediated cell injury. The glycolytic and mitochondrial pathways of ADP phosphorylation are major intracellular targets inactivated by hydrogen peroxide.J. Biol. Chem.198826341665167510.1016/S0021‑9258(19)77928‑93338986
    [Google Scholar]
/content/journals/cnm/10.2174/0124054615284528240201105900
Loading
/content/journals/cnm/10.2174/0124054615284528240201105900
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test