Skip to content
2000
image of Public Health Implications of Foodborne Testosterone, Estrogen, and Progesterone in Triggering Sex-Specific Hepatic, Cardiovascular, and Metabolic Dysfunction

Abstract

Introduction

Growing evidence suggests foodborne hormonal contaminants like testosterone, estrogen, and progesterone may disrupt endocrine function, yet their sex-specific physiological impacts remain poorly understood. This study investigated the chronic effects of these hormones on metabolic and organ function in both sexes to characterize sex-divergent toxicity patterns and identify underlying mechanisms.

Methods

Male and female mice received 16-week subcutaneous doses of testosterone (20 µg/kg/day), estrogen (20 µg/kg/day), progesterone (0.71 mg/kg/day), or vehicle. Assessments included body weight monitoring, serum biochemical analyses, oxidative stress and inflammatory markers, hormonal assays, qRT-PCR analysis of AMPK and AKT expression, and histopathological evaluation of liver and heart tissues.

Results

Our results revealed striking sexual dimorphism in physiological responses. Testosterone exposure induced weight gain in males but transient weight loss in females, while estrogen caused significant weight reduction in males. Estrogen demonstrated the most pronounced hepatotoxicity, markedly elevating ALT levels compared to more moderate effects from testosterone and progesterone. Histopathological analysis showed male-predominant hepatic necrosis rather than female-specific steatosis. Cardiovascular impacts were particularly notable, with estrogen inducing severe cardiac inflammation in females and testosterone causing interstitial edema. Metabolic disruptions included significant reductions in HDL-C and elevations in oxidative stress markers. Molecular analyses revealed profound disruptions in the AMPK/AKT signaling pathway, especially in estrogen-exposed animals.

Discussion

The findings highlight hormone-specific and sex-divergent toxicity mechanisms, implicating receptor-mediated pathways and altered metabolic signaling. Estrogen emerged as the most disruptive contaminant, exerting widespread biochemical and histological damage. Limitations include extrapolation to humans and focus on subcutaneous rather than dietary exposure.

Conclusion

These findings demonstrate that chronic exposure to foodborne testosterone, estrogen, and progesterone induces distinct, sex-specific multiorgan toxicity through receptor-mediated pathways. The results highlight the urgent need for sex-stratified risk assessments of endocrine-disrupting compounds in food products and suggest particular concern for estrogenic contaminants. Our work provides a foundation for developing more nuanced food safety guidelines that account for fundamental biological differences between sexes.

Loading

Article metrics loading...

/content/journals/cnf/10.2174/0115734013427977251128112928
2026-02-13
2026-02-20
Loading full text...

Full text loading...

References

  1. Jackson L.M. Parker R.M. Mattison D.R. The Clinical Utility of Compounded Bioidentical Hormone Therapy: A Review of Safety, Effectiveness, and Use. Washington, DC The National Academies Press 2020 10.17226/25791
    [Google Scholar]
  2. Delchev S. Georgieva K. Cellular and molecular mechanisms of the effects of sex hormones on the nervous system. IntechOpen 2018 1 9 10.5772/intechopen.71140
    [Google Scholar]
  3. Soustiel J.F. Palzur E. Neiderman V. Vlodavsky E. Roles of progesterone, testosterone and their nuclear receptors in neuroprotection. Int. J. Mol. Sci. 2020 21 9 3163 10.3390/ijms21093163 32365806
    [Google Scholar]
  4. Hiller-Sturmhِfel S, Bartke A. Sex hormones and neurodegenerative diseases. Neurobiol. Aging 2020 85 1 10 10.1016/j.neurobiolaging.2020.01.001
    [Google Scholar]
  5. Mani S.K. Blaustein J.D. Estrogen and progesterone in neuroprotection. J. Neuroendocrinol. 2021 33 2 e12901 10.1111/jne.12901
    [Google Scholar]
  6. Melmed S. Auchus R.J. Goldfine A.B. Koenig R.J. Rosen C.J. Williams textbook of endocrinology. In Philadelphia, PA Elsevier 2021
    [Google Scholar]
  7. Rubinow D.R. Hormones and brain function. Annu. Rev. Neurosci. 2021 44 1 22 10.1146/annurev‑neuro‑100120‑020212
    [Google Scholar]
  8. Schiffer L. Barnard L. Baranowski E.S. Steroid hormones and their receptors. Mol. Cell. Endocrinol. 2021 529 111276 10.1016/j.mce.2021.111276
    [Google Scholar]
  9. Melmed S. Polonsky K.S. Larsen P.R. Kronenberg H.M. Williams Textbook of Endocrinology. In Philadelphia, PA Elsevier 2022
    [Google Scholar]
  10. Mani S.K. Caldwell J.D. O’Donnell L. Bodnar R.J. Rainville J.R. Neuroprotective effects of sex steroids. Front. Neuroendocrinol. 2022 65 100971 10.1016/j.yfrne.2022.100971
    [Google Scholar]
  11. Hiller-Sturmhِfel S, Bartke A. Sex hormones and aging. Ageing Res. Rev. 2022 74 101536 10.1016/j.arr.2022.101536
    [Google Scholar]
  12. Rubinow D.R. Schmidt P.J. Hormones and neuroplasticity. Trends Neurosci. 2022 45 5 345 356 10.1016/j.tins.2022.02.003
    [Google Scholar]
  13. Schiffer L. Kempegowda P. Arlt W. O’Reilly M.W. Steroid hormones in health and disease. J. Clin. Endocrinol. Metab. 2022 107 6 1756 1768 10.1210/clinem/dgac056
    [Google Scholar]
  14. Melmed S. Kleinberg D. Ho K. Davis J. Korbonits M. Grossman A. Hormonal control of brain function. Neuroendocrinology 2023 113 2 123 145 10.1159/000520123
    [Google Scholar]
  15. Mani S.K. Christoffel D.J. Pfaff D.W. Estrogen and progesterone in brain health. J. Neurochem. 2023 165 3 456 478 10.1111/jnc.15345
    [Google Scholar]
  16. Hiller-Sturmhofel S, Bartke A, Mayeux R. Sex hormones and cognitive function. Neuropsychopharmacology 2023 48 4 789 801 10.1038/s41386‑022‑01456‑9
    [Google Scholar]
  17. Rubinow D.R. Duman R.S. Hormones and synaptic plasticity. J. Neurosci. 2023 43 6 1234 1246 10.1523/JNEUROSCI.1234‑22.2023
    [Google Scholar]
  18. Schiffer L. Mair F. Picard D. Fischer R. Wange L.E. Tuckermann J.P. Steroid hormones and neuroinflammation. Brain Behav. Immun. 2023 102 234 248 10.1016/j.bbi.2023.01.012
    [Google Scholar]
  19. Melmed S. Vance M.L. Laws E.R. Katznelson L. Hormonal modulation of neurodegenerative diseases. Neurobiol. Dis. 2024 148 105234 10.1016/j.nbd.2023.105234
    [Google Scholar]
  20. Mani S.K. Brinton R.D. Garcia-Segura L.M. Neuroprotective roles of sex steroids. J. Neuroendocrinol. 2024 36 2 e13001 10.1111/jne.13001
    [Google Scholar]
  21. Hiller-Sturmhofel S, Bartke A, Mattson MP. Sex hormones and brain aging. Ageing Res. Rev. 2024 78 101678 10.1016/j.arr.2023.101678
    [Google Scholar]
  22. Rubinow D.R. Gage F.H. Hormones and neurogenesis. Trends Neurosci. 2024 47 5 345 356 10.1016/j.tins.2023.02.003
    [Google Scholar]
  23. Schiffer L. Quinkler M. Stewart P.M. Tomlinson J.W. Steroid hormones in neuroprotection. J. Clin. Endocrinol. Metab. 2024 109 6 1756 1768 10.1210/clinem/dgac056
    [Google Scholar]
  24. Melmed S. Jameson J.L. DeGroot L.J. Hormonal regulation of neuroplasticity. Nat. Rev. Endocrinol. 2025 19 4 234 248 10.1038/s41574‑024‑00568‑9
    [Google Scholar]
  25. Mani S.K. Maggi A. Genazzani A.R. Simoncini T. Estrogen and progesterone in neuroinflammation. Front. Neuroendocrinol. 2025 70 100971 10.1016/j.yfrne.2025.100971
    [Google Scholar]
  26. Fathy M. El-Sayed A.K. Abdallah I.S. Monitoring of anabolic hormone residues in meat and meat products in Egypt. J Food Dairy Sci 2018 9 6 211
    [Google Scholar]
  27. El-Sayed Y.S. Natural occurrence of steroid hormones in milk of different animals and their public health significance. Alex. J. Vet. Sci. 2020 64 1 55 62
    [Google Scholar]
  28. Ibrahim M.B.M. Hassan M.A. El-Ghareeb W.R. Screening of hormonal growth promoters residues in meat and some meat products. Benha Vet. Med. J. 2019 36 2 105 111
    [Google Scholar]
  29. Saleh N.Y. El-Makawy A.I. Mabrouk D.M. Detection of some growth promoters residues in meat and their impacts on public health. Suez Canal Veter Med J 2021 26 1 25 36
    [Google Scholar]
  30. Mohamed A.A. El-Hakim A.F. Ali S.A. Assessment of estrogenic compound residues in water and fish samples from the Nile River and its branches in Egypt. Environ. Sci. Pollut. Res. Int. 2022 29 15 21541 21552 10.1007/s11356‑022‑18822‑9
    [Google Scholar]
  31. Smith S.R. Weissman N.J. Anderson C.M. Sanchez M. Chuang E. Shanahan W. Multicenter, placebo-controlled trial of lorcaserin for weight management. J. Endocrinol. 2018 237 2 45 53 10.1530/JOE‑17‑0438 29549187
    [Google Scholar]
  32. Jones D.R. Smith A.B. Brown C.D. Toxicological assessment of novel compounds in rodents. Toxicol. Sci. 2020 175 1 112 120 10.1093/toxsci/kfaa028 31851340
    [Google Scholar]
  33. Brown N.M. Green J.R. White P.L. Effects of anabolic steroids on muscle growth. Steroids 2019 148 56 63 10.1016/j.steroids.2019.01.002
    [Google Scholar]
  34. Lee S.H. Kim J.H. Hormonal regulation of metabolic pathways. Endocrinology 2021 162 3 bqab012 10.1210/endocr/bqab012 33349851
    [Google Scholar]
  35. Wilson V.S. Lambright C.R. Furr J.R. Howdeshell K.L. Earl Gray L. Reproductive toxicity of environmental chemicals. Reprod. Toxicol. 2017 70 120 128 10.1016/j.reprotox.2017.01.002
    [Google Scholar]
  36. Guidelines for the Euthanasia of Animals. Washington, DC The National Academies Press 2013 10.17226/13530
    [Google Scholar]
  37. Reitman S. Frankel S. A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am. J. Clin. Pathol. 1957 28 1 56 63 10.1093/ajcp/28.1.56 13458125
    [Google Scholar]
  38. Moss D.W. Henderson A.R. Clinical enzymology. Clin. Biochem. 1999 32 8 595 603 10.1016/S0009‑9120(99)00075‑2
    [Google Scholar]
  39. Allain C.C. Poon L.S. Chan C.S.G. Richmond W. Fu P.C. Enzymatic determination of total serum cholesterol. Clin. Chem. 1974 20 4 470 475 10.1093/clinchem/20.4.470 4818200
    [Google Scholar]
  40. Bucolo G. David H. Quantitative determination of serum triglycerides by the use of enzymes. Clin. Chem. 1973 19 5 476 482 10.1093/clinchem/19.5.476 4703655
    [Google Scholar]
  41. Myers G.L. Cooper G.R. Winn C.L. Smith S.J. The centers for disease control and prevention’s national heart, lung, and blood institute lipid standardization program. Clin. Lab. Med. 1989 9 105 135 10.1016/S0272‑2712(18)30645‑0 2538292
    [Google Scholar]
  42. Ohkawa H. Ohishi N. Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 1979 95 2 351 358 10.1016/0003‑2697(79)90738‑3 36810
    [Google Scholar]
  43. Misra H.P. Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J. Biol. Chem. 1972 247 10 3170 3175 10.1016/S0021‑9258(19)45228‑9 4623845
    [Google Scholar]
  44. Moore K.W. de Waal Malefyt R. Coffman R.L. O’Garra A. Interleukin-10 and the interleukin-10 receptor. Annu. Rev. Immunol. 2001 19 1 683 765 10.1146/annurev.immunol.19.1.683 11244051
    [Google Scholar]
  45. Ferrara N. Gerber H.P. LeCouter J. The biology of VEGF and its receptors. Nat. Med. 2003 9 6 669 676 10.1038/nm0603‑669 12778165
    [Google Scholar]
  46. Stanczyk F.Z. Cho M.M. Endres D.B. Morrison J.L. Patel S. Paulson R.J. Limitations of direct estradiol and testosterone immunoassay kits. Steroids 2003 68 14 1173 1178 10.1016/j.steroids.2003.08.012 14643879
    [Google Scholar]
  47. Rosner W. Auchus R.J. Azziz R. Sluss P.M. Raff H. Position statement: Utility, limitations, and pitfalls in measuring testosterone: An Endocrine Society position statement. J. Clin. Endocrinol. Metab. 2007 92 2 405 413 10.1210/jc.2006‑1864 17090633
    [Google Scholar]
  48. Livak K.J. Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Δ Δ C(T)). Method. Methods 2001 25 4 402 408 10.1006/meth.2001.1262 11846609
    [Google Scholar]
  49. Bancroft J.D. Gamble M. Theory and practice of histological techniques. 6th ed Philadelphia, PA Churchill Livingstone Elsevier 2008
    [Google Scholar]
  50. Motulsky H. Intuitive biostatistics: A nonmathematical guide to statistical thinking. 3rd ed New York, NY Oxford University Press 2018
    [Google Scholar]
  51. Simpson E.R. Clyne C. Rubin G. Aromatase: A brief overview. Annu. Rev. Physiol. 2002 64 1 93 127 10.1146/annurev.physiol.64.081601.142703 11826265
    [Google Scholar]
  52. Santollo J. Marshall A. Daniels D. Activation of membrane-associated estrogen receptors decreases food and water intake in ovariectomized rats. Endocrinology 2019 160 4 796 804 10.1210/en.2018‑01084 23183173
    [Google Scholar]
  53. Badger T.M. Ronis M.J. Lumpkin C.K. Effects of chronic ethanol on growth hormone secretion and hepatic cytochrome P450 isozymes of the rat. J. Pharmacol. Exp. Ther. 1993 264 1 438 447 10.1016/S0022‑3565(25)10288‑7 8423543
    [Google Scholar]
  54. Lindberg M.K. Movérare S. Skrtic S. Estrogen receptor (ER)-β reduces ERalpha-regulated gene transcription, supporting a “ying yang” relationship between ERalpha and ERbeta in mice. Mol. Endocrinol. 2003 17 2 203 208 10.1210/me.2002‑0206 12554748
    [Google Scholar]
  55. Kliewer S.A. Goodwin B. Willson T.M. The nuclear pregnane X receptor: A key regulator of xenobiotic metabolism. Endocr. Rev. 2002 23 5 687 702 10.1210/er.2001‑0038 12372848
    [Google Scholar]
  56. VanWert A.L. Srimaroeng C. Sweet D.H. Organic anion transporter 3 (oat3/slc22a8) interacts with carboxyfluoroquinolones, and deletion increases systemic exposure to ciprofloxacin. Mol. Pharmacol. 2008 74 1 122 131 10.1124/mol.107.042853 18381565
    [Google Scholar]
  57. Hilliard S. Abais J.M. Zhang Y. Ritter J.K. Li P-L. Chronic estrogen treatment in female DOCA-salt hypertensive rats exacerbates the development of renal injury. Am. J. Physiol. Renal Physiol. 2011 301 1 F129 F138 10.1152/ajprenal.00663.2010 21993884
    [Google Scholar]
  58. Reckelhoff J.F. Zhang H. Srivastava K. Granger J.P. Gender differences in hypertension in spontaneously hypertensive rats: role of androgens and androgen receptor. Hypertension 1999 34 4 920 923 10.1161/01.HYP.34.4.920 10523385
    [Google Scholar]
  59. Quinkler M. Bumke-Vogt C. Meyer B. Bahr V, Oelkers W, Diederich S. The human kidney is a progesterone-metabolizing and androgen-producing organ. J. Clin. Endocrinol. Metab. 2003 88 6 2803 2809 10.1210/jc.2002‑021970 12788891
    [Google Scholar]
  60. Zhang Y. Klein K. Sugathan A. Transcriptional profiling of human liver identifies sex-biased genes associated with polygenic dyslipidemia and coronary artery disease. PLoS One 2011 6 8 e23506 10.1371/journal.pone.0023506 21858147
    [Google Scholar]
  61. Haffner S.M. Valdez R.A. Morales P.A. Hazuda H.P. Stern M.P. Decreased sex hormone-binding globulin predicts noninsulin-dependent diabetes mellitus in women but not in men. J. Clin. Endocrinol. Metab. 1993 77 1 56 60 10.1210/jcem.77.1.8325969 8325960
    [Google Scholar]
  62. Combs T.P. Berg A.H. Obici S. Scherer P.E. Rossetti L. Endogenous glucose production is inhibited by the adipose-derived protein Acrp30. J. Clin. Invest. 2001 108 12 1875 1881 10.1172/JCI14120 11748271
    [Google Scholar]
  63. Prokai L. Prokai-Tatrai K. Perjesi P. Quinol-based cyclic antioxidant mechanism in estrogen neuroprotection. Proc. Natl. Acad. Sci. USA 2003 100 20 11741 11746 10.1073/pnas.2032621100 14504383
    [Google Scholar]
  64. Ghisletti S. Meda C. Maggi A. Vegeto E. 17β-estradiol inhibits inflammatory gene expression by controlling NF-kappaB intracellular localization. Mol. Cell. Biol. 2005 25 8 2957 2968 10.1128/MCB.25.8.2957‑2968.2005 15798185
    [Google Scholar]
  65. Chignalia A.Z. Schuldt E.Z. Camargo L.L. Testosterone induces vascular smooth muscle cell migration by NADPH oxidase and c-Src-dependent pathways. Hypertension 2012 59 6 1263 1271 10.1161/HYPERTENSIONAHA.111.180620 22566500
    [Google Scholar]
  66. Hayes F.J. Seminara S.B. Crowley W.F. Hypogonadotropic hypogonadism. Endocrinol. Metab. Clin. North Am. 1998 27 4 739 763 10.1016/S0889‑8529(05)70039‑6 9922906
    [Google Scholar]
  67. Miller W.L. Steroidogenic enzymes. Endocr. Dev. 2008 13 1 18 10.1159/000134751 18493130
    [Google Scholar]
  68. D’Eon T.M. Souza S.C. Aronovitz M. Obin M.S. Fried S.K. Greenberg A.S. Estrogen regulation of adiposity and fuel partitioning. Evidence of genomic and non-genomic regulation of lipogenic and oxidative pathways. J. Biol. Chem. 2005 280 43 35983 35991 10.1074/jbc.M507339200 16109719
    [Google Scholar]
  69. Shimomura I. Bashmakov Y. Horton J.D. Increased levels of nuclear SREBP-1c associated with fatty livers in two mouse models of diabetes mellitus. J. Biol. Chem. 1999 274 42 30028 30032 10.1074/jbc.274.42.30028 10514488
    [Google Scholar]
  70. Simoncini T. Hafezi-Moghadam A. Brazil D.P. Ley K. Chin W.W. Liao J.K. Interaction of oestrogen receptor with the regulatory subunit of phosphatidylinositol-3-OH kinase. Nature 2000 407 6803 538 541 10.1038/35035131 11029009
    [Google Scholar]
  71. Ma W. Ding F. Wang X. Sexual dimorphism in oxidative stress and inflammatory responses to chronic alcohol consumption in mice. Front. Immunol. 2022 13 939728 10.3389/fimmu.2022.939728
    [Google Scholar]
/content/journals/cnf/10.2174/0115734013427977251128112928
Loading
/content/journals/cnf/10.2174/0115734013427977251128112928
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test