Skip to content
2000
image of Pathological Effects on the Thyroid and Testes Induced by Prolonged Consumption of Caffeinated Energy Drinks in Adolescent Wistar Rats

Abstract

Introduction

Adolescents commonly consume caffeinated energy drinks to enhance their mental acuity and increase their physical performance. However, the systemic effects of these drinks, particularly following prolonged consumption, have been poorly delineated. This study investigated the impact of four months of Red Bull energy drink consumption on thyroid and testes functions, including hormonal and histopathological changes, in adolescent Wistar rats.

Methods

Twelve male rats were divided into two groups (six per group): a control group that received water with a standard diet, and a treated group that received Red Bull energy drinks and the same standard diet for four consecutive months. All animals were euthanized after completion of the experimental protocol. Biochemical and histopathological analyses were performed to detect serum hormone levels and to examine histopathological alterations in the thyroid and testes.

Results

The results showed a significant reduction in the body weight of rats treated with caffeinated energy drinks compared to controls. Prolonged consumption of energy drinks induced thyroid dysfunction as indicated by a significant decrease in thyroid-stimulating hormone and significant increases in thyroxine and triiodothyronine levels. Moreover, follicle-stimulating hormone and luteinizing hormone showed significant reductions after four months of consumption. Several histopathological changes in the thyroid and testes were observed in the treated group.

Discussion

These findings suggest that protracted consumption of caffeinated energy drinks induces thyroid and testes dysfunctions in adolescent rats.

Conclusion

The adverse effects of consuming these drinks may be attributed to the high levels of specific constituents, such as caffeine and taurine.

Loading

Article metrics loading...

/content/journals/cnf/10.2174/0115734013419276251024043538
2026-01-12
2026-02-02
Loading full text...

Full text loading...

References

  1. Łakoma K. Kukharuk O. Śliż D. The influence of metabolic factors and diet on fertility. Nutrients 2023 15 5 1180 10.3390/nu15051180 36904180
    [Google Scholar]
  2. Jędrusek-Golińska A. Górecka D. Buchowski M. Wieczorowska-Tobis K. Gramza-Michałowska A. Szymandera-Buszka K. Recent progress in the use of functional foods for older adults: A narrative review. Compr. Rev. Food Sci. Food Saf. 2020 19 2 835 856 10.1111/1541‑4337.12530 33325174
    [Google Scholar]
  3. Costantino A. Maiese A. Lazzari J. The dark side of energy drinks: A comprehensive review of their impact on the human body. Nutrients 2023 15 18 3922 3953 10.3390/nu15183922 37764707
    [Google Scholar]
  4. Biggio F. Talani G. Asuni G.P. Mixing energy drinks and alcohol during adolescence impairs brain function: A study of rat hippocampal plasticity. Neuropharmacology 2024 254 109993 110007 10.1016/j.neuropharm.2024.109993 38735368
    [Google Scholar]
  5. McMillan C. Dower J. Ikeda I. Marhoffer E. Chronic pancreatitis pain associated with energy drink consumption: A case report. J. Investig. Med. High Impact Case Rep. 2024 12 23247096241255806 10.1177/23247096241255806 38779965
    [Google Scholar]
  6. Özde C. Kaya A. Akbudak I.H. Aktüre G. Kayapinar O. Acute effects of red bull energy drinks on atrial electromechanical function in healthy young adults. Am. J. Cardiol. 2020 125 4 570 574 10.1016/j.amjcard.2019.11.020 31812229
    [Google Scholar]
  7. Hardy R. Kliemann N. Dahlberg P. Bode A. Monroe E. Brand J. The relationship between energy drink consumption, caffeine content, and nutritional knowledge among college students. J. Prim. Prev. 2021 42 3 297 308 10.1007/s10935‑021‑00635‑2 33982200
    [Google Scholar]
  8. Gutiérrez-Hellín J. Varillas-Delgado D. Energy drinks and sports performance, cardiovascular risk, and genetic associations; future prospects. Nutrients 2021 13 3 715 10.3390/nu13030715 33668219
    [Google Scholar]
  9. Vercammen K.A. Koma J.W. Bleich S.N. Trends in energy drink consumption among U.S. adolescents and adults, 2003–2016. Am. J. Prev. Med. 2019 56 6 827 833 10.1016/j.amepre.2018.12.007 31005465
    [Google Scholar]
  10. Gunja N. Brown J.A. Energy drinks: Health risks and toxicity. Med. J. Aust. 2012 196 1 46 49 10.5694/mja11.10838 22256934
    [Google Scholar]
  11. Wolk B.J. Ganetsky M. Babu K.M. Toxicity of energy drinks. Curr. Opin. Pediatr. 2012 24 2 243 251 10.1097/MOP.0b013e3283506827 22426157
    [Google Scholar]
  12. Seifert S.M. Schaechter J.L. Hershorin E.R. Lipshultz S.E. Health effects of energy drinks on children, adolescents, and young adults. Pediatrics 2011 127 3 511 528 10.1542/peds.2009‑3592 21321035
    [Google Scholar]
  13. Williams R. Housman J. Odum M. Rivera A. Energy drink use linked to high-sugar beverage intake and BMI among teens. Am. J. Health Behav. 2017 41 3 259 265 10.5993/AJHB.41.3.5 28376970
    [Google Scholar]
  14. Cargnelutti F. Di Nisio A. Pallotti F. Risk factors on testicular function in adolescents. J. Endocrinol. Invest. 2022 45 9 1625 1639 [Talent Group. 10.1007/s40618‑022‑01769‑8 35286610
    [Google Scholar]
  15. Hanley P. Lord K. Bauer A.J. Thyroid disorders in children and adolescents: A review. JAMA Pediatr. 2016 170 10 1008 1019 10.1001/jamapediatrics.2016.0486 27571216
    [Google Scholar]
  16. Zheng J. Zhu X. Xu G. Relationship between caffeine intake and thyroid function: Results from NHANES 2007–2012. Nutr. J. 2023 22 1 36 10.1186/s12937‑023‑00866‑5 37491267
    [Google Scholar]
  17. Walczak K. Sieminska L. Obesity and thyroid axis. Int. J. Environ. Res. Public Health 2021 18 18 9434 9458 10.3390/ijerph18189434 34574358
    [Google Scholar]
  18. Leung A.M. Braverman L.E. Consequences of excess iodine. Nat. Rev. Endocrinol. 2014 10 3 136 142 10.1038/nrendo.2013.251 24342882
    [Google Scholar]
  19. Talebi S. Ghaedi E. Sadeghi E. Trace element status and hypothyroidism: A systematic review and meta-analysis. Biol. Trace Elem. Res. 2020 197 1 1 14 10.1007/s12011‑019‑01963‑5 31820354
    [Google Scholar]
  20. Pakdel F. Ghazavi R. Heidary R. Effect of selenium on thyroid disorders: Scientometric analysis. Iran. J. Public Health 2019 48 3 410 420 10.18502/ijph.v48i3.883 31223567
    [Google Scholar]
  21. Al-Mayyahi R.S. Almahdi Z.A. Al-Hayder M.N. Effects of chronic energy drink consumption on the glycemic, histopathologic, and inflammatory responses in Wistar rats. Nutrire 2024 50 1 2 10.1186/s41110‑024‑00306‑2
    [Google Scholar]
  22. Nair A. Jacob S. A simple practice guide for dose conversion between animals and human. J. Basic Clin. Pharm. 2016 7 2 27 31 10.4103/0976‑0105.177703 27057123
    [Google Scholar]
  23. Aledani T.H.W. Al-Hayder M.N. Mohammed S.H. Al-Mayyahi R.S. Investigation of Montelukast effect on rosuvastatin induced late puberty in rats. J. Hum. Reprod. Sci. 2022 15 3 228 232 10.4103/jhrs.jhrs_56_22 36341010
    [Google Scholar]
  24. Sawyer S.M. Afifi R.A. Bearinger L.H. Adolescence: A foundation for future health. Lancet 2012 379 9826 1630 1640 10.1016/S0140‑6736(12)60072‑5 22538178
    [Google Scholar]
  25. Campbell P.J. Brown S.J. Kendrew P. Changes in Thyroid function across adolescence: A longitudinal study. J. Clin. Endocrinol. Metab. 2020 105 4 e1162 e1170 10.1210/clinem/dgz331 31922575
    [Google Scholar]
  26. Sarra F. Paocic D. Zöchling A. Gut microbiota, dietary taurine, and fiber shift taurine homeostasis in adipose tissue of calorie-restricted mice to impact fat loss. J. Nutr. Biochem. 2024 134 109720 109734 10.1016/j.jnutbio.2024.109720 39103106
    [Google Scholar]
  27. Gomez R. Caletti G. Arbo B.D. Acute intraperitoneal administration of taurine decreases the glycemia and reduces food intake in type 1 diabetic rats. Biomed. Pharmacother. 2018 103 1028 1034 10.1016/j.biopha.2018.04.131 29710660
    [Google Scholar]
  28. Gavrieli A. Karfopoulou E. Kardatou E. Effect of different amounts of coffee on dietary intake and appetite of normal-weight and overweight/obese individuals. Obesity 2013 21 6 1127 1132 10.1002/oby.20190 23671022
    [Google Scholar]
  29. Glover F.E. Caudle W.M. Del Giudice F. The association between caffeine intake and testosterone: NHANES 2013–2014. Nutr. J. 2022 21 1 33 10.1186/s12937‑022‑00783‑z 35578259
    [Google Scholar]
  30. Ye Z. Liu G. Guo J. Su Z. Hypothalamic endoplasmic reticulum stress as a key mediator of obesity‐induced leptin resistance. Obes. Rev. 2018 19 6 770 785 10.1111/obr.12673 29514392
    [Google Scholar]
  31. Armstrong L.E. Caffeine, body fluid-electrolyte balance, and exercise performance. Int. J. Sport Nutr. Exerc. Metab. 2002 12 2 189 206 10.1123/ijsnem.12.2.189 12187618
    [Google Scholar]
  32. Clozel M. Branchaud C.L. Tannenbaum G.S. Dussault J.H. Aranda J.V. Effect of caffeine on thyroid and pituitary function in newborn rats. Pediatr. Res. 1983 17 7 592 595 10.1203/00006450‑198307000‑00015 6413944
    [Google Scholar]
  33. Ahmed R.G. Gestational caffeine exposure acts as a fetal thyroid-cytokine disruptor by activating caspase-3/BAX/Bcl-2/Cox2/NF-κB at ED 20. Toxicol. Res. 2018 8 2 196 205 10.1039/C8TX00227D 30997021
    [Google Scholar]
  34. O’Donnell L. Smith L.B. Rebourcet D. Sertoli cells as key drivers of testis function. Semin. Cell Dev. Biol. 2022 121 2 9 10.1016/j.semcdb.2021.06.016
    [Google Scholar]
  35. Dias T.R. Alves M.G. Bernardino R.L. Dose-dependent effects of caffeine in human Sertoli cells metabolism and oxidative profile: Relevance for male fertility. Toxicology 2015 328 12 20 10.1016/j.tox.2014.12.003 25486098
    [Google Scholar]
  36. Oduwole O.O. Huhtaniemi I.T. Misrahi M. The roles of luteinizing hormone, follicle-stimulating hormone and testosterone in spermatogenesis and folliculogenesis revisited. Int. J. Mol. Sci. 2021 22 23 12735 10.3390/ijms222312735 34884539
    [Google Scholar]
  37. Alves M.G. Rato L. Carvalho R.A. Moreira P.I. Socorro S. Oliveira P.F. Hormonal control of Sertoli cell metabolism regulates spermatogenesis. Cell. Mol. Life Sci. 2013 70 5 777 793 10.1007/s00018‑012‑1079‑1 23011766
    [Google Scholar]
  38. Reis R. Charehsaz M. Sipahi H. Energy drink induced lipid peroxidation and oxidative damage in rat liver and brain when used alone or combined with alcohol. J. Food Sci. 2017 82 4 1037 1043 10.1111/1750‑3841.13662 28304088
    [Google Scholar]
  39. Ameziane El Hassani R. Buffet C. Leboulleux S. Dupuy C. Oxidative stress in thyroid carcinomas: Biological and clinical significance. Endocr. Relat. Cancer 2019 26 3 R131 R143 10.1530/ERC‑18‑0476 30615595
    [Google Scholar]
  40. Rostami R. Aghasi M.R. Mohammadi A. Nourooz-Zadeh J. Enhanced oxidative stress in Hashimoto’s thyroiditis: Inter-relationships to biomarkers of thyroid function. Clin. Biochem. 2013 46 4-5 308 312 10.1016/j.clinbiochem.2012.11.021 23219737
    [Google Scholar]
  41. Kochman J. Jakubczyk K. Bargiel P. Janda-Milczarek K. The influence of oxidative stress on thyroid diseases. Antioxidants 2021 10 9 1442 10.3390/antiox10091442 34573074
    [Google Scholar]
  42. Agarwal A. Parekh N. Panner Selvam M.K. Male oxidative stress infertility (MOSI): Proposed terminology and clinical practice guidelines for management of idiopathic male infertility. World J. Mens Health 2019 37 3 296 312 10.5534/wjmh.190055 31081299
    [Google Scholar]
  43. Aitken R. Smith T. Jobling M. Baker M. De Iuliis G. Oxidative stress and male reproductive health. Asian J. Androl. 2014 16 1 31 38 10.4103/1008‑682X.122203 24369131
    [Google Scholar]
  44. Monageng E. Offor U. Takalani N.B. Mohlala K. Opuwari C.S. A review on the impact of oxidative stress and medicinal plants on leydig cells. Antioxidants 2023 12 8 1559 10.3390/antiox12081559 37627554
    [Google Scholar]
  45. Redza-Dutordoir M. Averill-Bates D.A. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim. Biophys. Acta Mol. Cell Res. 2016 1863 12 2977 2992 10.1016/j.bbamcr.2016.09.012 27646922
    [Google Scholar]
/content/journals/cnf/10.2174/0115734013419276251024043538
Loading
/content/journals/cnf/10.2174/0115734013419276251024043538
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: caffeine ; taurine ; energy drinks ; Thyroid hormones ; male infertility ; testis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test