Skip to content
2000
image of Exploring the Role of Buckwheat-Derived SCFAs in Modulating Gut Microbiota-Immune Interactions in Metabolic Syndrome

Abstract

Background

Metabolic syndrome has been recognized as a significant public health issue closely related to dysbiosis and systemic inflammation, which are influenced by gut microbiota and its metabolites.

Objective

This review focuses on the Short-Chain Fatty Acids (SCFAs) from buckwheat in modifying gut microbiota and immune response to combat metabolic syndrome. We provide an overview of studies on the substantial function of buckwheat-derived SCFAs in the interaction between gut microbiota and the immune system, particularly in metabolic syndrome.

Methods

A detailed literature review was performed from 2015 to 2025, utilizing PubMed, ScienceDirect, SpringerLink, and Google Scholar databases. The data was analyzed descriptively and systematically.

Results and Discussion

Buckwheat's resistant starch, polyphenols, and bioactive peptides promote SCFA production, reduce chronic inflammation, and lower the risk of metabolic syndromes. However, the heterogeneity in gut microbiota response among subjects underlines the relevance of individualized nutrition. Future research should prioritize large-scale trials to validate these findings and examine long-term impacts.

Conclusion

The function of SCFAs produced by buckwheat as an alternative functional food to mitigate metabolic syndrome was explored in this review.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cnf/10.2174/0115734013415483251114115222
2026-01-09
2026-02-02
Loading full text...

Full text loading...

/deliver/fulltext/cnf/10.2174/0115734013415483251114115222/BMS-CNF-2025-98.html?itemId=/content/journals/cnf/10.2174/0115734013415483251114115222&mimeType=html&fmt=ahah

References

  1. Farmanfarma K. Ansari-Moghaddam A. Kaykhaei M. Mohammadi M. Adineh H. Aliabd H.O. Incidence of and factors associated with metabolic syndrome, south-east Islamic Republic of Iran. East. Mediterr. Health J. 2021 27 11 1084 1091 10.26719/emhj.21.051
    [Google Scholar]
  2. Zou G. Zhong Q. OUYang P, Li X, Lai X, Zhang H. Predictive analysis of metabolic syndrome based on 5-years continuous physical examination data. Sci. Rep. 2023 13 1 9132 10.1038/s41598‑023‑35604‑8 36593249
    [Google Scholar]
  3. He M. Shi B. Gut microbiota as a potential target of metabolic syndrome: The role of probiotics and prebiotics. Cell Biosci. 2017 7 1 54 10.1186/s13578‑017‑0183‑1 29090088
    [Google Scholar]
  4. Yu W. Zeng D. Xiong Y. Shan S. Yang X. Zhao H. Health benefits of functional plant polysaccharides in metabolic syndrome: An overview. J. Funct. Foods 2022 95 105154 10.1016/j.jff.2022.105154
    [Google Scholar]
  5. Fahed G. Aoun L. Bou Zerdan M. Metabolic syndrome: Updates on pathophysiology and management in 2021. Int. J. Mol. Sci. 2022 23 2 786 10.3390/ijms23020786 35054972
    [Google Scholar]
  6. Hoyas I. Leon-Sanz M. Nutritional challenges in metabolic syndrome. J. Clin. Med. 2019 8 9 1301 10.3390/jcm8091301 31450565
    [Google Scholar]
  7. Kadim M. Masita B.M. The importance of gut health in early life for long term health. World Nutrit J 2022 5 S2 1 8 10.25220/WNJ.V05.S2.0001
    [Google Scholar]
  8. Kartjito M.S. Yosia M. Wasito E. Soloan G. Agussalim A.F. Basrowi R.W. Defining the relationship of gut microbiota, immunity, and cognition in early life—a narrative review. Nutrients 2023 15 12 2642 10.3390/nu15122642 37375546
    [Google Scholar]
  9. Bovolini A. Garcia J. Andrade M.A. Duarte J.A. Metabolic syndrome pathophysiology and predisposing factors. Int. J. Sports Med. 2021 42 3 199 214 10.1055/a‑1263‑0898 33075830
    [Google Scholar]
  10. Wu J. Wang K. Wang X. Pang Y. Jiang C. The role of the gut microbiome and its metabolites in metabolic diseases. Protein Cell 2021 12 5 360 373 10.1007/s13238‑020‑00814‑7 33346905
    [Google Scholar]
  11. Bertorello S. Cei F. Fink D. Niccolai E. Amedei A. The future exploring of gut microbiome-immunity interactions: From in vivo/vitro models to in silico innovations. Microorganisms 2024 12 9 1828 10.3390/microorganisms12091828 39338502
    [Google Scholar]
  12. Li Q. Gao B. Siqin B. Gut microbiota: A novel regulator of cardiovascular disease and key factor in the therapeutic effects of flavonoids. Front. Pharmacol. 2021 12 651926 10.3389/fphar.2021.651926 34220497
    [Google Scholar]
  13. Al Bander Z. Nitert M.D. Mousa A. Naderpoor N. The gut microbiota and inflammation: An overview. Int. J. Environ. Res. Public Health 2020 17 20 7618 10.3390/ijerph17207618 33086688
    [Google Scholar]
  14. Peng L. Zhang Q. Zhang Y. Effect of tartary buckwheat, rutin, and quercetin on lipid metabolism in rats during high dietary fat intake. Food Sci. Nutr. 2020 8 1 199 213 10.1002/fsn3.1291 31993146
    [Google Scholar]
  15. Portincasa P. Bonfrate L. Vacca M. Gut microbiota and short chain fatty acids: Implications in glucose homeostasis. Int. J. Mol. Sci. 2022 23 3 1105 10.3390/ijms23031105 35163038
    [Google Scholar]
  16. Tan J.K. Macia L. Mackay C.R. Dietary fiber and SCFAs in the regulation of mucosal immunity. J. Allergy Clin. Immunol. 2023 151 2 361 370 10.1016/j.jaci.2022.11.007 36543697
    [Google Scholar]
  17. Fusco W. Lorenzo M.B. Cintoni M. Short-chain fatty-acid-producing bacteria: Key components of the human gut microbiota. Nutrients 2023 15 9 2211 10.3390/nu15092211 37432351
    [Google Scholar]
  18. Aho V.T.E. Houser M.C. Pereira P.A.B. Relationships of gut microbiota, short-chain fatty acids, inflammation, and the gut barrier in Parkinson’s disease. Mol. Neurodegener. 2021 16 1 6 10.1186/s13024‑021‑00427‑6 33557896
    [Google Scholar]
  19. Dang A.T. Marsland B.J. Microbes, metabolites, and the gut–lung axis. Mucosal Immunol. 2019 12 4 843 850 10.1038/s41385‑019‑0160‑6 30976087
    [Google Scholar]
  20. Du Y. He C. An Y. The role of short chain fatty acids in inflammation and body health. Int. J. Mol. Sci. 2024 25 13 7379 10.3390/ijms25137379 39000498
    [Google Scholar]
  21. Lee M.S. Shin Y. Jung S. The inhibitory effect of tartary buckwheat extracts on adipogenesis and inflammatory response. Molecules 2017 22 7 1160 10.3390/molecules22071160 28704952
    [Google Scholar]
  22. Li L. Lietz G. Seal C. Buckwheat and CVD risk markers: A systematic review and meta-analysis. Nutrients 2018 10 5 619 10.3390/nu10050619 29762481
    [Google Scholar]
  23. Zamaratskaia G. Gerhardt K. Knicky M. Wendin K. Zamaratskaia G. Gerhardt K. Buckwheat: An underutilized crop with attractive sensory qualities and health benefits. Crit. Rev. Food Sci. Nutr. 2024 64 33 12303 12318 10.1080/10408398.2023.2249112 37640053
    [Google Scholar]
  24. Sun N.X. Tong L.T. Liang T.T. Effect of oat and tartary buckwheat – based food on cholesterol – lowering and gut microbiota in hypercholesterolemic hamsters. J. Oleo Sci. 2019 68 3 251 259 10.5650/jos.ess18221 30760672
    [Google Scholar]
  25. Kim S.Y. Lee M.S. Chang E. Tartary buckwheat extract attenuated the obesity-induced inflammation and increased muscle PGC-1a/SIRT1 expression in high fat diet-induced obese rats. Nutrients 2019 11 3 654 10.3390/nu11030654 30889894
    [Google Scholar]
  26. Cheng W. Cai C. Kreft I. Tartary buckwheat flavonoids improve colon lesions and modulate gut microbiota composition in diabetic mice. Evid. Based Complement. Alternat. Med. 2022 2022 1 14 10.1155/2022/4524444 36016679
    [Google Scholar]
  27. Valido E. Stoyanov J. Gorreja F. Systematic review of human and animal evidence on the role of buckwheat consumption on gastrointestinal health. Nutrients 2022 15 1 1 10.3390/nu15010001 36615659
    [Google Scholar]
  28. Bani C. Peñas E. Baron G. Characterization of the phenolic profile and in vitro antioxidant potential of different varieties of common buckwheat (Fagopyrum esculentum Moench) and tartary buckwheat (Fagopyrum tataricum (L.) Gaertn.). Lebensm. Wiss. Technol. 2025 215 117261 10.1016/j.lwt.2024.117261
    [Google Scholar]
  29. Zhu F. Buckwheat proteins and peptides: Biological functions and food applications. Trends Food Sci. Technol. 2021 110 110 155 167 10.1016/j.tifs.2021.01.081
    [Google Scholar]
  30. Jin X. He C. Guo Z. The hypoglycemic activity of buckwheat and the underlying mechanisms: A mechanistic review. Food Biosci. 2024 62 12 105046 10.1016/j.fbio.2024.105046
    [Google Scholar]
  31. Zhu F. Chemical composition and health effects of Tartary buckwheat. Food Chem. 2016 203 203 231 245 10.1016/j.foodchem.2016.02.050 26948610
    [Google Scholar]
  32. Shen L. Li C. Wang W. Wang X. Tang D. Xiao F. Buckwheat extracts rich in flavonoid aglycones and flavonoid glycosides significantly reduced blood glucose in diabetes mice. J. Funct. Foods 2024 113 106029 10.1016/j.jff.2024.106029
    [Google Scholar]
  33. Vollmannová A. Musilová J. Lidiková J. Concentrations of phenolic acids are differently genetically determined in leaves, flowers, and grain of common buckwheat (Fagopyrum esculentum moench). Plants 2021 10 6 1142 10.3390/plants10061142 34205223
    [Google Scholar]
  34. Ninomiya K. Ina S. Hamada A. Suppressive Effect of the α-Amylase Inhibitor Albumin from Buckwheat (Fagopyrum esculentum Moench) on Postprandial Hyperglycaemia. Nutrients 2018 10 10 1503 10.3390/nu10101503 30326572
    [Google Scholar]
  35. Matsumura Y. Kitabatake M. Kayano S. Ito T. Dietary phenolic compounds: Their health benefits and association with the gut microbiota. Antioxidants 2023 12 4 880 10.3390/antiox12040880 37107256
    [Google Scholar]
  36. Jagielski P. Bolesławska I. Wybrańska I. Przysławski J. Łuszczki E. Effects of a diet containing sources of prebiotics and probiotics and modification of the gut microbiota on the reduction of body fat. Int. J. Environ. Res. Public Health 2023 20 2 1348 10.3390/ijerph20021348 36674104
    [Google Scholar]
  37. Wu D.T. Wang J. Li J. Physicochemical properties and biological functions of soluble dietary fibers isolated from common and Tartary buckwheat sprouts. Lebensm. Wiss. Technol. 2023 183 10 114944 10.1016/j.lwt.2023.114944
    [Google Scholar]
  38. Xiang Y. Cao Y.N. Yang S.H. Isolation and purification of Tartary buckwheat polysaccharides and their effect on gut microbiota. Food Sci. Nutr. 2023 11 1 408 417 10.1002/fsn3.3072 36655103
    [Google Scholar]
  39. Yao D. Yu Q. Xu L. Wheat supplement with buckwheat affect gut microbiome composition and circulate short-chain fatty acids. Front. Nutr. 2022 9 952738 10.3389/fnut.2022.952738 36147303
    [Google Scholar]
  40. Wang P. Ma T. Production of bioactive peptides from tartary buckwheat by solid-state fermentation with Lactiplantibacillus plantarum ATCC 14917. Foods 2024 13 19 3204 10.3390/foods13193204 39410237
    [Google Scholar]
  41. Ren G. Fan X. Teng C. Li Y. Everaert N. Blecker C. The beneficial effect of coarse cereals on chronic diseases through regulating gut microbiota. Foods 2021 10 11 2891 10.3390/foods10112891 34829172
    [Google Scholar]
  42. Sun Z.B. Zhang X. Yan Y. Xu J.L. Lu X. Ren Q. The effect of buckwheat resistant starch on intestinal physiological function. Foods 2023 12 10 2069 10.3390/foods12102069 37238887
    [Google Scholar]
  43. Sofi S.A. Ahmed N. Farooq A. Nutritional and bioactive characteristics of buckwheat, and its potential for developing gluten-free products: An updated overview. Food Sci. Nutr. 2023 11 5 2256 2276 10.1002/fsn3.3166 37181307
    [Google Scholar]
  44. Giménez-Bastida J.A. Zieliński H. Buckwheat as a functional food and its effects on health. J. Agric. Food Chem. 2015 63 36 7896 7913 10.1021/acs.jafc.5b02498 26270637
    [Google Scholar]
  45. Giménez-Bastida J.A. Laparra-Llopis J.M. Baczek N. Zielinski H. Buckwheat and buckwheat enriched products exert an anti-inflammatory effect on the myofibroblasts of colon CCD-18Co. Food Funct. 2018 9 6 3387 3397 10.1039/C8FO00193F 29870039
    [Google Scholar]
  46. Fotschki B. Juśkiewicz J. Jurgoński A. Protein-rich flours from quinoa and buckwheat favourably affect the growth parameters, intestinal microbial activity and plasma lipid profile of rats. Nutrients 2020 12 9 2781 10.3390/nu12092781 32932953
    [Google Scholar]
  47. Karami Z. Akbari-adergani B. Bioactive food derived peptides: A review on correlation between structure of bioactive peptides and their functional properties. J. Food Sci. Technol. 2019 56 2 535 547 10.1007/s13197‑018‑3549‑4 30906011
    [Google Scholar]
  48. Zaky A.A. Simal-Gandara J. Eun J.B. Shim J.H. Abd El-Aty A.M. Bioactivities, applications, safety, and health benefits of bioactive peptides from food and by-products: A review. Front. Nutr. 2022 8 815640 10.3389/fnut.2021.815640 35127796
    [Google Scholar]
  49. Zhou Y. Jiang Q. Zhao S. Yan B. Zhou X. Impact of buckwheat fermented milk combined with high-fat diet on rats’ gut microbiota and short-chain fatty acids. J. Food Sci. 2019 84 12 3833 3842 10.1111/1750‑3841.14958 31774558
    [Google Scholar]
  50. Kreft M. Buckwheat phenolic metabolites in health and disease. Nutr. Res. Rev. 2016 29 1 30 39 10.1017/S0954422415000190 27046048
    [Google Scholar]
  51. Singh B. Oberoi S. Kaur A. Phenolic composition, antioxidant activity and health benefits of Tartary (Fagopyrum tataricum Gaerth) and common (F. esculentum Moench) buckwheat grains: A review. Food Chem Adv 2024 5 100820 10.1016/j.focha.2024.100820
    [Google Scholar]
  52. Cai C. Cheng W. Shi T. Liao Y. Zhou M. Liao Z. Rutin alleviates colon lesions and regulates gut microbiota in diabetic mice. Sci. Rep. 2023 13 1 4897 10.1038/s41598‑023‑31647‑z 36966186
    [Google Scholar]
  53. Ferenc K. Sokal-Dembowska A. Helma K. Motyka E. Jarmakiewicz-Czaja S. Filip R. Modulation of the gut microbiota by nutrition and its relationship to epigenetics. Int. J. Mol. Sci. 2024 25 2 1228 10.3390/ijms25021228 38279228
    [Google Scholar]
  54. Tangvoraphonkchai K. Davenport A. Magnesium and cardiovascular disease. Adv. Chronic Kidney Dis. 2018 25 3 251 260 10.1053/j.ackd.2018.02.010 29793664
    [Google Scholar]
  55. Zhang Z. Fan S. Duncan G.J. Buckwheat (Fagopyrum esculentum) hulls are a rich source of fermentable dietary fibre and bioactive phytochemicals. Int. J. Mol. Sci. 2023 24 22 16310 10.3390/ijms242216310 38003497
    [Google Scholar]
  56. Wang Y. Qi W. Guo X. Effects of oats, tartary buckwheat, and foxtail millet supplementation on lipid metabolism, oxido-inflammatory responses, gut microbiota, and colonic scfa composition in high-fat diet fed rats. Nutrients 2022 14 13 2760 10.3390/nu14132760 35807940
    [Google Scholar]
  57. Zhou Y. Wei Y. Yan B. Zhao S. Zhou X. Regulation of tartary buckwheat-resistant starch on intestinal microflora in mice fed with high-fat diet. Food Sci. Nutr. 2020 8 7 3243 3251 10.1002/fsn3.1601 32724589
    [Google Scholar]
  58. Salazar N. Arboleya S. Fernández-Navarro T. de los Reyes-Gavilán C.G. Gonzalez S. Gueimonde M. Age-associated changes in gut microbiota and dietary components related with the immune system in adulthood and old age: A cross-sectional study. Nutrients 2019 11 8 1765 10.3390/nu11081765 31370376
    [Google Scholar]
  59. Cuevas-Sierra A. Ramos-Lopez O. Riezu-Boj J.I. Milagro F.I. Martinez J.A. Diet, gut microbiota, and obesity: Links with host genetics and epigenetics and potential applications. Adv. Nutr. 2019 10 Suppl. 1 S17 S30 10.1093/advances/nmy078 30721960
    [Google Scholar]
  60. Geng J. Ni Q. Sun W. Li L. Feng X. The links between gut microbiota and obesity and obesity related diseases. Biomed. Pharmacother. 2022 147 112678 10.1016/j.biopha.2022.112678
    [Google Scholar]
  61. Boulangé C.L. Neves A.L. Chilloux J. Nicholson J.K. Dumas M.E. Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome Med. 2016 8 1 42 10.1186/s13073‑016‑0303‑2 27098727
    [Google Scholar]
  62. Bolte L.A. Vich Vila A. Imhann F. Long-term dietary patterns are associated with pro-inflammatory and anti-inflammatory features of the gut microbiome. Gut 2021 70 7 1287 1298 10.1136/gutjnl‑2020‑322670 33811041
    [Google Scholar]
  63. Bosco N. Noti M. The aging gut microbiome and its impact on host immunity. Genes Immun. 2021 22 5-6 289 303 10.1038/s41435‑021‑00126‑8 33875817
    [Google Scholar]
  64. Lin L. Zhang J. Role of intestinal microbiota and metabolites on gut homeostasis and human diseases. BMC Immunol. 2017 18 1 2 10.1186/s12865‑016‑0187‑3 28061847
    [Google Scholar]
  65. Kinashi Y. Hase K. Partners in leaky gut syndrome: Intestinal dysbiosis and autoimmunity. Front. Immunol. 2021 12 673708 10.3389/fimmu.2021.673708 33968085
    [Google Scholar]
  66. Burcelin R. Gut microbiota and immune crosstalk in metabolic disease. Mol. Metab. 2016 5 9 771 781 10.1016/j.molmet.2016.05.016 27617200
    [Google Scholar]
  67. Umu Ö.C.O. Rudi K. Diep D.B. Modulation of the gut microbiota by prebiotic fibres and bacteriocins. Microb. Ecol. Health Dis. 2017 28 1 1348886 10.1080/16512235.2017.1348886 28959178
    [Google Scholar]
  68. Sun L. Ma L. Ma Y. Zhang F. Zhao C. Nie Y. Insights into the role of gut microbiota in obesity: Pathogenesis, mechanisms, and therapeutic perspectives. Protein Cell 2018 9 5 397 403 10.1007/s13238‑018‑0546‑3 29725936
    [Google Scholar]
  69. Leeuwendaal N.K. Stanton C. O’Toole P.W. Beresford T.P. Fermented foods, health and the gut microbiome. Nutrients 2022 14 7 1527 10.3390/nu14071527 35406140
    [Google Scholar]
  70. Yang Q. Liang Q. Balakrishnan B. Belobrajdic D.P. Feng Q.J. Zhang W. Role of dietary nutrients in the modulation of gut microbiota: A narrative review. Nutrients 2020 12 2 381 10.3390/nu12020381 32023943
    [Google Scholar]
  71. Katayama S. Okahata C. Onozato M. Buckwheat flour and its starch prevent age-related cognitive decline by increasing hippocampal BDNF production in senescence-accelerated mouse prone 8 mice. Nutrients 2022 14 13 2708 10.3390/nu14132708 35807886
    [Google Scholar]
  72. Zhang X. Liu Y. Xu Q. The effect of soy isoflavone combined with calcium on bone mineral density in perimenopausal Chinese women: A 6-month randomised double-blind placebo-controlled study. Int. J. Food Sci. Nutr. 2020 71 4 473 481 10.1080/09637486.2019.1673703 31583921
    [Google Scholar]
  73. Fan L. Xia Y. Wang Y. Gut microbiota bridges dietary nutrients and host immunity. Sci. China Life Sci. 2023 66 11 2466 2514 10.1007/s11427‑023‑2346‑1 37286860
    [Google Scholar]
  74. den Besten G. Bleeker A. Gerding A. Short-chain fatty acids protect against high-fat diet–induced obesity via a pparγ-dependent switch from lipogenesis to fat oxidation. Diabetes 2015 64 7 2398 2408 10.2337/db14‑1213 25695945
    [Google Scholar]
  75. Farré R. Fiorani M. Abdu Rahiman S. Matteoli G. Intestinal permeability, inflammation and the role of nutrients. Nutrients 2020 12 4 1185 10.3390/nu12041185 32340206
    [Google Scholar]
  76. Makki K. Deehan E.C. Walter J. Bäckhed F. The impact of dietary fiber on gut microbiota in host health and disease. Cell Host Microbe 2018 23 6 705 715 10.1016/j.chom.2018.05.012 29902436
    [Google Scholar]
  77. Myhrstad M.C.W. Tunsjø H. Charnock C. Telle-Hansen V.H. Dietary fiber, gut microbiota, and metabolic regulation—current status in human randomized trials. Nutrients 2020 12 3 859 10.3390/nu12030859 32210176
    [Google Scholar]
  78. Marchesi J.R. Adams D.H. Fava F. The gut microbiota and host health: A new clinical frontier. Gut 2016 65 2 330 339 10.1136/gutjnl‑2015‑309990 26338727
    [Google Scholar]
  79. Morrison D.J. Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 2016 7 3 189 200 10.1080/19490976.2015.1134082 26963409
    [Google Scholar]
  80. Cronin P. Joyce S.A. O’Toole P.W. O’Connor E.M. Dietary fibre modulates the gut microbiota. Nutrients 2021 13 5 1655 10.3390/nu13051655 34068353
    [Google Scholar]
  81. Ma J. Piao X. Mahfuz S. Long S. Wang J. The interaction among gut microbes, the intestinal barrier and short chain fatty acids. Anim. Nutr. 2022 9 159 174 10.1016/j.aninu.2021.09.012 35573092
    [Google Scholar]
  82. Pinart M. Dötsch A. Schlicht K. Gut microbiome composition in obese and non-obese persons: A systematic review and meta-analysis. Nutrients 2021 14 1 12 10.3390/nu14010012 35010887
    [Google Scholar]
  83. Panyod S. Wu W.K. Chen C.C. Wu M.S. Ho C.T. Sheen L.Y. Modulation of gut microbiota by foods and herbs to prevent cardiovascular diseases. J. Tradit. Complement. Med. 2023 13 2 107 118 10.1016/j.jtcme.2021.09.006 36970453
    [Google Scholar]
  84. Saad M.J.A. Santos A. Prada P.O. Linking gut microbiota and inflammation to obesity and insulin resistance. Physiology 2016 31 4 283 293 10.1152/physiol.00041.2015 27252163
    [Google Scholar]
  85. Lazar V. Ditu L.M. Pircalabioru G.G. Aspects of gut microbiota and immune system interactions in infectious diseases, immunopathology, and cancer. Front. Immunol. 2018 9 1830 10.3389/fimmu.2018.01830 30158926
    [Google Scholar]
  86. Fong W. Li Q. Yu J. Gut microbiota modulation: A novel strategy for prevention and treatment of colorectal cancer. Oncogene 2020 39 26 4925 4943 10.1038/s41388‑020‑1341‑1 32514151
    [Google Scholar]
  87. Liang L. Saunders C. Sanossian N. Food, gut barrier dysfunction, and related diseases: A new target for future individualized disease prevention and management. Food Sci. Nutr. 2023 11 4 1671 1704 10.1002/fsn3.3229 37051344
    [Google Scholar]
  88. Liu Y. Wang J. Wu C. Modulation of gut microbiota and immune system by probiotics, pre-biotics, and post-biotics. Front. Nutr. 2022 8 634897 10.3389/fnut.2021.634897 35047537
    [Google Scholar]
  89. Liu X. Shao J. Liao Y.T. Regulation of short-chain fatty acids in the immune system. Front. Immunol. 2023 14 1186892 10.3389/fimmu.2023.1186892 37215145
    [Google Scholar]
  90. Méndez C.S. Bueno S.M. Kalergis A.M. Contribution of gut microbiota to immune tolerance in infants. J. Immunol. Res. 2021 2021 1 11 10.1155/2021/7823316 34993254
    [Google Scholar]
  91. Li Z. Xiong W. Liang Z. Critical role of the gut microbiota in immune responses and cancer immunotherapy. J. Hematol. Oncol. 2024 17 1 33 10.1186/s13045‑024‑01541‑w 38745196
    [Google Scholar]
  92. Luu M. Riester Z. Baldrich A. Microbial short-chain fatty acids modulate CD8+ T cell responses and improve adoptive immunotherapy for cancer. Nat. Commun. 2021 12 1 4077 10.1038/s41467‑021‑24331‑1 34210970
    [Google Scholar]
  93. Markowiak-Kopeć P. Śliżewska K. The effect of probiotics on the production of short-chain fatty acids by human intestinal microbiome. Nutrients 2020 12 4 1107 10.3390/nu12041107 32316181
    [Google Scholar]
  94. Cerdó T. García-Santos J.A.G. Bermúdez M. Campoy C. The role of probiotics and prebiotics in the prevention and treatment of obesity. Nutrients 2019 11 3 635 10.3390/nu11030635 30875987
    [Google Scholar]
  95. Schulthess J. Pandey S. Capitani M. The short chain fatty acid butyrate imprints an antimicrobial program in macrophages. Immunity 2019 50 2 432 445.e7 10.1016/j.immuni.2018.12.018 30683619
    [Google Scholar]
  96. Bishop KS Xu H Marlow G Epigenetic regulation of gene expression induced by butyrate in colorectal cancer: Involvement of microRNA Genet Epigenet 2017 9: 1179237X17729900 10.1177/1179237X17729900 28979170
    [Google Scholar]
  97. Marshall J.S. Warrington R. Watson W. Kim H.L. An introduction to immunology and immunopathology. Allergy Asthma Clin. Immunol. 2018 14 S2 49 10.1186/s13223‑018‑0278‑1 30263032
    [Google Scholar]
  98. Pradeu T. Thomma B.P.H.J. Girardin S.E. Lemaitre B. The conceptual foundations of innate immunity: Taking stock 30 years later. Immunity 2024 57 4 613 631 10.1016/j.immuni.2024.03.007 38599162
    [Google Scholar]
  99. Shao T. Hsu R. Rafizadeh D.L. Wang L. Bowlus C.L. Kumar N. The gut ecosystem and immune tolerance. J. Autoimmun. 2023 141 103114 10.1016/j.jaut.2023.103114
    [Google Scholar]
  100. Pujari R. Banerjee G. Impact of prebiotics on immune response: From the bench to the clinic. Immunol. Cell Biol. 2021 99 3 255 273 10.1111/imcb.12409 32996638
    [Google Scholar]
  101. Harsch I.A. Konturek P.C. The role of gut microbiota in obesity and type 2 and type 1 diabetes mellitus: New insights into “Old” diseases. Med. Sci. 2018 6 2 32 10.3390/medsci6020032 29673211
    [Google Scholar]
  102. Nogal A. Valdes A.M. Menni C. The role of short-chain fatty acids in the interplay between gut microbiota and diet in cardio-metabolic health. Gut Microbes 2021 13 1 1897212 10.1080/19490976.2021.1897212 33764858
    [Google Scholar]
  103. Maciel-Fiuza M.F. Muller G.C. Campos D.M.S. Role of gut microbiota in infectious and inflammatory diseases. Front. Microbiol. 2023 14 1098386 10.3389/fmicb.2023.1098386 37051522
    [Google Scholar]
  104. Plaza-Diaz J. Ruiz-Ojeda F.J. Gil-Campos M. Gil A. Mechanisms of action of probiotics. Adv. Nutr. 2019 10 Suppl. 1 S49 S66 10.1093/advances/nmy063 30721959
    [Google Scholar]
  105. Van K. Burns J.L. Monk J.M. Effect of short-chain fatty acids on inflammatory and metabolic function in an obese skeletal muscle cell culture model. Nutrients 2024 16 4 500 10.3390/nu16040500 38398822
    [Google Scholar]
  106. He J. Zhang P. Shen L. Short-chain fatty acids and their association with signalling pathways in inflammation, glucose and lipid metabolism. Int. J. Mol. Sci. 2020 21 17 6356 10.3390/ijms21176356 32887215
    [Google Scholar]
  107. Zhou H. Yu B. Sun J. Short-chain fatty acids can improve lipid and glucose metabolism independently of the pig gut microbiota. J. Anim. Sci. Biotechnol. 2021 12 1 61 10.1186/s40104‑021‑00581‑3 33952344
    [Google Scholar]
  108. Zhang D. Jian Y.P. Zhang Y.N. Short-chain fatty acids in diseases. Cell Commun. Signal. 2023 21 1 212 10.1186/s12964‑023‑01219‑9 37596634
    [Google Scholar]
  109. González Hernández M.A. Canfora E.E. Jocken J.W.E. Blaak E.E. The short-chain fatty acid acetate in body weight control and insulin sensitivity. Nutrients 2019 11 8 1943 10.3390/nu11081943 31426593
    [Google Scholar]
  110. Lee R. Yoon B.I. Hunter C.A. Kwon H.M. Sung H.W. Park J. Short chain fatty acids facilitate protective immunity by macrophages and T cells during acute fowl adenovirus-4 infection. Sci. Rep. 2023 13 1 17999 10.1038/s41598‑023‑45340‑8 37865711
    [Google Scholar]
  111. Facchin S. Bertin L. Bonazzi E. Short-chain fatty acids and human health: From metabolic pathways to current therapeutic implications. Life 2024 14 5 559 10.3390/life14050559 38792581
    [Google Scholar]
  112. Machado M.G. Sencio V. Trottein F. Short-chain fatty acids as a potential treatment for infections: A closer look at the lungs. Infect. Immun. 2021 89 9 e00188 e21 10.1128/IAI.00188‑21 34097474
    [Google Scholar]
  113. Aleman R.S. Yadav A. Systematic review of probiotics and their potential for developing functional nondairy foods. Appl. Microbiol. 2023 4 1 47 69 10.3390/applmicrobiol4010004
    [Google Scholar]
  114. Al-Habsi N. Al-Khalili M. Haque S.A. Elias M. Olqi N.A. Al Uraimi T. Health benefits of prebiotics, probiotics, synbiotics, and postbiotics. Nutrients 2024 16 22 3955 10.3390/nu16223955 39599742
    [Google Scholar]
  115. Bevilacqua A. Campaniello D. Speranza B. Racioppo A. Sinigaglia M. Corbo M.R. An update on prebiotics and on their health effects. Foods 2024 13 3 446 10.3390/foods13030446 38338581
    [Google Scholar]
  116. Yoshida K. Kokubo E. Morita S. Sonoki H. Miyaji K. Combination of inulin and resistant dextrin has superior prebiotic effects and reduces gas production during in vitro fermentation of fecal samples from older people. Nutrients 2024 16 24 4262 10.3390/nu16244262 39770884
    [Google Scholar]
  117. Basnet J. Eissa M.A. Cardozo Y.L.L. Romero D.G. Rezq S. Impact of probiotics and prebiotics on gut microbiome and hormonal regulation. Gastrointest Disord 2024 6 4 801 815 10.3390/gidisord6040056 39649015
    [Google Scholar]
  118. Desfita S. Sari W. Yusmarini Y. Pato U. Zakłos-Szyda M. Budryn G. Effect of fermented soymilk-honey from different probiotics on osteocalcin level in menopausal women. Nutrients 2021 13 10 3581 10.3390/nu13103581
    [Google Scholar]
  119. Kim Y.A. Keogh J.B. Clifton P.M. Probiotics, prebiotics, synbiotics and insulin sensitivity. Nutr. Res. Rev. 2018 31 1 35 51 10.1017/S095442241700018X 29037268
    [Google Scholar]
  120. Pulkrabek M. Rhee Y. Gibbs P. Hall C. Flaxseed- and buckwheat-supplemented diets altered Enterobacteriaceae diversity and prevalence in the cecum and feces of obese mice. J. Diet. Suppl. 2017 14 6 667 678 10.1080/19390211.2017.1305477 28406725
    [Google Scholar]
/content/journals/cnf/10.2174/0115734013415483251114115222
Loading
/content/journals/cnf/10.2174/0115734013415483251114115222
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: metabolic syndrome ; gut microbiota ; immune system ; Buckwheat ; SCFAs ; functional food
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test