Skip to content
2000
image of Nitrate Enrichment and Bioactive Compound Analysis of Beta vulgaris L. Powder Using Advanced Analytical Techniques

Abstract

Introduction

L. (beetroot) is valued for its nutrient diversity, including carbohydrates, proteins, fats, vitamins, minerals, and nitrates. Dietary nitrates are associated with various health benefits. This study aimed to enrich the nitrate content in beetroot and evaluate its nutrient composition.

Methods

Nitrate-enriched beetroot concentrate powder was prepared and analyzed. Nutrient composition was determined using advanced techniques, including inductively coupled plasma mass spectrometry (ICP-MS), high-performance liquid chromatography (HPLC), and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Proximate analyses were also performed to assess macronutrient and energy content.

Results

The concentrate exhibited 3.0 g/100 g moisture and 5.7 g/100 g ash. ICP-MS revealed minerals and trace elements, including iron, calcium, magnesium, sodium, potassium, zinc, copper, manganese, and selenium (6 ng-36.27 g/kg). Micronutrient profiling identified choline, betaine, and vitamins B3, B9, and B12, ranging from 7 µg/100 g to 1,464.16 mg/kg. Vitamins C, B1, B2, B5, B6, and A were below quantification limits. Macronutrient analysis showed 83.8 g/100 g carbohydrates, 7.4 g/100 g protein, 0.1 g/100 g fat, and an energy value of 365.7 kcal/100 g. Sucrose constituted 2.96% of total carbohydrates.

Discussion

The enriched beetroot concentrate retained a nutrient profile comparable to non-enriched forms. The presence of essential minerals and B vitamins highlights its potential as a functional food ingredient. Lack of detectable levels for some vitamins suggests stability or extraction-related limitations.

Conclusion

Nitrate enrichment in beetroot does not substantially alter its nutrient composition. The product may serve as a valuable nutritional supplement with enhanced functional properties.

Loading

Article metrics loading...

/content/journals/cnf/10.2174/0115734013413218251126021202
2026-01-08
2026-02-02
Loading full text...

Full text loading...

References

  1. Clifford T. Howatson G. West D. Stevenson E. The potential benefits of red beetroot supplementation in health and disease. Nutrients 2015 7 4 2801 2822 10.3390/nu7042801 25875121
    [Google Scholar]
  2. Ijaz S. Iqbal J. Abbasi B.A. Bioactive phytochemicals from beetroot (Beta vulgaris) by-products. Bioactive phytochemicals in by-products from leaf, stem, root and tuber vegetables. Springer 2025 131 180 10.1007/978‑3‑031‑80700‑8_9
    [Google Scholar]
  3. Almeida D. Petropoulos S.A. da Silveira T.F.F. Exploring the biochemical profile of Beta vulgaris L.: A comparative study of beetroots and Swiss chard. Plants 2025 14 4 591 10.3390/plants14040591 40006850
    [Google Scholar]
  4. Gandía-Herrero F. Escribano J. García-Carmona F. Structural implications on color, fluorescence, and antiradical activity in betalains. Planta 2010 232 2 449 460 10.1007/s00425‑010‑1191‑0 20467875
    [Google Scholar]
  5. Georgiev V.G. Weber J. Kneschke E.M. Denev P.N. Bley T. Pavlov A.I. Antioxidant activity and phenolic content of betalain extracts from intact plants and hairy root cultures of the red beetroot Beta vulgaris cv. Detroit dark red. Plant Foods Hum. Nutr. 2010 65 2 105 111 10.1007/s11130‑010‑0156‑6 20195764
    [Google Scholar]
  6. Zoughaib W.S. Fry M.J. Singhal A. Coggan A.R. Beetroot juice supplementation and exercise performance: Is there more to the story than just nitrate? Front. Nutr. 2024 11 1347242 10.3389/fnut.2024.1347242 38445207
    [Google Scholar]
  7. Wruss J. Waldenberger G. Huemer S. Compositional characteristics of commercial beetroot products and beetroot juice prepared from seven beetroot varieties grown in Upper Austria. J. Food Compos. Anal. 2015 42 46 55 10.1016/j.jfca.2015.03.005
    [Google Scholar]
  8. Thompson K.G. Turner L. Prichard J. Influence of dietary nitrate supplementation on physiological and cognitive responses to incremental cycle exercise. Respir. Physiol. Neurobiol. 2014 193 11 20 10.1016/j.resp.2013.12.015 24389270
    [Google Scholar]
  9. Kelly J. Fulford J. Vanhatalo A. Effects of short-term dietary nitrate supplementation on blood pressure, O2 uptake kinetics, and muscle and cognitive function in older adults. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2013 304 2 R73 R83 10.1152/ajpregu.00406.2012 23174856
    [Google Scholar]
  10. Macuh M. Kojić N. Knap B. The effects of nitrate supplementation on performance as a function of habitual dietary intake of nitrates: A randomized controlled trial of elite football players. Nutrients 2023 15 17 3721 10.3390/nu15173721 37686753
    [Google Scholar]
  11. Senefeld J.W. Wiggins C.C. Regimbal R.J. Dominelli P.B. Baker S. Joyner M.J. Ergogenic effect of nitrate supplementation: A systematic review and meta-analysis. Med. Sci. Sports Exerc. 2020 52 10 2250 2261 10.1249/MSS.0000000000002363 32936597
    [Google Scholar]
  12. Espinosa-Morales Y. Reyes J. Hermosín B. Azamar-Barrios J.A. Characterization of a natural dye by spectroscopic and chromatographic techniques. Proc. MRS 2012 1374 49 59 10.1557/opl.2012.1377
    [Google Scholar]
  13. Chernetsova E.S. Morlock G.E. Assessing the capabilities of direct analysis in real time mass spectrometry for 5-hydroxymethylfurfural quantitation in honey. Int. J. Mass Spectrom. 2012 314 22 32 10.1016/j.ijms.2012.01.012
    [Google Scholar]
  14. Rotich V. Wangila P. Cherutoi J. Method validation and characterization of red pigment in Beta vulgaris peels and pomaces by HPLC-UV and UHPLC-MS/MS. J. Anal. Methods Chem. 2022 2022 1 2229500 10.1155/2022/2229500 36052342
    [Google Scholar]
  15. Ravichandran G. Lakshmanan D.K. Murugesan S. Elangovan A. Rajasekaran N.S. Thilagar S. Attenuation of protein glycation by functional polyphenolics of dragon fruit (Hylocereus polyrhizus); An in vitro and in silico evaluation. Food Res. Int. 2021 140 110081 10.1016/j.foodres.2020.110081 33648300
    [Google Scholar]
  16. Kirk R.S. Sawyer R. Pearson’s composition and analysis of foods. 9th ed London Longman Scientific & Technical 1991
    [Google Scholar]
  17. Gan F. Wu K. Ma F. Wei C. Du C. In-situ monitoring of nitrate in industrial wastewater using Fourier transform infrared attenuated total reflectance spectroscopy (FTIR-ATR) coupled with chemometrics methods. Heliyon 2022 8 12 e12423 10.1016/j.heliyon.2022.e12423 36619407
    [Google Scholar]
  18. Olumese F.E. Oboh H.A. Mineral content of raw and processed beetroot (Beta vulgaris) grown in Jos, Nigeria. Niger J Appl Sci 2016 34 208 216
    [Google Scholar]
  19. Ma L. Hu L. Feng X. Wang S. Nitrate and nitrite in health and disease. Aging Dis. 2018 9 5 938 945 10.14336/AD.2017.1207 30271668
    [Google Scholar]
  20. Anjana S.U. Iqbal M. Nitrate accumulation in plants, factors affecting the process, and human health implications. A review. Agron. Sustain. Dev. 2007 27 1 45 57 10.1051/agro:2006021
    [Google Scholar]
  21. Bian Z. Wang Y. Zhang X. A review of environment effects on nitrate accumulation in leafy vegetables grown in controlled environments. Foods 2020 9 6 732 10.3390/foods9060732 32503134
    [Google Scholar]
  22. Membrino V. Di Paolo A. Di Crescenzo T. Cecati M. Alia S. Vignini A. Effects of animal-based and plant-based nitrates and nitrites on human health: Beyond nitric oxide production. Biomolecules 2025 15 2 236 10.3390/biom15020236 40001539
    [Google Scholar]
  23. Itoh H. Nomura K. Shiraishi N. Uno Y. Kuroki S. Ayata K. Continuous measurement of nitrate concentration in whole lettuce plant by visible-near-infrared spectroscopy. Environ. Control Biol. 2015 53 4 205 215 10.2525/ecb.53.205
    [Google Scholar]
  24. Lewis N.H.C. Fournier J.A. Carpenter W.B. Tokmakoff A. Direct observation of ion pairing in aqueous nitric acid using 2D infrared spectroscopy. J. Phys. Chem. B 2019 123 1 225 238 10.1021/acs.jpcb.8b10019 30521750
    [Google Scholar]
  25. Gan F. Wu K. Ma F. Du C. In situ determination of nitrate in water using Fourier transform mid-infrared attenuated total reflectance spectroscopy coupled with deconvolution algorithm. Molecules 2020 25 24 5838 10.3390/molecules25245838 33322008
    [Google Scholar]
  26. Tarasevičienė Ž. Paulauskienė A. Černiauskienė J. Degimienė A. Chemical content and color of dried organic beetroot powder affected by different drying methods. Horticulturae 2024 10 7 733 10.3390/horticulturae10070733
    [Google Scholar]
  27. Raziya A. Singh S.B. Kumar P. Raziya Ansari C. Broadway A. Proximate and sensory analysis of beetroot (Beta vulgaris) and Jamun (Syzygium cumini) juice blended drink. J. Pharmacogn. Phytochem. 2017 6 1280 1283
    [Google Scholar]
  28. Brzezińska-Rojek J. Sagatovych S. Malinowska P. Gadaj K. Prokopowicz M. Grembecka M. Antioxidant capacity, nitrite and nitrate content in beetroot-based dietary supplements. Foods 2023 12 5 1017 10.3390/foods12051017 36900534
    [Google Scholar]
  29. Benjamim C.J.R. da Silva L.S.L. Sousa Y.B.A. Acute and short-term beetroot juice nitrate-rich ingestion enhances cardiovascular responses following aerobic exercise in postmenopausal women with arterial hypertension: A triple-blinded randomized controlled trial. Free Radic. Biol. Med. 2024 211 12 23 10.1016/j.freeradbiomed.2023.11.039 38092272
    [Google Scholar]
  30. Grönroos R. Eggertsen R. Bernhardsson S. Björk P.M. Effects of beetroot juice on blood pressure in hypertension according to european society of hypertension guidelines: A systematic review and meta-analysis. Nutr. Metab. Cardiovasc. Dis. 2024 34 10 2240 2256 10.1016/j.numecd.2024.06.009 39069465
    [Google Scholar]
  31. Baião D.D.S. Silva D.V.T.D. Paschoalin V.M.F. Beetroot, a remarkable vegetable: Its nitrate and phytochemical contents can be adjusted in novel formulations to benefit health and support cardiovascular disease therapies. Antioxidants 2020 9 10 960 10.3390/antiox9100960 33049969
    [Google Scholar]
  32. Milton-Laskibar I. Martínez J.A. Portillo M.P. Current knowledge on beetroot bioactive compounds: Role of nitrate and betalains in health and disease. Foods 2021 10 6 1314 10.3390/foods10061314 34200431
    [Google Scholar]
  33. Chen L. Zhu Y. Hu Z. Wu S. Jin C. Beetroot as a functional food with huge health benefits: Antioxidant, antitumor, physical function, and chronic metabolomics activity. Food Sci. Nutr. 2021 9 11 6406 6420 10.1002/fsn3.2577 34760270
    [Google Scholar]
  34. Moreno-Ley C.M. Osorio-Revilla G. Hernández-Martínez D.M. Ramos-Monroy O.A. Gallardo-Velázquez T. Anti-inflammatory activity of betalains: A comprehensive review. Hum Nutr Metab 2021 25 200126 10.1016/j.hnm.2021.200126
    [Google Scholar]
  35. Chhikara N. Kushwaha K. Sharma P. Gat Y. Panghal A. Bioactive compounds of beetroot and utilization in food processing industry: A critical review. Food Chem. 2019 272 192 200 10.1016/j.foodchem.2018.08.022 30309532
    [Google Scholar]
  36. Srivastava S. Singh K. Changes occur on nutritional value of beetroot (Beta vulgaris) after pickling. Curr. Res. Nutr. Food Sci. 2016 4 3 217 221 10.12944/CRNFSJ.4.3.08
    [Google Scholar]
  37. Sawicki T. Bączek N. Wiczkowski W. Betalain profile, content and antioxidant capacity of red beetroot dependent on the genotype and root part. J. Funct. Foods 2016 27 249 261 10.1016/j.jff.2016.09.004
    [Google Scholar]
  38. Mirmiran P. Houshialsadat Z. Gaeini Z. Bahadoran Z. Azizi F. Functional properties of beetroot (Beta vulgaris) in management of cardio-metabolic diseases. Nutr. Metab. (Lond.) 2020 17 1 3 10.1186/s12986‑019‑0421‑0 31921325
    [Google Scholar]
  39. Abdo E. El-Sohaimy S. Shaltout O. Abdalla A. Zeitoun A. Nutritional evaluation of beetroots (Beta vulgaris L.) and its potential application in a functional beverage. Plants 2020 9 12 1752 10.3390/plants9121752 33322047
    [Google Scholar]
  40. Chou S.S. Chung J.C. Hwang D.F. A high performance liquid chromatography method for determining nitrate and nitrite levels in vegetables. Yao Wu Shi Pin Fen Xi 2020 11 3 233 238 10.38212/2224‑6614.2702
    [Google Scholar]
  41. Jarulertwattana P.P. Wanaloh T. Charurungsipong P. Influence of nitrate-nitrite contamination on pink color defect in ginger marinated steamed chicken drumsticks. Appl Sci Eng Prog 2020 14 417 424 10.14416/j.asep.2020.08.001
    [Google Scholar]
  42. Rubi R.V.C. Olay J.G. Caleon P.B.G. Photocatalytic degradation of diazinon in g-C3N4/Fe(III)/persulfate system under visible LED light irradiation. Appl Sci Eng Prog 2020 14 1 100 107 10.14416/j.asep.2020.12.008
    [Google Scholar]
  43. Lundberg J.O. Weitzberg E. Shiva S. Gladwin M.T. The nitrate-nitrite-nitric oxide pathway in mammals. Nutrition and Health. Springer 2011 21 48 10.1007/978‑1‑60761‑616‑0_3
    [Google Scholar]
  44. Ceclu L. Nistor O-V. Red beetroot: Composition and health effects — A review. J Nutr Med Diet Care 2020 6 1 9
    [Google Scholar]
  45. Edelmann M. Dawid C. Ralla T. Fast and sensitive LC-MS/MS method for the quantitation of saponins in various sugar beet materials. J. Agric. Food Chem. 2020 68 50 15027 15035 10.1021/acs.jafc.0c05836 33259191
    [Google Scholar]
  46. Naveenprakash P.G. Suganthi A. Bhuvaneswari K. Kumar M.S. Patil S.G. Karthik P. Analysis of cyantraniliprole residues in beetroot and beet top using LC‐MS/MS, dietary exposure assessment, and evaluation of decontamination techniques. J. Environ. Qual. 2023 52 4 922 929 10.1002/jeq2.20481 37097034
    [Google Scholar]
  47. Kale R.G. Sawate A.R. Kshirsagar R.B. Patil B.M. Mane R.P. Studies on the evaluation of physical and chemical composition of beetroot (Beta vulgaris L.). Int. J. Chem. Stud. 2018 6 2 2977 2979
    [Google Scholar]
  48. Mudgal D. Singh S. Singh B.R. Nutritional composition and value-added products of beetroot: A review. J Curr Res Food Sci 2022 3 1 1 9
    [Google Scholar]
  49. FoodData Central. 2023 Available from: https://fdc.nal.usda.gov/food-details/2685576/nutrients
  50. Webb A.J. Patel N. Loukogeorgakis S. Acute blood pressure lowering, vasoprotective, and antiplatelet properties of dietary nitrate via bioconversion to nitrite. Hypertension 2008 51 3 784 790 10.1161/HYPERTENSIONAHA.107.103523 18250365
    [Google Scholar]
  51. Hobbs D.A. Goulding M.G. Nguyen A. Acute ingestion of beetroot bread increases endothelium-independent vasodilation and lowers diastolic blood pressure in healthy men: A randomized controlled trial. J. Nutr. 2013 143 9 1399 1405 10.3945/jn.113.175778 23884387
    [Google Scholar]
  52. Joris P.J. Mensink R.P. Beetroot juice improves in overweight and slightly obese men postprandial endothelial function after consumption of a mixed meal. Atherosclerosis 2013 231 1 78 83 10.1016/j.atherosclerosis.2013.09.001 24125415
    [Google Scholar]
  53. Kenjale A.A. Ham K.L. Stabler T. Dietary nitrate supplementation enhances exercise performance in peripheral arterial disease. J. Appl. Physiol. 2011 110 6 1582 1591 10.1152/japplphysiol.00071.2011 21454745
    [Google Scholar]
  54. Zamani H. de Joode M.E.J.R. Hossein I.J. The benefits and risks of beetroot juice consumption: A systematic review. Crit. Rev. Food Sci. Nutr. 2021 61 5 788 804 10.1080/10408398.2020.1746629 32292042
    [Google Scholar]
  55. IARC monographs on the evaluation of carcinogenic risks to humans. Ingested nitrate and nitrite, and cyanobacterial peptide toxins. IARC Monogr. Eval. Carcinog. Risks Hum. 2010 94 v vii, 1-412 21141240
    [Google Scholar]
/content/journals/cnf/10.2174/0115734013413218251126021202
Loading
/content/journals/cnf/10.2174/0115734013413218251126021202
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test