Skip to content
2000
image of Anti-Nutritional Factors in Legumes: Reduction Strategies and their Impact - A Review

Abstract

Introduction

Pulses are increasingly consumed worldwide due to their affordability and rich nutritional profile. They are also a valuable source of bioactive compounds like phenolics and flavonoids, which contribute to health benefits. The presence of anti-nutritional factors in legumes can hinder nutrient bioavailability. Processing techniques such as soaking, cooking, germination, and fermentation help improve sensory and nutritional qualities while reducing these compounds.

Methods

A structured literature review was conducted to identify and analyze recent findings related to the composition of legumes, with a particular focus on anti-nutritional factors and their reduction through different processing techniques. Key approaches to improving nutrient accessibility and potential applications in food systems were also examined.

Results

The findings show that processing techniques, particularly fermentation and germination, can reduce anti-nutritional factors by up to 95% for phytates and 50% for tannins. These methods improve protein digestibility, mineral bioavailability, and functional properties. Additionally, combining treatments can enhance the overall nutritional profile, making legumes more suitable for diverse dietary uses and functional food development.

Discussion

The differential impact of processing techniques highlights the importance of selecting tailored strategies based on the specific anti-nutritional targets and intended functional improvements. Optimizing these treatments can improve the bioaccessibility of nutrients and the techno-functional behavior of legumes in complex food systems.

Conclusion

This review underscores the nutritional potential of legumes and the significant impact of processing techniques on reducing anti-nutritional compounds. It provides a unique perspective by linking anti-nutrient mitigation strategies with improved food functionality and health benefits.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cnf/10.2174/0115734013379477251013142545
2025-11-05
2026-02-02
Loading full text...

Full text loading...

/deliver/fulltext/cnf/10.2174/0115734013379477251013142545/BMS-CNF-2024-238.html?itemId=/content/journals/cnf/10.2174/0115734013379477251013142545&mimeType=html&fmt=ahah

References

  1. Pulses: seeds for a sustainable future. Rome. Online (Bergh.) 2016 10.4060/i5528f
    [Google Scholar]
  2. Smýkal P. Coyne C.J. Ambrose M.J. Legume crops phylogeny and genetic diversity for science and breeding. Crit. Rev. Plant Sci. 2015 34 1-3 43 104 10.1080/07352689.2014.897904
    [Google Scholar]
  3. Fidan H. Stankov S. Petkova N. Evaluation of chemical composition, antioxidant potential and functional properties of carob (Ceratonia siliqua L.) seeds. J. Food Sci. Technol. 2020 57 7 2404 2413 10.1007/s13197‑020‑04274‑z 32549590
    [Google Scholar]
  4. FAOSTAT FAOSTAT 2021 Available from: https://www.fao.org/faostat/fr/#data/QCL/visualize
  5. Koepke J. Ermler U. Warkentin E. Wenzl G. Flecker P. Crystal structure of cancer chemopreventive Bowman-Birk inhibitor in ternary complex with bovine trypsin at 2.3 å resolution. Structural basis of Janus-faced serine protease inhibitor specificity. J. Mol. Biol. 2000 298 3 477 491 10.1006/jmbi.2000.3677 10772864
    [Google Scholar]
  6. Narisetty V. Cox R. Willoughby N. Recycling bread waste into chemical building blocks using a circular biorefining approach. Sustain. Energy Fuels 2021 5 19 4842 4849 10.1039/D1SE00575H 34604539
    [Google Scholar]
  7. Reddy N.R. Occurrence, distribution, content, and dietary intake of phytate. In: Food Phytates. CRC Press 2001 10.1201/9781420014419.ch3
    [Google Scholar]
  8. Kumar Y. Yadav D.N. Ahmad T. Narsaiah K. Recent trends in the use of natural antioxidants for meat and meat products. Compr. Rev. Food Sci. Food Saf. 2015 14 6 796 812 10.1111/1541‑4337.12156
    [Google Scholar]
  9. Surel R. Pea protein: Structure, extraction and functionalities 2020 REF: F6040 V1 Available from: https://www.techniques-ingenieur.fr/basedocumentaire/procedes-chimie-bio-agro-th2/filiere-de-productionproduits-d-origine-vegetale-42433210/proteines-de-pois-structureextraction-et-fonctionnalites-f6040/Accessed on April 2025.
  10. Samtiya M. Aluko R.E. Dhewa T. Moreno-Rojas J.M. Potential health benefits of plant food-derived bioactive components: An overview. Foods 2021 10 4 839 10.3390/foods10040839 33921351
    [Google Scholar]
  11. Shimelis E.A. Rakshit S.K. Effect of processing on antinutrients and in vitro protein digestibility of kidney bean (Phaseolus vulgaris L.) varieties grown in East Africa. Food Chem. 2007 103 1 161 172 10.1016/j.foodchem.2006.08.005
    [Google Scholar]
  12. Sultani M.I. Gill M.A. Anwar M.M. Athar M. Evaluation of soil physical properties as influenced by various green manuring legumes and phosphorus fertilization under rain fed conditions. Int. J. Environ. Sci. Technol. 2007 4 1 109 118 10.1007/BF03325968
    [Google Scholar]
  13. Torres A.M. Avila C.M. Gutierrez N. Palomino C. Moreno M.T. Cubero J.I. Marker-assisted selection in faba bean (Vicia faba L.). Field Crops Res. 2010 115 3 243 252 10.1016/j.fcr.2008.12.002
    [Google Scholar]
  14. Singhal A. Karaca A.C. Tyler R. Nickerson M. Pulse proteins: From processing to structure-function relationships In: Grain Legumes. intech Open 2016 10.5772/64020
    [Google Scholar]
  15. Calles T.R. Del Castello R. Baratelli M. Xipsiti M. Navano D.K. The international year of pulses final report. 2019 Available from: http://www.fao.org/3/CA2853EN/ca2853en.pdf
    [Google Scholar]
  16. Mullins A.P. Arjmandi B.H. Health benefits of plant-based nutrition: Focus on beans in cardiometabolic diseases. Nutrients 2021 13 2 519 10.3390/nu13020519 33562498
    [Google Scholar]
  17. Boye J. Zare F. Pletch A. Pulse proteins: Processing, characterization, functional properties and applications in food and feed. Food Res. Int. 2010 43 2 414 431 10.1016/j.foodres.2009.09.003
    [Google Scholar]
  18. Schwenke K.D. Reflections about the functional potential of legume proteins. A review. Nahrung 2001 45 6 377 381 10.1002/1521‑3803(20011001)45:6<377:AID‑FOOD377>3.0.CO;2‑G
    [Google Scholar]
  19. Aguilera Y. Estrella I. Benitez V. Esteban R.M. Martín-Cabrejas M.A. Bioactive phenolic compounds and functional properties of dehydrated bean flours. Food Res. Int. 2011 44 3 774 780 10.1016/j.foodres.2011.01.004
    [Google Scholar]
  20. Rubio L.A. Molina E. The legumes in animal feed. Arbor 2016 192 779 a315 a5 10.3989/arbor.2016.779n3005
    [Google Scholar]
  21. Salih G. Jilal A. Food use of carob pulp: Formulation and consumer test. Moroccan J Agron Veter Sci 2020 8 2 249 32
    [Google Scholar]
  22. Martín-Cabrejas M.A. Aguilera Y. Pedrosa M.M. The impact of dehydration process on antinutrients and protein digestibility of some legume flours. Food Chem. 2009 114 3 1063 1068 10.1016/j.foodchem.2008.10.070
    [Google Scholar]
  23. Basharat Z. Afzaal M. Saeed F. Nutritional and functional profile of carob bean (Ceratonia siliqua): A comprehensive review. Int. J. Food Prop. 2023 26 1 389 413 10.1080/10942912.2022.2164590
    [Google Scholar]
  24. Ciqual. 2024. French Food Composition table Available from: https://ciqual.anses.fr/.2025. 2025
  25. Kumssa D.B. Joy E.J.M. Ander E.L. Dietary calcium and zinc deficiency risks are decreasing but remain prevalent. Sci. Rep. 2015 5 1 10974 10.1038/srep10974 26098577
    [Google Scholar]
  26. Lestienne I. Contribution to the study of the bioavailability of iron and zinc in millet grain and conditions for improvement in complementary foods. University Montpellier II 2004
    [Google Scholar]
  27. Lestienne I. Icard-Vernière C. Mouquet C. Picq C. Trèche S. Effects of soaking whole cereal and legume seeds on iron, zinc and phytate contents. Food Chem. 2005 89 3 421 425 10.1016/j.foodchem.2004.03.040
    [Google Scholar]
  28. Niño-Medina G. Muy-Rangel D. de la Garza A.L. Dietary fiber from chickpea (Cicer arietinum) and soybean (Glycine max) husk byproducts as baking additives: Functional and nutritional properties. Molecules 2019 24 5 991 10.3390/molecules24050991 30870973
    [Google Scholar]
  29. Rizzello C.G. Calasso M. Campanella D. De Angelis M. Gobbetti M. Use of sourdough fermentation and mixture of wheat, chickpea, lentil and bean flours for enhancing the nutritional, texture and sensory characteristics of white bread. Int. J. Food Microbiol. 2014 180 78 87 10.1016/j.ijfoodmicro.2014.04.005 24794619
    [Google Scholar]
  30. Remond D. Walrand S. The seeds of legumes: nutritional characteristics and effects on health. Agronomic Innovations, 60. Agronomic Innovations 2017 133 144 10.15454/1.5138524482202214E12
    [Google Scholar]
  31. Rico D. Martín-Diana A.B. Martínez-Villaluenga C. In vitro approach for evaluation of carob by-products as source bioactive ingredients with potential to attenuate metabolic syndrome (MetS). Heliyon 2019 5 1 e01175 10.1016/j.heliyon.2019.e01175 30775572
    [Google Scholar]
  32. Kovalenko I.V. Rippke G.R. Hurburgh C.R. Determination of amino acid composition of soybeans (Glycine max) by near-infrared spectroscopy. J. Agric. Food Chem. 2006 54 10 3485 3491 10.1021/jf052570u 19127714
    [Google Scholar]
  33. Alajaji S.A. El-Adawy T.A. Nutritional composition of chickpea (Cicer arietinum L.) as affected by microwave cooking and other traditional cooking methods. J. Food Compos. Anal. 2006 19 8 806 812 10.1016/j.jfca.2006.03.015
    [Google Scholar]
  34. Wee M.S.M. Henry C.J. Reducing the glycemic impact of carbohydrates on foods and meals: Strategies for the food industry and consumers with special focus on Asia. Compr. Rev. Food Sci. Food Saf. 2020 19 2 670 702 10.1111/1541‑4337.12525 33325165
    [Google Scholar]
  35. Wang X. Gao W. Zhang J. Subunit, amino acid composition and in vitro digestibility of protein isolates from Chinese kabuli and desi chickpea (Cicer arietinum L.) cultivars. Food Res. Int. 2010 43 2 567 572 10.1016/j.foodres.2009.07.018
    [Google Scholar]
  36. Kumar V. Longhurst P. Recycling of food waste into chemical building blocks. Curr. Opin. Green Sustain. Chem. 2018 13 118 122 10.1016/j.cogsc.2018.05.012
    [Google Scholar]
  37. Ongol M.P. Owino J. Lung’aho M. Dusingizimana T. Vasanthakaalam H. Micro-mineral retention and anti-nutritional compounds degradation during bean cooking process. Curr. Res. Nutr. Food Sci. 2018 6 2 526 535 10.12944/CRNFSJ.6.2.27
    [Google Scholar]
  38. Ghribi M.A. Ben Amira A. Gafsi M.I. Toward the enhancement of sensory profile of sausage “Merguez” with chickpea protein concentrate. Meat Sci. 2018 143 74 80 10.1016/j.meatsci.2018.04.025 29715663
    [Google Scholar]
  39. Meite A. Kouame K.G. Kati-Coulibaly S. Lectins: Anti-nutritional substances? Med. Nutr. 2006 42 4 179 187 10.1051/mnut/2006424179
    [Google Scholar]
  40. Moussou P. Danoux L. Bailly L. Gillon V. Cosmetic composition comprising a combination of a sugar fatty acid ester with a plant extract of waltheria indica or pisum sativum for skin whitening US Patent 20090110651A1 2009
    [Google Scholar]
  41. Cabrera-Orozco A. Jiménez-Martínez C. Dávila-Ortiz G. Soybean: Non-nutritional factors and their biological functionality In: Soybean - Bio-Active Compounds. Intech Open 2013 10.5772/52598
    [Google Scholar]
  42. Kumar P. Chatli M.K. Mehta N. Singh P. Malav O.P. Verma A.K. Meat analogues: Health promising sustainable meat substitutes. Crit. Rev. Food Sci. Nutr. 2017 57 5 923 932 10.1080/10408398.2014.939739 25898027
    [Google Scholar]
  43. Schutyser M.A.I. van der Goot A.J. The potential of dry fractionation processes for sustainable plant protein production. Trends Food Sci. Technol. 2011 22 4 154 164 10.1016/j.tifs.2010.11.006
    [Google Scholar]
  44. Dwivedi M. Yajnanarayana V.K. Kaur M. Sattur A.P. Evaluation of anti nutritional factors in fungal fermented cereals. Food Sci. Biotechnol. 2015 24 6 2113 2116 10.1007/s10068‑015‑0280‑z
    [Google Scholar]
  45. Pelgrom P.J.M. Vissers A.M. Boom R.M. Schutyser M.A.I. Dry fractionation for production of functional pea protein concentrates. Food Res. Int. 2013 53 1 232 239 10.1016/j.foodres.2013.05.004
    [Google Scholar]
  46. Rebello C.J. Greenway F.L. Finley J.W. A review of the nutritional value of legumes and their effects on obesity and its related co‐morbidities. Obes. Rev. 2014 15 5 392 407 10.1111/obr.12144 24433379
    [Google Scholar]
  47. Viveros A. Centeno C. Brenes A. Canales R. Lozano A. Phytase and acid phosphatase activities in plant feedstuffs. J. Agric. Food Chem. 2000 48 9 4009 4013 10.1021/jf991126m 10995305
    [Google Scholar]
  48. De Pasquale I. Pontonio E. Gobbetti M. Rizzello C.G. Nutritional and functional effects of the lactic acid bacteria fermentation on gelatinized legume flours. Int. J. Food Microbiol. 2020 316 108426 10.1016/j.ijfoodmicro.2019.108426 31722270
    [Google Scholar]
  49. Yegrem L. Nutritional composition, antinutritional factors, and utilization trends of Ethiopian Chickpea (Cicer arietinum L.) Int J Food Sci 2021 2021 570753 10.1155/2021/5570753
    [Google Scholar]
  50. Development and evaluation of a strategy to improve complementary feeding for young children in Brickaville (east coast of Madagascar) University of Antananarivo 2006
    [Google Scholar]
  51. Verni M. Pontonio E. Montemurro M. Rizzello C.G. Fermentation as strategy for improving nutritional, functional, technological, and sensory properties of legumes. In: Legumes Research. IntechOpen 2022 Vol. 2 10.5772/intechopen.102523
    [Google Scholar]
  52. Coda R. Melama L. Rizzello C.G. Effect of air classification and fermentation by Lactobacillus plantarum VTT E-133328 on faba bean (Vicia faba L.) flour nutritional properties. Int. J. Food Microbiol. 2015 193 34 42 10.1016/j.ijfoodmicro.2014.10.012 25462921
    [Google Scholar]
  53. Yanniotis S. Taoukis P. Stoforos N.G. Karathanos V.T. Advances in food process engineering research and applications. Springer US 2013 10.1007/978‑1‑4614‑7906‑2
    [Google Scholar]
  54. Génie Alimentaire Génie Alimentaire 2025 Available from: https://genie-alimentaire.com/spip.php?article321.2025.2025
  55. Martínez-Villaluenga C. Frias J. Vidal-Valverde C. Alpha-galactosides: Antinutritional factors or functional ingredients? Crit. Rev. Food Sci. Nutr. 2008 48 4 301 316 10.1080/10408390701326243 18409113
    [Google Scholar]
  56. Luo Y.W. Xie W.H. Jin X.X. Wang Q. He Y.J. Effects of germination on iron, zinc, calcium, manganese, and copper availability from cereals and legumes. CYTA J. Food 2014 12 1 22 26 10.1080/19476337.2013.782071
    [Google Scholar]
  57. Rashwan A.K. Osman A.I. Chen W. Natural nutraceuticals for enhancing yogurt properties: a review. Environ. Chem. Lett. 2023 21 3 1907 1931 10.1007/s10311‑023‑01588‑0
    [Google Scholar]
  58. Malaguti M. Dinelli G. Leoncini E. Bioactive peptides in cereals and legumes: agronomical, biochemical and clinical aspects. Int. J. Mol. Sci. 2014 15 11 21120 21135 10.3390/ijms151121120 25405741
    [Google Scholar]
  59. Office E.P. European Publication Server. 2025 Available from: https://www.epo.org/en/searching-for-patents/technical/publication-server2025
    [Google Scholar]
  60. Pina-Pérez M.C. Ferrús Pérez M.A. Antimicrobial potential of legume extracts against foodborne pathogens: A review. Trends Food Sci. Technol. 2018 72 114 124 10.1016/j.tifs.2017.12.007
    [Google Scholar]
  61. Awika J.M. Rooney L.W. Sorghum phytochemicals and their potential impact on human health. Phytochemistry 2004 65 9 1199 1221 10.1016/j.phytochem.2004.04.001 15184005
    [Google Scholar]
  62. Asgar A.M. Anti-Diabetic Potential of Phenolic Compounds: A Review. Int. J. Food Prop. 2013 16 1 91 103 10.1080/10942912.2011.595864
    [Google Scholar]
  63. Molan A.L. Waghorn G.C. McNabb W.C. Effect of condensed tannins on egg hatching and larval development of Trichostrongylus colubriformis in vitro. Vet. Rec. 2002 150 3 65 69 10.1136/vr.150.3.65 11837588
    [Google Scholar]
  64. Fraga-Corral M. Otero P. Cassani L. Traditional applications of tannin rich extracts supported by scientific data: chemical composition, bioavailability and bioaccessibility. Foods 2021 10 2 251 10.3390/foods10020251 33530516
    [Google Scholar]
  65. Habibzadeh D. Ardabili S. Evaluation of physicochemical, rheological and sensory properties of wafer cream by replacing cocoa powder with carob pod and chicory root powders. Int. Food Res. J. 2019 26 3 1059 1068
    [Google Scholar]
  66. Rochfort S. Panozzo J. Phytochemicals for health, the role of pulses. J. Agric. Food Chem. 2007 55 20 7981 7994 10.1021/jf071704w 17784726
    [Google Scholar]
  67. Embaby E.M. Reda M. Abdel-Wahhab M. Omara H. Mokabel A.M. Occurrence of toxigenic fungi and mycotoxins in some legume seeds. Int J Agric. Technol. 2013 9 151 164
    [Google Scholar]
  68. Giuffrè D. Giuffrè A.M. Fermentation technology and functional foods. Frontiers in Bioscience (Elite Ed) 2024 16 1 8 10.31083/j.fbe1601008
    [Google Scholar]
  69. Rozan P. Kuo Y.H. Lambein F. Amino acids in seeds and seedlings of the genus Lens. Phytochemistry 2001 58 2 281 289 10.1016/S0031‑9422(01)00200‑X 11551552
    [Google Scholar]
  70. Ogundipe O.O. Fasogbon B.M. Ogundipe F.O. Oredope O. Amaezenanbu R.U. Nutritional composition of non‐dairy yogurt from sprouted tigernut tubers. J. Food Process. Preserv. 2021 45 11 e15884 10.1111/jfpp.15884
    [Google Scholar]
  71. Oreopoulou V. Tzia C. Utilization of plant by-products for the recovery of proteins, dietary fibers, antioxidants, and colorants. In: Oreopoulou V, Russ W, Eds. Utilization of by-products and treatment of waste in the food industry. Oreopoulou V. Russ W. Springer US 2007 209 232 10.1007/978‑0‑387‑35766‑9_11
    [Google Scholar]
  72. Mateos-Aparicio I. Redondo-Cuenca A. Villanueva-Suárez M.J. Broad bean and pea by‐products as sources of fibre‐rich ingredients: potential antioxidant activity measured in vitro. J. Sci. Food Agric. 2012 92 3 697 703 10.1002/jsfa.4633 21919006
    [Google Scholar]
  73. Totaro G. Sisti L. Vannini M. A new route of valorization of rice endosperm by-product: Production of polymeric biocomposites. Compos., Part B Eng. 2018 139 195 202 10.1016/j.compositesb.2017.11.055
    [Google Scholar]
  74. Abdel-Aal E.S.M. Ragaee S. Rabalski I. Warkentin T. Vandenberg A. Nutrient content and viscosity of Saskatchewan-grown pulses in relation to their cooking quality. Can. J. Plant Sci. 2019 99 1 67 77 10.1139/cjps‑2018‑0140
    [Google Scholar]
  75. Mecha E. Correia V. Bento da Silva A. Improvement of wheat cookies’ nutritional quality, by partial substitution with common bean and maize flours, sustained human glycemia and enhanced satiety perception. Cereal Chem. 2021 98 5 1123 1134 10.1002/cche.10460
    [Google Scholar]
  76. Houska M. Setinaa I. Kucera P. Food Allergens and Processing: A Review of Recent Results. 2013 Available from:https://explorer.cuni.cz/citation/447994?query=food&lang=en
    [Google Scholar]
  77. Tsuji S. Tanaka K. Takenaka S. Yoshida K. Enhanced secretion of natto phytase by Bacillus subtilis. Biosci. Biotechnol. Biochem. 2015 79 11 1906 1914 10.1080/09168451.2015.1046366 26023739
    [Google Scholar]
  78. Contreras M.M. Lama-Muñoz A. Manuel Gutiérrez-Pérez J. Espínola F. Moya M. Castro E. Protein extraction from agri-food residues for integration in biorefinery: Potential techniques and current status. Bioresour. Technol. 2019 280 459 477 10.1016/j.biortech.2019.02.040 30777702
    [Google Scholar]
  79. Wang N. Daun J. Effects of variety and crude protein content on nutrients and anti-nutrients in lentils (Lens culinaris). Food Chem. 2006 95 3 493 502 10.1016/j.foodchem.2005.02.001
    [Google Scholar]
  80. Khattab R.Y. Arntfield S.D. Nyachoti C.M. Nutritional quality of legume seeds as affected by some physical treatments, Part 1: Protein quality evaluation. Lebensm. Wiss. Technol. 2009 42 6 1107 1112 10.1016/j.lwt.2009.02.008
    [Google Scholar]
  81. Cassiday L. Pulses rising. Inform Int News Fats Oils Relat Mater 2018 29 4 6 16 10.21748/inform.04.2018.06
    [Google Scholar]
  82. Serafini M Stanzione A Foddai S. Functional foods: Traditional use and European legislation Int J Food Sci Nutr 2012 63 sup1 7 9.(Suppl. 1) 10.3109/09637486.2011.637488 22117621
    [Google Scholar]
  83. Perrot C. Pea proteins: From their function in the seed to their use in animal feed. Anim. Prod. 1995 8 3 151 164
    [Google Scholar]
  84. Woyengo T.A. Beltranena E. Zijlstra R.T. Effect of anti-nutritional factors of oilseed co-products on feed intake of pigs and poultry. Anim. Feed Sci. Technol. 2017 233 76 86 10.1016/j.anifeedsci.2016.05.006
    [Google Scholar]
  85. Tosh S.M. Yada S. Dietary fibres in pulse seeds and fractions: Characterization, functional attributes, and applications. Food Res. Int. 2010 43 2 450 460 10.1016/j.foodres.2009.09.005
    [Google Scholar]
  86. Papanikolaou Y. Fulgoni V.L. Bean consumption is associated with greater nutrient intake, reduced systolic blood pressure, lower body weight, and a smaller waist circumference in adults: results from the national health and nutrition examination survey 1999-2002. J. Am. Coll. Nutr. 2008 27 5 569 576 10.1080/07315724.2008.10719740 18845707
    [Google Scholar]
  87. Bazzano L.A. Thompson A.M. Tees M.T. Nguyen C.H. Winham D.M. Non-soy legume consumption lowers cholesterol levels: A meta-analysis of randomized controlled trials. Nutr. Metab. Cardiovasc. Dis. 2011 21 2 94 103 10.1016/j.numecd.2009.08.012 19939654
    [Google Scholar]
  88. Bouchenak M. Lamri-Senhadji M. Nutritional quality of legumes, and their role in cardiometabolic risk prevention: a review. J. Med. Food 2013 16 3 185 198 10.1089/jmf.2011.0238 23398387
    [Google Scholar]
  89. Saeed S.M.G. Ali S.A. Naz J. Techno-functional, antioxidants, microstructural, and sensory characteristics of biscuits as affected by fat replacer using roasted and germinated chickpea (Cicer arietinum L.). Int. J. Food Prop. 2023 26 1 2055 2077 10.1080/10942912.2023.2242602
    [Google Scholar]
  90. Pokharel U. Adhikari N. Gautam N. Effects of different processing methods on the antinutritional factors present in mungbean (Vigna radiata L.). Analytica 2024 5 3 414 429 10.3390/analytica5030026
    [Google Scholar]
  91. Farra C.D. Domloge N. Botto J-M. Use of a peptide hydrolysate of pea as moisturizing active agent U.S. Patent US20130029917A1,
    [Google Scholar]
  92. Nkhata S.G. Ayua E. Kamau E.H. Shingiro J.B. Fermentation and germination improve nutritional value of cereals and legumes through activation of endogenous enzymes. Food Sci. Nutr. 2018 6 8 2446 2458 10.1002/fsn3.846 30510746
    [Google Scholar]
  93. Agregán R. Rötter L. Lorenzo J.M. Esatbeyoglu T. Opportunities and challenges of egg substitutes. Discov Food 2025 5 72 10.1007/s44187‑025‑00335‑4
    [Google Scholar]
  94. Prado F.C. Parada J.L. Pandey A. Soccol C.R. Trends in non-dairy probiotic beverages. Food Res. Int. 2008 41 2 111 123 10.1016/j.foodres.2007.10.010
    [Google Scholar]
  95. Monnet A.F. Laleg K. Michon C. Micard V. Legume enriched cereal products: A generic approach derived from material science to predict their structuring by the process and their final properties. Trends Food Sci. Technol. 2019 86 131 143 10.1016/j.tifs.2019.02.027
    [Google Scholar]
  96. Gaouar-Borsali Naila N. Study of the nutritional value of carob from different algerian varieties. Research Master, Abu BekrBelkaid 2011
    [Google Scholar]
  97. Ministry of agriculture, statistical yearbook of Tunisia 2021 Available from: http://www.ins.tn/sites/default/files/citation/pdf/yearbook-2020%20with%20lien_5.pdf
  98. Salmerón I. Fermented cereal beverages: From probiotic, prebiotic and synbiotic towards Nanoscience designed healthy drinks. Lett. Appl. Microbiol. 2017 65 2 114 124 10.1111/lam.12740 28378421
    [Google Scholar]
  99. Vladimir L. Yuliya S. Irina Z. Economic effect of innovative flour-based functional foods production. 2018 Available from: https://cyberleninka.ru/article/n/economic-effect-of-innovative-flour-based-functional-foods-production
    [Google Scholar]
  100. Voisin A.S. Guéguen J. Huyghe C. Legumes for feed, food, biomaterials and bioenergy in Europe: a review. Agron. Sustain. Dev. 2014 34 2 361 380 10.1007/s13593‑013‑0189‑y
    [Google Scholar]
  101. Granito M. Frias J. Doblado R. Guerra M. Champ M. Vidal-Valverde C. Nutritional improvement of beans (Phaseolus vulgaris) by natural fermentation. Eur. Food Res. Technol. 2002 214 3 226 231 10.1007/s00217‑001‑0450‑5
    [Google Scholar]
/content/journals/cnf/10.2174/0115734013379477251013142545
Loading
/content/journals/cnf/10.2174/0115734013379477251013142545
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test