Skip to content
2000
image of Role of Synbiotic Supplements in the Treatment and Prevention of Metabolic Disorders: A Review

Abstract

Metabolic disorders (MDs) have emerged as a global health concern, affecting a significant portion of the population. Factors such as urbanization, sedentary lifestyles, and dietary choices may increase the prevalence of MDs, including type 2 diabetes mellitus (T2DM), cardiovascular diseases, and obesity. Recent studies have shed light on the association between the gut microbiota (GM) and the development of MDs. Disruptions in the gut microbiota and alterations in metabolic pathways may be attributed to dietary habits, lifestyle choices, and specific diseases, resulting in metabolic disorders. This review examines the correlation between MDs, gut dysbiosis, and the utilization of synbiotics in MDs. Additionally, we explore the roles of metabolic endotoxemia, bile acid metabolism, energy harvest, and tryptophan-derived metabolites in mediating the link between gut dysbiosis and the development of MDs. The manuscript also highlights the potential of synbiotic interventions as a promising therapeutic strategy for managing and treating MDs. Clinical evidence suggests that synbiotic supplementation positively impacts various components of metabolic health, including weight management, blood sugar control, lipid profiles, and inflammatory markers. Nevertheless, additional research is needed to determine the long-term effectiveness and safety of synbiotic interventions, particularly in larger and diverse populations.

Loading

Article metrics loading...

/content/journals/cnf/10.2174/0115734013376664250629214333
2025-07-07
2025-09-29
Loading full text...

Full text loading...

References

  1. Zakir F. Mohapatra S. Farooq U. Mirza M.A. Iqbal Z. Introduction to metabolic disorders. Drug Delivery Systems for Metabolic Disorders Academic Press Cambridge, Massachusetts 2022 1 20
    [Google Scholar]
  2. Kumar A. Goyal N. Pramanik J. Joia S. Singh S. Prajapati B.G. Feasting on the future: Unveiling edible insects as a sustainable food with enriched health benefits. Curr. Nutr. Food Sci. 2025 21 2 191 201 10.2174/0115734013288788240405053034
    [Google Scholar]
  3. Kiran NS Yashaswini C Kumar A Singh S Prajapati BG Mustard allergy and allergens: Effect of processing on allergenicity. Food Allergies CRC Press Boca Raton, FL 2024 204 219
    [Google Scholar]
  4. Kapoor N. Jiwanmall S.A. Nandyal M.B. Kattula D. Paravathareddy S. Paul T.V. Furler J. Oldenburg B. Thomas N. Metabolic score for visceral fat (METS-VF) estimation – A novel cost-effective obesity indicator for visceral adipose tissue estimation. Diabetes Metab. Syndr. Obes. 2020 13 3261 3267 10.2147/DMSO.S266277 32982356
    [Google Scholar]
  5. Dilworth L. Facey A. Omoruyi F. Diabetes mellitus and its metabolic complications: The role of adipose tissues. Int. J. Mol. Sci. 2021 22 14 7644 10.3390/ijms22147644 34299261
    [Google Scholar]
  6. Kumar A. Pramanik J. Goyal N. Chauhan D. Sivamaruthi B.S. Prajapati B.G. Gut microbiota in anxiety and depression: Unveiling the relationships and management options. Pharmaceuticals 2023 16 4 565 10.3390/ph16040565 37111321
    [Google Scholar]
  7. Patel P. Butani K. Kumar A. Singh S. Prajapati B.G. Effects of fermented food consumption on non-communicable diseases. Foods 2023 12 4 687 10.3390/foods12040687
    [Google Scholar]
  8. Sivamaruthi B.S. Suganthy N. Kesika P. Chaiyasut C. The role of microbiome, dietary supplements, and probiotics in autism spectrum disorder. Int. J. Environ. Res. Public Health 2020 17 8 2647 10.3390/ijerph17082647 32290635
    [Google Scholar]
  9. Kesika P. Suganthy N. Sivamaruthi B.S. Chaiyasut C. Role of gut-brain axis, gut microbial composition, and probiotic intervention in Alzheimer’s disease. Life Sci. 2021 264 118627 10.1016/j.lfs.2020.118627 33169684
    [Google Scholar]
  10. Thangaleela S. Sivamaruthi B.S. Kesika P. Bharathi M. Chaiyasut C. Role of the gut-brain axis, gut microbial composition, diet, and probiotic intervention in Parkinson's disease. Microorganisms 2022 10 8 1544 10.3390/microorganisms10081544 36013962
    [Google Scholar]
  11. Mohite P Puri A Bharati D Singh S. Polyphenol-encapsulated nanoparticles for the treatment of chronic metabolic diseases. Role of flavonoids in chronic metabolic diseases Scrivener Publishing LLC 2024 375 416 10.1002/9781394238071.ch11
    [Google Scholar]
  12. Li X. Liu L. Cao Z. Li W. Li H. Lu C. Yang X. Liu Y. Gut microbiota as an “invisible organ” that modulates the function of drugs. Biomed. Pharmacother. 2020 121 109653 10.1016/j.biopha.2019.109653 31810138
    [Google Scholar]
  13. Eze F.N. Muangrat R. Singh S. Jirarattanarangsri W. Siriwoharn T. Chalermchat Y. Upcycling of defatted sesame seed meal via protein amyloid-based nanostructures: Preparation, characterization, and functional and antioxidant attributes. Foods 2024 13 14 2281 10.3390/foods13142281 39063365
    [Google Scholar]
  14. Santos-Marcos J.A. Perez-Jimenez F. Camargo A. The role of diet and intestinal microbiota in the development of metabolic syndrome. J. Nutr. Biochem. 2019 70 1 27 10.1016/j.jnutbio.2019.03.017 31082615
    [Google Scholar]
  15. Vetrani C. Di Nisio A. Paschou S.A. Barrea L. Muscogiuri G. Graziadio C. From gut microbiota through low-grade inflammation to obesity: Key players and potential targets. Nutrients 2022 14 10 2103 10.3390/nu14102103 35631244
    [Google Scholar]
  16. Chassaing B. Gewirtz A.T. Gut microbiota, low-grade inflammation, and metabolic syndrome. Toxicol. Pathol. 2014 42 1 49 53 10.1177/0192623313508481 24285672
    [Google Scholar]
  17. Castro-Barquero S. Ruiz-León A.M. Sierra-Pérez M. Estruch R. Casas R. Dietary strategies for metabolic syndrome: A comprehensive review. Nutrients 2020 12 10 2983 10.3390/nu12102983 33003472
    [Google Scholar]
  18. van den Brink W. van Bilsen J. Salic K. Hoevenaars F.P.M. Verschuren L. Kleemann R. Bouwman J. Ronnett G.V. van Ommen B. Wopereis S. Current and future nutritional strategies to modulate inflammatory dynamics in metabolic disorders. Front. Nutr. 2019 6 129 10.3389/fnut.2019.00129 31508422
    [Google Scholar]
  19. Martín R. Langella P. Emerging health concepts in the probiotics field: Streamlining the definitions. Front. Microbiol. 2019 10 1047 10.3389/fmicb.2019.01047 31164874
    [Google Scholar]
  20. Gibson G.R. Hutkins R. Sanders M.E. Prescott S.L. Reimer R.A. Salminen S.J. Scott K. Stanton C. Swanson K.S. Cani P.D. Verbeke K. Reid G. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2017 14 8 491 502 10.1038/nrgastro.2017.75 28611480
    [Google Scholar]
  21. Swanson K.S. Gibson G.R. Hutkins R. Reimer R.A. Reid G. Verbeke K. Scott K.P. Holscher H.D. Azad M.B. Delzenne N.M. Sanders M.E. The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of synbiotics. Nat. Rev. Gastroenterol. Hepatol. 2020 17 11 687 701 10.1038/s41575‑020‑0344‑2 32826966
    [Google Scholar]
  22. Al-Rashidi H.E. Gut microbiota and immunity relevance in eubiosis and dysbiosis. Saudi J. Biol. Sci. 2022 29 3 1628 1643 10.1016/j.sjbs.2021.10.068 35280528
    [Google Scholar]
  23. Marlicz W. Skonieczna-Żydecka K. Dabos K.J. Łoniewski I. Koulaouzidis A. Emerging concepts in non-invasive monitoring of Crohn’s disease. Therap. Adv. Gastroenterol. 2018 11 1756284818769076 10.1177/1756284818769076 29707039
    [Google Scholar]
  24. Neu J. Pammi M. Necrotizing enterocolitis: The intestinal microbiome, metabolome and inflammatory mediators. Semin. Fetal Neonatal Med. 2018 23 6 400 405 10.1016/j.siny.2018.08.001 30172660
    [Google Scholar]
  25. Karlsson F.H. Tremaroli V. Nookaew I. Bergström G. Behre C.J. Fagerberg B. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 2013 498 7452 99 103 10.1038/nature12198 23719380
    [Google Scholar]
  26. Larsen N. Vogensen F.K. van den Berg F.W.J. Nielsen D.S. Andreasen A.S. Pedersen B.K. Al-Soud W.A. Sørensen S.J. Hansen L.H. Jakobsen M. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One 2010 5 2 e9085 10.1371/journal.pone.0009085 20140211
    [Google Scholar]
  27. Wang X. Xu X. Xia Y. Further analysis reveals new gut microbiome markers of type 2 diabetes mellitus. Antonie van Leeuwenhoek 2017 110 3 445 453 10.1007/s10482‑016‑0805‑3 27943013
    [Google Scholar]
  28. Tilg H. Moschen A.R. Microbiota and diabetes: An evolving relationship. Gut 2014 63 9 1513 1521 10.1136/gutjnl‑2014‑306928 24833634
    [Google Scholar]
  29. Cani P.D. Amar J. Iglesias M.A. Poggi M. Knauf C. Bastelica D. Neyrinck A.M. Fava F. Tuohy K.M. Chabo C. Waget A. Delmée E. Cousin B. Sulpice T. Chamontin B. Ferrières J. Tanti J.F. Gibson G.R. Casteilla L. Delzenne N.M. Alessi M.C. Burcelin R. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 2007 56 7 1761 1772 10.2337/db06‑1491 17456850
    [Google Scholar]
  30. Creely S.J. McTernan P.G. Kusminski C.M. Fisher M. Da Silva N.F. Khanolkar M. Evans M. Harte A.L. Kumar S. Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. Am. J. Physiol. Endocrinol. Metab. 2007 292 3 E740 E747 10.1152/ajpendo.00302.2006 17090751
    [Google Scholar]
  31. Turnbaugh P.J. Ley R.E. Mahowald M.A. Magrini V. Mardis E.R. Gordon J.I. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006 444 7122 1027 1031 10.1038/nature05414 17183312
    [Google Scholar]
  32. Riva A. Borgo F. Lassandro C. Verduci E. Morace G. Borghi E. Berry D. Pediatric obesity is associated with an altered gut microbiota and discordant shifts in Firmicutes populations. Environ. Microbiol. 2017 19 1 95 105 10.1111/1462‑2920.13463 27450202
    [Google Scholar]
  33. Tomas J. Mulet C. Saffarian A. Cavin J.B. Ducroc R. Regnault B. Kun Tan C. Duszka K. Burcelin R. Wahli W. Sansonetti P.J. Pédron T. High-fat diet modifies the PPAR-γ pathway leading to disruption of microbial and physiological ecosystem in murine small intestine. Proc. Natl. Acad. Sci. USA 2016 113 40 E5934 E5943 10.1073/pnas.1612559113 27638207
    [Google Scholar]
  34. Kim K.N. Yao Y. Ju S.Y. Short chain fatty acids and fecal microbiota abundance in humans with obesity: A systematic review and meta-analysis. Nutrients 2019 11 10 2512 10.3390/nu11102512 31635264
    [Google Scholar]
  35. Di Vincenzo F. Puca P. Lopetuso L.R. Petito V. Masi L. Bartocci B. Bile acid-related regulation of mucosal inflammation and intestinal motility: From pathogenesis to therapeutic application in IBD and microscopic colitis. Nutrients 2022 14 13 2664 10.3390/nu14132664 35807844
    [Google Scholar]
  36. Mucientes A. Lisbona-Montañez J.M. Mena-Vázquez N. Ruiz-Limón P. Manrique-Arija S. García-Studer A. Ortiz-Márquez F. Fernández-Nebro A. Intestinal dysbiosis, tight junction proteins, and inflammation in rheumatoid arthritis patients: A cross-sectional study. Int. J. Mol. Sci. 2024 25 16 8649 10.3390/ijms25168649 39201334
    [Google Scholar]
  37. Bonfante I.L.P. Chacon-Mikahil M.P.T. Brunelli D.T. Gáspari A.F. Duft R.G. Oliveira A.G. Araujo T.G. Saad M.J.A. Cavaglieri C.R. Obese with higher FNDC5/Irisin levels have a better metabolic profile, lower lipopolysaccharide levels and type 2 diabetes risk. Arch. Endocrinol. Metab. 2017 61 6 524 533 10.1590/2359‑3997000000305 29412381
    [Google Scholar]
  38. Rheinheimer J. de Souza B.M. Cardoso N.S. Bauer A.C. Crispim D. Current role of the NLRP3 inflammasome on obesity and insulin resistance: A systematic review. Metabolism 2017 74 1 9 10.1016/j.metabol.2017.06.002 28764843
    [Google Scholar]
  39. Schoeler M. Caesar R. Dietary lipids, gut microbiota and lipid metabolism. Rev. Endocr. Metab. Disord. 2019 20 4 461 472 10.1007/s11154‑019‑09512‑0 31707624
    [Google Scholar]
  40. Wahlström A. Sayin S.I. Marschall H.U. Bäckhed F. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab. 2016 24 1 41 50 10.1016/j.cmet.2016.05.005 27320064
    [Google Scholar]
  41. Duran-Sandoval D. Mautino G. Martin G. Percevault F. Barbier O. Fruchart J.C. Kuipers F. Staels B. Glucose regulates the expression of the farnesoid X receptor in liver. Diabetes 2004 53 4 890 898 10.2337/diabetes.53.4.890 15047603
    [Google Scholar]
  42. Zhang Y. Lee F.Y. Barrera G. Lee H. Vales C. Gonzalez F.J. Willson T.M. Edwards P.A. Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice. Proc. Natl. Acad. Sci. USA 2006 103 4 1006 1011 10.1073/pnas.0506982103 16410358
    [Google Scholar]
  43. Sivamaruthi B.S. Fern L.A. Rashidah Pg Hj Ismail D.S.N. Chaiyasut C. The influence of probiotics on bile acids in diseases and aging. Biomed. Pharmacother. 2020 128 110310 10.1016/j.biopha.2020.110310 32504921
    [Google Scholar]
  44. Cani P.D. Delzenne N.M. The gut microbiome as therapeutic target. Pharmacol. Ther. 2011 130 2 202 212 10.1016/j.pharmthera.2011.01.012 21295072
    [Google Scholar]
  45. Facchin S. Bertin L. Bonazzi E. Lorenzon G. De Barba C. Barberio B. Short-chain fatty acids and human health: From metabolic pathways to current therapeutic implications. Life 2024 14 5 559 10.3390/life14050559 38792581
    [Google Scholar]
  46. Payne A.N. Chassard C. Zimmermann M. Müller P. Stinca S. Lacroix C. The metabolic activity of gut microbiota in obese children is increased compared with normal-weight children and exhibits more exhaustive substrate utilization. Nutr. Diabetes 2011 1 7 e12 10.1038/nutd.2011.8 23154580
    [Google Scholar]
  47. Goffredo M. Mass K. Parks E.J. Wagner D.A. McClure E.A. Graf J. Savoye M. Pierpont B. Cline G. Santoro N. Role of gut microbiota and short chain fatty acids in modulating energy harvest and fat partitioning in youth. J. Clin. Endocrinol. Metab. 2016 101 11 4367 4376 10.1210/jc.2016‑1797 27648960
    [Google Scholar]
  48. Sonnenburg E.D. Smits S.A. Tikhonov M. Higginbottom S.K. Wingreen N.S. Sonnenburg J.L. Diet-induced extinctions in the gut microbiota compound over generations. Nature 2016 529 7585 212 215 10.1038/nature16504 26762459
    [Google Scholar]
  49. Konopelski P. Ufnal M. Indoles - Gut bacteria metabolites of tryptophan with pharmacotherapeutic potential. Curr. Drug Metab. 2018 19 10 883 890 10.2174/1389200219666180427164731 29708069
    [Google Scholar]
  50. Miyamoto K. Sujino T. Kanai T. The tryptophan metabolic pathway of the microbiome and host cells in health and disease. Int. Immunol. 2024 36 12 601 616 10.1093/intimm/dxae035 38869080
    [Google Scholar]
  51. Krishnan S. Ding Y. Saedi N. Choi M. Sridharan G.V. Sherr D.H. Yarmush M.L. Alaniz R.C. Jayaraman A. Lee K. Gut microbiota-derived tryptophan metabolites modulate inflammatory response in hepatocytes and macrophages. Cell Rep. 2018 23 4 1099 1111 10.1016/j.celrep.2018.03.109 29694888
    [Google Scholar]
  52. Markowiak P. Ślizewska K. Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients 2017 9 9 1021 10.3390/nu9091021 28914794
    [Google Scholar]
  53. Pandey K.R. Naik S.R. Vakil B.V. Probiotics, prebiotics and synbiotics- A review. J. Food Sci. Technol. 2015 52 12 7577 7587 10.1007/s13197‑015‑1921‑1 26604335
    [Google Scholar]
  54. Mirmiranpour H. Huseini H.F. Derakhshanian H. Khodaii Z. Tavakoli-Far B. Effects of probiotic, cinnamon, and synbiotic supplementation on glycemic control and antioxidant status in people with type 2 diabetes; A randomized, double-blind, placebo-controlled study. J. Diabetes Metab. Disord. 2020 19 1 53 60 10.1007/s40200‑019‑00474‑3 32550156
    [Google Scholar]
  55. Cicero A.F.G. Fogacci F. Bove M. Giovannini M. Borghi C. Impact of a short-term synbiotic supplementation on metabolic syndrome and systemic inflammation in elderly patients: A randomized placebo-controlled clinical trial. Eur. J. Nutr. 2021 60 2 655 663 10.1007/s00394‑020‑02271‑8 32417946
    [Google Scholar]
  56. Shakeri H. Hadaegh H. Abedi F. Tajabadi-Ebrahimi M. Mazroii N. Ghandi Y. Asemi Z. Consumption of synbiotic bread decreases triacylglycerol and VLDL levels while increasing HDL levels in serum from patients with type-2 diabetes. Lipids 2014 49 7 695 701 10.1007/s11745‑014‑3901‑z 24706266
    [Google Scholar]
  57. Ghafouri A. Zarrati M. Shidfar F. Heydari I. Shokouhi Shoormasti R. Eslami O. Effect of synbiotic bread containing lactic acid on glycemic indicators, biomarkers of antioxidant status and inflammation in patients with type 2 diabetes: A randomized controlled trial. Diabetol. Metab. Syndr. 2019 11 1 103 10.1186/s13098‑019‑0496‑9 31827628
    [Google Scholar]
  58. Parastouei K. Saeidipoor S. Sepandi M. Abbaszadeh S. Taghdir M. Effects of synbiotic supplementation on the components of metabolic syndrome in military personnel: A double-blind randomised controlled trial. BMJ Mil. Health 2022 168 5 362 367 10.1136/bmjmilitary‑2020‑001459 32759229
    [Google Scholar]
  59. Anggeraini A.S. Massi M.N. Hamid F. Ahmad A. As’ad S. Bukhari A. Effects of synbiotic supplement on body weight and fasting blood glucose levels in obesity: A randomized placebo-controlled trial. Ann. Med. Surg. 2021 68 102548 10.1016/j.amsu.2021.102548 34434546
    [Google Scholar]
  60. Shiromwar S.S. Chidrawar V.R. Singh S. Chitme H.R. Maheshwari R. Sultana S. Multi-faceted anti-obesity effects of N-Methyl-D-Aspartate (NMDA) receptor modulators: Central-peripheral crosstalk. J. Mol. Neurosci. 2024 74 1 13 10.1007/s12031‑023‑02178‑z 38240858
    [Google Scholar]
  61. Xavier-Santos D. Bedani R. Lima E.D. Saad S.M.I. Impact of probiotics and prebiotics targeting metabolic syndrome. J. Funct. Foods 2020 64 103666 10.1016/j.jff.2019.103666
    [Google Scholar]
  62. Kassaian N. Feizi A. Rostami S. Aminorroaya A. Yaran M. Amini M. The effects of 6 mo of supplementation with probiotics and synbiotics on gut microbiota in the adults with prediabetes: A double blind randomized clinical trial. Nutrition 2020 79-80 110854 10.1016/j.nut.2020.110854 32615392
    [Google Scholar]
  63. Kassaian N. Feizi A. Aminorroaya A. Ebrahimi M.T. Norouzi A. Amini M. Effects of probiotics and synbiotic on lipid profiles in adults at risk of type 2 diabetes: A double-blind randomized controlled clinical trial. Funct. Food Health Dis. 2019 9 7 494 507 10.31989/ffhd.v9i7.617
    [Google Scholar]
  64. Haghighat N. Mohammadshahi M. Shayanpour S. Haghighizadeh M.H. Effect of synbiotic and probiotic supplementation on serum levels of endothelial cell adhesion molecules in hemodialysis patients: A randomized control study. Probiotics Antimicrob. Proteins 2019 11 4 1210 1218 10.1007/s12602‑018‑9477‑9 30293208
    [Google Scholar]
  65. Olas B. Probiotics, prebiotics and synbiotics-A promising strategy in prevention and treatment of cardiovascular diseases? Int. J. Mol. Sci. 2020 21 24 9737 10.3390/ijms21249737 33419368
    [Google Scholar]
  66. Sivamaruthi B.S. Alagarsamy K. Thangaleela S. Bharathi M. Kesika P. Chaiyasut C. Composition, microbiota, mechanisms, and anti-obesity properties of rice bran. Foods 2023 12 6 1300 10.3390/foods12061300 36981226
    [Google Scholar]
  67. Rabiei S. Hedayati M. Rashidkhani B. Saadat N. Shakerhossini R. The effects of synbiotic supplementation on body mass index, metabolic and inflammatory biomarkers, and appetite in patients with metabolic syndrome: A triple-blind randomized controlled trial. J. Diet. Suppl. 2019 16 3 294 306 10.1080/19390211.2018.1455788 29672196
    [Google Scholar]
  68. Sergeev I.N. Aljutaily T. Walton G. Huarte E. Effects of synbiotic supplement on human gut microbiota, body composition and weight loss in obesity. Nutrients 2020 12 1 222 10.3390/nu12010222 31952249
    [Google Scholar]
  69. Wall C.R. Hill R.J. Lovell A.L. Matsuyama M. Milne T. Grant C.C. Jiang Y. Chen R.X. Wouldes T.A. Davies P.S.W. A multicenter, double-blind, randomized, placebo-controlled trial to evaluate the effect of consuming growing up milk “Lite” on body composition in children aged 12–23 mo. Am. J. Clin. Nutr. 2019 109 3 576 585 10.1093/ajcn/nqy302 30831579
    [Google Scholar]
  70. Raji Lahiji M. Zarrati M. Najafi S. Yazdani B. Cheshmazar E. Razmpoosh E. Janani L. Raji Lahiji M. Shidfar F. Effects of synbiotic supplementation on serum adiponectin and inflammation status of overweight and obese breast cancer survivors: A randomized, triple-blind, placebo-controlled trial. Support. Care Cancer 2021 29 7 4147 4157 10.1007/s00520‑020‑05926‑8 33404812
    [Google Scholar]
  71. Raji Lahiji M. Najafi S. Janani L. Yazdani B. Razmpoosh E. Zarrati M. The effect of synbiotic on glycemic profile and sex hormones in overweight and obese breast cancer survivors following a weight-loss diet: A randomized, triple-blind, controlled trial. Clin. Nutr. 2021 40 2 394 403 10.1016/j.clnu.2020.05.043 32698957
    [Google Scholar]
  72. Chaiyasut C. Sivamaruthi B.S. Kesika P. Khongtan S. Khampithum N. Thangaleela S. Synbiotic supplementation improves obesity index and metabolic biomarkers in thai obese adults: A randomized clinical trial. Foods 2021 10 7 1580 10.3390/foods10071580 34359450
    [Google Scholar]
  73. Totmaj S. A. Haghighat S. Jaberzadeh S. Navaei M. Vafa S. Janani L. Emamat H. Salehi Z. Izad M. Zarrati M. The effects of synbiotic supplementation on serum anti-inflammatory factors in the survivors of breast cancer with lymphedema following a low calorie diet: A randomized, double-blind, clinical trial. Nutr. Cancer 2022 74 3 869 881 10.1080/01635581.2021.1933096 34085881
    [Google Scholar]
  74. Lauw S. Kei N. Chan P.L. Yau T.K. Ma K.L. Szeto C.Y.Y. Effects of synbiotic supplementation on metabolic syndrome traits and gut microbial profile among overweight and obese Hong Kong Chinese individuals: A randomized trial. Nutrients 2023 15 19 4248 10.3390/nu15194248 37836532
    [Google Scholar]
  75. Laue C. Papazova E. Pannenbeckers A. Schrezenmeir J. Effect of a probiotic and a synbiotic on body fat mass, body weight and traits of metabolic syndrome in individuals with abdominal overweight: A human, double-blind, randomised, controlled clinical study. Nutrients 2023 15 13 3039 10.3390/nu15133039 37447365
    [Google Scholar]
  76. Angelino D. Martina A. Rosi A. Veronesi L. Antonini M. Mennella I. Vitaglione P. Grioni S. Brighenti F. Zavaroni I. Fares C. Torriani S. Pellegrini N. Glucose- and lipid-related biomarkers are affected in healthy obese or hyperglycemic adults consuming a whole-grain pasta enriched in prebiotics and probiotics: A 12-week randomized controlled trial. J. Nutr. 2019 149 10 1714 1723 10.1093/jn/nxz071 31162597
    [Google Scholar]
  77. Hadi A. Sepandi M. Marx W. Moradi S. Parastouei K. Clinical and psychological responses to synbiotic supplementation in obese or overweight adults: A randomized clinical trial. Complement. Ther. Med. 2019 47 102216 10.1016/j.ctim.2019.102216 31780038
    [Google Scholar]
  78. Oraphruek P. Chusak C. Ngamukote S. Sawaswong V. Chanchaem P. Payungporn S. Suantawee T. Adisakwattana S. Effect of a multispecies synbiotic supplementation on body composition, antioxidant status, and gut microbiomes in overweight and obese subjects: A Randomized, double-blind, placebo-controlled study. Nutrients 2023 15 8 1863 10.3390/nu15081863 37111082
    [Google Scholar]
  79. Kilic Yildirim G. Dinleyici M. Vandenplas Y. Dinleyici E.C. Effects of synbiotic supplementation on intestinal microbiota composition in children and adolescents with exogenous obesity: (Probesity-2 trial). Gut Pathog. 2023 15 1 36 10.1186/s13099‑023‑00563‑y 37474971
    [Google Scholar]
  80. Atazadegan M.A. Heidari-Beni M. Entezari M.H. Sharifianjazi F. Kelishadi R. Effects of synbiotic supplementation on anthropometric indices and body composition in overweight or obese children and adolescents: A randomized, double-blind, placebo-controlled clinical trial. World J. Pediatr. 2023 19 4 356 365 10.1007/s12519‑022‑00664‑9 36484872
    [Google Scholar]
  81. Mistry PS Singh S Chorawala MR Prajapati BG Kapoor DU Unlocking the potential of carrier mediated nano-biomedicine in management of diabetes mellitus: A review. Chem. Biodivers. 2024 e202402258 10.1002/cbdv.202402258 39714589
    [Google Scholar]
  82. Kesika P Sivamaruthi BS Chaiyasut C Do probiotics improve the health status of individuals with diabetes mellitus? A review on outcomes of clinical trials. Biomed. Res. Int. 2019 1531567 10.1155/2019/1531567 31950031
    [Google Scholar]
  83. Chaiyasut C. Sivamaruthi B.S. Lailerd N. Sirilun S. Thangaleela S. Khongtan S. Bharathi M. Kesika P. Saelee M. Choeisoongnern T. Fukngoen P. Peerajan S. Sittiprapaporn P. Influence of Bifidobacterium breve on the glycaemic control, lipid profile and microbiome of type 2 diabetic subjects: A preliminary randomized clinical trial. Pharmaceuticals 2023 16 5 695 10.3390/ph16050695 37242478
    [Google Scholar]
  84. Kumar A. Goyal N. Pramanik J. Bawa Y. Singh S. Prajapati B. Probiotics as an adjunct approach to the prevention and treatment of colon cancer: A review. Curr. Nutr. Food Sci. 2024 20 9 1086 1099 10.2174/0115734013270901231124063616
    [Google Scholar]
  85. Ebrahimi Z.S. Effect of symbiotic supplementation on glycemic control, lipid profiles and microalbuminuria in patients with non-obese type 2 diabetes: A randomized, double-blind, clinical trial. J. Diabetes Metab. Disord. 2017 16 1 10 10.1186/s40200‑017‑0304‑8 28589103
    [Google Scholar]
  86. Ghafouri A. Heshmati J. Heydari I. Shokouhi Shoormasti R. Estêvão M.D. Hoseini A.S. Morvaridzadeh M. Akbari-Fakhrabadi M. Farsi F. Zarrati M. Pizarro A.B. Shidfar F. Ziaei S. Effect of synbiotic bread containing lactic acid on blood lipids and apolipoproteins in patients with type 2 diabetes: A randomized controlled trial. Food Sci. Nutr. 2022 10 12 4419 4430 10.1002/fsn3.3039 36514747
    [Google Scholar]
  87. Kanazawa A. Aida M. Yoshida Y. Kaga H. Katahira T. Suzuki L. Effects of synbiotic supplementation on chronic inflammation and the gut microbiota in obese patients with type 2 diabetes mellitus: A randomized controlled study. Nutrients 2021 13 2 558 10.3390/nu13020558 33567701
    [Google Scholar]
  88. Zhao J. Wang L. Cheng S. Zhang Y. Yang M. Fang R. A potential synbiotic strategy for the prevention of type 2 diabetes: Lactobacillus paracasei JY062 and Exopolysaccharide Isolated from Lactobacillus plantarum JY039. Nutrients 2022 14 2 377 10.3390/nu14020377 35057558
    [Google Scholar]
  89. Horvath A. Leber B. Feldbacher N. Tripolt N. Rainer F. Blesl A. Trieb M. Marsche G. Sourij H. Stadlbauer V. Effects of a multispecies synbiotic on glucose metabolism, lipid marker, gut microbiome composition, gut permeability, and quality of life in diabesity: A randomized, double-blind, placebo-controlled pilot study. Eur. J. Nutr. 2020 59 7 2969 2983 10.1007/s00394‑019‑02135‑w 31729622
    [Google Scholar]
  90. Ghorbani Z. Kazemi A. U P Bartolomaeus T. Martami F. Noormohammadi M. Salari A. Löber U. Balou H.A. K Forslund S. Mahdavi-Roshan M. The effect of probiotic and synbiotic supplementation on lipid parameters among patients with cardiometabolic risk factors: A systematic review and meta-analysis of clinical trials. Cardiovasc. Res. 2023 119 4 933 956 10.1093/cvr/cvac128 35934838
    [Google Scholar]
  91. Lei Y. Xu M. Huang N. Yuan Z. Meta-analysis of the effect of probiotics or synbiotics on the risk factors in patients with coronary artery disease. Front. Cardiovasc. Med. 2023 10 1154888 10.3389/fcvm.2023.1154888 37600034
    [Google Scholar]
  92. Hadi A. Ghaedi E. Khalesi S. Pourmasoumi M. Arab A. Effects of synbiotic consumption on lipid profile: A systematic review and meta-analysis of randomized controlled clinical trials. Eur. J. Nutr. 2020 59 7 2857 2874 10.1007/s00394‑020‑02248‑7 32322969
    [Google Scholar]
  93. Ryan P.M. Stanton C. Caplice N.M. Bile acids at the cross-roads of gut microbiome-host cardiometabolic interactions. Diabetol. Metab. Syndr. 2017 9 102 10.1186/s13098‑017‑0299‑9 29299069
    [Google Scholar]
  94. Singh S. Syukri D.M. Ushir Y.V. Mishra A. Ontong J.C. Nwabor O.F. Darekar S.M. Samee W. Chidrawar V.R. Chittasupho C. Post-operative wound healing efficacy of Eucalyptus camaldulensis phenolic-rich extracts incorporated hydrogel with enhanced antioxidant, antibacterial, and anti-inflammatory activities. J. Polym. Environ. 2024 33 1 26
    [Google Scholar]
  95. Soleimani A. Motamedzadeh A. Mojarrad Z. M. Bahmani F. Amirani E. Ostadmohammadi V. Tajabadi-Ebrahimi M. Asemi Z. The effects of synbiotic supplementation on metabolic status in diabetic patients undergoing hemodialysis: A randomized, double-blinded, placebo-controlled trial. Probiotics Antimicrob. Proteins 2019 11 4 1248 1256 10.1007/s12602‑018‑9499‑3 30560426
    [Google Scholar]
  96. Brubaker P.L. Glucagon-like peptide-2 and the regulation of intestinal growth and function. Compr. Physiol. 2018 8 3 1185 1210 10.1002/cphy.c170055 29978894
    [Google Scholar]
  97. Vinolo M.A.R. Rodrigues H.G. Nachbar R.T. Curi R. Regulation of inflammation by short chain fatty acids. Nutrients 2011 3 10 858 876 10.3390/nu3100858 22254083
    [Google Scholar]
  98. Li X. Hu S. Yin J. Peng X. King L. Li L. Xu Z. Zhou L. Peng Z. Ze X. Zhang X. Hou Q. Shan Z. Liu L. Effect of synbiotic supplementation on immune parameters and gut microbiota in healthy adults: A double-blind randomized controlled trial. Gut Microbes 2023 15 2 2247025 10.1080/19490976.2023.2247025 37614109
    [Google Scholar]
  99. Çakır M. İşbilen A. A. Eyüpoğlu I. Sağ E. Örem A. Mazlum Şen T. Kaklikkaya N. Kaya G. Effects of long-term synbiotic supplementation in addition to lifestyle changes in children with obesity-related non-alcoholic fatty liver disease. Turk. J. Gastroenterol. 2017 28 5 377 383 10.5152/tjg.2017.17084 28797988
    [Google Scholar]
  100. Neyrinck A.M. Rodriguez J. Taminiau B. Amadieu C. Herpin F. Allaert F.A. Improvement of gastrointestinal discomfort and inflammatory status by a synbiotic in middle-aged adults: A double-blind randomized placebo-controlled trial. Sci. Rep. 2021 11 1 2627 10.1038/s41598‑020‑80947‑1 33514774
    [Google Scholar]
  101. Sitkin S. Pokrotnieks J. Clinical potential of anti-inflammatory effects of Faecalibacterium prausnitzii and butyrate in inflammatory bowel disease. Inflamm. Bowel Dis. 2019 25 4 e40 e41 10.1093/ibd/izy258 30085080
    [Google Scholar]
  102. Maykish A. Sikalidis A.K. Utilization of hydroxyl-methyl butyrate, leucine, glutamine and arginine supplementation in nutritional management of sarcopenia-implications and clinical considerations for type 2 diabetes mellitus risk modulation. J. Pers. Med. 2020 10 1 19 10.3390/jpm10010019 32213854
    [Google Scholar]
  103. Kumar A. Pramanik J. Batta K. Bamal P. Prajapati B. Singh S. Applications of value‐added natural dye fortified with biopolymer‐based food packaging: sustainability through smart and sensible applications. Int. J. Food Sci. Technol. 2024 59 3 1268 1280 10.1111/ijfs.16922
    [Google Scholar]
/content/journals/cnf/10.2174/0115734013376664250629214333
Loading

  • Article Type:
    Review Article
Keywords: energy harvest ; Synbiotic ; obesity ; metabolic disorders ; hyperlipidaemia
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test