Skip to content
2000
Volume 21, Issue 10
  • ISSN: 1573-4013
  • E-ISSN: 2212-3881

Abstract

Metabolic disorders (MDs) have emerged as a global health concern, affecting a significant portion of the population. Factors such as urbanization, sedentary lifestyles, and dietary choices may increase the prevalence of MDs, including type 2 diabetes mellitus (T2DM), cardiovascular diseases, and obesity. Recent studies have shed light on the association between the gut microbiota (GM) and the development of MDs. Disruptions in the gut microbiota and alterations in metabolic pathways may be attributed to dietary habits, lifestyle choices, and specific diseases, resulting in metabolic disorders. This review examines the correlation between MDs, gut dysbiosis, and the utilization of synbiotics in MDs. Additionally, we explore the roles of metabolic endotoxemia, bile acid metabolism, energy harvest, and tryptophan-derived metabolites in mediating the link between gut dysbiosis and the development of MDs. The manuscript also highlights the potential of synbiotic interventions as a promising therapeutic strategy for managing and treating MDs. Clinical evidence suggests that synbiotic supplementation positively impacts various components of metabolic health, including weight management, blood sugar control, lipid profiles, and inflammatory markers. Nevertheless, additional research is needed to determine the long-term effectiveness and safety of synbiotic interventions, particularly in larger and diverse populations.

Loading

Article metrics loading...

/content/journals/cnf/10.2174/0115734013376664250629214333
2025-07-07
2026-02-02
Loading full text...

Full text loading...

References

  1. ZakirF. MohapatraS. FarooqU. MirzaM.A. IqbalZ. Introduction to metabolic disorders.Drug Delivery Systems for Metabolic DisordersAcademic Press Cambridge, Massachusetts2022120
    [Google Scholar]
  2. KumarA. GoyalN. PramanikJ. JoiaS. SinghS. PrajapatiB.G. Feasting on the future: Unveiling edible insects as a sustainable food with enriched health benefits.Curr. Nutr. Food Sci.202521219120110.2174/0115734013288788240405053034
    [Google Scholar]
  3. KiranNS YashaswiniC KumarA SinghS PrajapatiBG Mustard allergy and allergens: Effect of processing on allergenicity.Food AllergiesCRC PressBoca Raton, FL2024204219
    [Google Scholar]
  4. KapoorN. JiwanmallS.A. NandyalM.B. KattulaD. ParavathareddyS. PaulT.V. FurlerJ. OldenburgB. ThomasN. Metabolic score for visceral fat (METS-VF) estimation – A novel cost-effective obesity indicator for visceral adipose tissue estimation.Diabetes Metab. Syndr. Obes.2020133261326710.2147/DMSO.S26627732982356
    [Google Scholar]
  5. DilworthL. FaceyA. OmoruyiF. Diabetes mellitus and its metabolic complications: The role of adipose tissues.Int. J. Mol. Sci.20212214764410.3390/ijms2214764434299261
    [Google Scholar]
  6. KumarA. PramanikJ. GoyalN. ChauhanD. SivamaruthiB.S. PrajapatiB.G. Gut microbiota in anxiety and depression: Unveiling the relationships and management options.Pharmaceuticals202316456510.3390/ph1604056537111321
    [Google Scholar]
  7. PatelP. ButaniK. KumarA. SinghS. PrajapatiB.G. Effects of fermented food consumption on non-communicable diseases.Foods202312468710.3390/foods12040687
    [Google Scholar]
  8. SivamaruthiB.S. SuganthyN. KesikaP. ChaiyasutC. The role of microbiome, dietary supplements, and probiotics in autism spectrum disorder.Int. J. Environ. Res. Public Health2020178264710.3390/ijerph1708264732290635
    [Google Scholar]
  9. KesikaP. SuganthyN. SivamaruthiB.S. ChaiyasutC. Role of gut-brain axis, gut microbial composition, and probiotic intervention in Alzheimer’s disease.Life Sci.202126411862710.1016/j.lfs.2020.11862733169684
    [Google Scholar]
  10. ThangaleelaS. SivamaruthiB.S. KesikaP. BharathiM. ChaiyasutC. Role of the gut-brain axis, gut microbial composition, diet, and probiotic intervention in Parkinson's disease.Microorganisms2022108154410.3390/microorganisms1008154436013962
    [Google Scholar]
  11. MohiteP PuriA BharatiD SinghS. Polyphenol-encapsulated nanoparticles for the treatment of chronic metabolic diseases.Role of flavonoids in chronic metabolic diseasesScrivener Publishing LLC202437541610.1002/9781394238071.ch11
    [Google Scholar]
  12. LiX. LiuL. CaoZ. LiW. LiH. LuC. YangX. LiuY. Gut microbiota as an “invisible organ” that modulates the function of drugs.Biomed. Pharmacother.202012110965310.1016/j.biopha.2019.10965331810138
    [Google Scholar]
  13. EzeF.N. MuangratR. SinghS. JirarattanarangsriW. SiriwoharnT. ChalermchatY. Upcycling of defatted sesame seed meal via protein amyloid-based nanostructures: Preparation, characterization, and functional and antioxidant attributes.Foods20241314228110.3390/foods1314228139063365
    [Google Scholar]
  14. Santos-MarcosJ.A. Perez-JimenezF. CamargoA. The role of diet and intestinal microbiota in the development of metabolic syndrome.J. Nutr. Biochem.20197012710.1016/j.jnutbio.2019.03.01731082615
    [Google Scholar]
  15. VetraniC. Di NisioA. PaschouS.A. BarreaL. MuscogiuriG. GraziadioC. From gut microbiota through low-grade inflammation to obesity: Key players and potential targets.Nutrients20221410210310.3390/nu1410210335631244
    [Google Scholar]
  16. ChassaingB. GewirtzA.T. Gut microbiota, low-grade inflammation, and metabolic syndrome.Toxicol. Pathol.2014421495310.1177/019262331350848124285672
    [Google Scholar]
  17. Castro-BarqueroS. Ruiz-LeónA.M. Sierra-PérezM. EstruchR. CasasR. Dietary strategies for metabolic syndrome: A comprehensive review.Nutrients20201210298310.3390/nu1210298333003472
    [Google Scholar]
  18. van den BrinkW. van BilsenJ. SalicK. HoevenaarsF.P.M. VerschurenL. KleemannR. BouwmanJ. RonnettG.V. van OmmenB. WopereisS. Current and future nutritional strategies to modulate inflammatory dynamics in metabolic disorders.Front. Nutr.2019612910.3389/fnut.2019.0012931508422
    [Google Scholar]
  19. MartínR. LangellaP. Emerging health concepts in the probiotics field: Streamlining the definitions.Front. Microbiol.201910104710.3389/fmicb.2019.0104731164874
    [Google Scholar]
  20. GibsonG.R. HutkinsR. SandersM.E. PrescottS.L. ReimerR.A. SalminenS.J. ScottK. StantonC. SwansonK.S. CaniP.D. VerbekeK. ReidG. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics.Nat. Rev. Gastroenterol. Hepatol.201714849150210.1038/nrgastro.2017.7528611480
    [Google Scholar]
  21. SwansonK.S. GibsonG.R. HutkinsR. ReimerR.A. ReidG. VerbekeK. ScottK.P. HolscherH.D. AzadM.B. DelzenneN.M. SandersM.E. The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of synbiotics.Nat. Rev. Gastroenterol. Hepatol.2020171168770110.1038/s41575‑020‑0344‑232826966
    [Google Scholar]
  22. Al-RashidiH.E. Gut microbiota and immunity relevance in eubiosis and dysbiosis.Saudi J. Biol. Sci.20222931628164310.1016/j.sjbs.2021.10.06835280528
    [Google Scholar]
  23. MarliczW. Skonieczna-ŻydeckaK. DabosK.J. ŁoniewskiI. KoulaouzidisA. Emerging concepts in non-invasive monitoring of Crohn’s disease.Therap. Adv. Gastroenterol.201811175628481876907610.1177/175628481876907629707039
    [Google Scholar]
  24. NeuJ. PammiM. Necrotizing enterocolitis: The intestinal microbiome, metabolome and inflammatory mediators.Semin. Fetal Neonatal Med.201823640040510.1016/j.siny.2018.08.00130172660
    [Google Scholar]
  25. KarlssonF.H. TremaroliV. NookaewI. BergströmG. BehreC.J. FagerbergB. Gut metagenome in European women with normal, impaired and diabetic glucose control.Nature201349874529910310.1038/nature1219823719380
    [Google Scholar]
  26. LarsenN. VogensenF.K. van den BergF.W.J. NielsenD.S. AndreasenA.S. PedersenB.K. Al-SoudW.A. SørensenS.J. HansenL.H. JakobsenM. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults.PLoS One201052e908510.1371/journal.pone.000908520140211
    [Google Scholar]
  27. WangX. XuX. XiaY. Further analysis reveals new gut microbiome markers of type 2 diabetes mellitus.Antonie van Leeuwenhoek2017110344545310.1007/s10482‑016‑0805‑327943013
    [Google Scholar]
  28. TilgH. MoschenA.R. Microbiota and diabetes: An evolving relationship.Gut20146391513152110.1136/gutjnl‑2014‑30692824833634
    [Google Scholar]
  29. CaniP.D. AmarJ. IglesiasM.A. PoggiM. KnaufC. BastelicaD. NeyrinckA.M. FavaF. TuohyK.M. ChaboC. WagetA. DelméeE. CousinB. SulpiceT. ChamontinB. FerrièresJ. TantiJ.F. GibsonG.R. CasteillaL. DelzenneN.M. AlessiM.C. BurcelinR. Metabolic endotoxemia initiates obesity and insulin resistance.Diabetes20075671761177210.2337/db06‑149117456850
    [Google Scholar]
  30. CreelyS.J. McTernanP.G. KusminskiC.M. FisherM. Da SilvaN.F. KhanolkarM. EvansM. HarteA.L. KumarS. Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes.Am. J. Physiol. Endocrinol. Metab.20072923E740E74710.1152/ajpendo.00302.200617090751
    [Google Scholar]
  31. TurnbaughP.J. LeyR.E. MahowaldM.A. MagriniV. MardisE.R. GordonJ.I. An obesity-associated gut microbiome with increased capacity for energy harvest.Nature200644471221027103110.1038/nature0541417183312
    [Google Scholar]
  32. RivaA. BorgoF. LassandroC. VerduciE. MoraceG. BorghiE. BerryD. Pediatric obesity is associated with an altered gut microbiota and discordant shifts in Firmicutes populations.Environ. Microbiol.20171919510510.1111/1462‑2920.1346327450202
    [Google Scholar]
  33. TomasJ. MuletC. SaffarianA. CavinJ.B. DucrocR. RegnaultB. Kun TanC. DuszkaK. BurcelinR. WahliW. SansonettiP.J. PédronT. High-fat diet modifies the PPAR-γ pathway leading to disruption of microbial and physiological ecosystem in murine small intestine.Proc. Natl. Acad. Sci. USA201611340E5934E594310.1073/pnas.161255911327638207
    [Google Scholar]
  34. KimK.N. YaoY. JuS.Y. Short chain fatty acids and fecal microbiota abundance in humans with obesity: A systematic review and meta-analysis.Nutrients20191110251210.3390/nu1110251231635264
    [Google Scholar]
  35. Di VincenzoF. PucaP. LopetusoL.R. PetitoV. MasiL. BartocciB. Bile acid-related regulation of mucosal inflammation and intestinal motility: From pathogenesis to therapeutic application in IBD and microscopic colitis.Nutrients20221413266410.3390/nu1413266435807844
    [Google Scholar]
  36. MucientesA. Lisbona-MontañezJ.M. Mena-VázquezN. Ruiz-LimónP. Manrique-ArijaS. García-StuderA. Ortiz-MárquezF. Fernández-NebroA. Intestinal dysbiosis, tight junction proteins, and inflammation in rheumatoid arthritis patients: A cross-sectional study.Int. J. Mol. Sci.20242516864910.3390/ijms2516864939201334
    [Google Scholar]
  37. BonfanteI.L.P. Chacon-MikahilM.P.T. BrunelliD.T. GáspariA.F. DuftR.G. OliveiraA.G. AraujoT.G. SaadM.J.A. CavaglieriC.R. Obese with higher FNDC5/Irisin levels have a better metabolic profile, lower lipopolysaccharide levels and type 2 diabetes risk.Arch. Endocrinol. Metab.201761652453310.1590/2359‑399700000030529412381
    [Google Scholar]
  38. RheinheimerJ. de SouzaB.M. CardosoN.S. BauerA.C. CrispimD. Current role of the NLRP3 inflammasome on obesity and insulin resistance: A systematic review.Metabolism2017741910.1016/j.metabol.2017.06.00228764843
    [Google Scholar]
  39. SchoelerM. CaesarR. Dietary lipids, gut microbiota and lipid metabolism.Rev. Endocr. Metab. Disord.201920446147210.1007/s11154‑019‑09512‑031707624
    [Google Scholar]
  40. WahlströmA. SayinS.I. MarschallH.U. BäckhedF. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism.Cell Metab.2016241415010.1016/j.cmet.2016.05.00527320064
    [Google Scholar]
  41. Duran-SandovalD. MautinoG. MartinG. PercevaultF. BarbierO. FruchartJ.C. KuipersF. StaelsB. Glucose regulates the expression of the farnesoid X receptor in liver.Diabetes200453489089810.2337/diabetes.53.4.89015047603
    [Google Scholar]
  42. ZhangY. LeeF.Y. BarreraG. LeeH. ValesC. GonzalezF.J. WillsonT.M. EdwardsP.A. Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice.Proc. Natl. Acad. Sci. USA200610341006101110.1073/pnas.050698210316410358
    [Google Scholar]
  43. SivamaruthiB.S. FernL.A. Rashidah Pg Hj IsmailD.S.N. ChaiyasutC. The influence of probiotics on bile acids in diseases and aging.Biomed. Pharmacother.202012811031010.1016/j.biopha.2020.11031032504921
    [Google Scholar]
  44. CaniP.D. DelzenneN.M. The gut microbiome as therapeutic target.Pharmacol. Ther.2011130220221210.1016/j.pharmthera.2011.01.01221295072
    [Google Scholar]
  45. FacchinS. BertinL. BonazziE. LorenzonG. De BarbaC. BarberioB. Short-chain fatty acids and human health: From metabolic pathways to current therapeutic implications.Life202414555910.3390/life1405055938792581
    [Google Scholar]
  46. PayneA.N. ChassardC. ZimmermannM. MüllerP. StincaS. LacroixC. The metabolic activity of gut microbiota in obese children is increased compared with normal-weight children and exhibits more exhaustive substrate utilization.Nutr. Diabetes201117e1210.1038/nutd.2011.823154580
    [Google Scholar]
  47. GoffredoM. MassK. ParksE.J. WagnerD.A. McClureE.A. GrafJ. SavoyeM. PierpontB. ClineG. SantoroN. Role of gut microbiota and short chain fatty acids in modulating energy harvest and fat partitioning in youth.J. Clin. Endocrinol. Metab.2016101114367437610.1210/jc.2016‑179727648960
    [Google Scholar]
  48. SonnenburgE.D. SmitsS.A. TikhonovM. HigginbottomS.K. WingreenN.S. SonnenburgJ.L. Diet-induced extinctions in the gut microbiota compound over generations.Nature2016529758521221510.1038/nature1650426762459
    [Google Scholar]
  49. KonopelskiP. UfnalM. Indoles - Gut bacteria metabolites of tryptophan with pharmacotherapeutic potential.Curr. Drug Metab.2018191088389010.2174/138920021966618042716473129708069
    [Google Scholar]
  50. MiyamotoK. SujinoT. KanaiT. The tryptophan metabolic pathway of the microbiome and host cells in health and disease.Int. Immunol.2024361260161610.1093/intimm/dxae03538869080
    [Google Scholar]
  51. KrishnanS. DingY. SaediN. ChoiM. SridharanG.V. SherrD.H. YarmushM.L. AlanizR.C. JayaramanA. LeeK. Gut microbiota-derived tryptophan metabolites modulate inflammatory response in hepatocytes and macrophages.Cell Rep.20182341099111110.1016/j.celrep.2018.03.10929694888
    [Google Scholar]
  52. MarkowiakP. ŚlizewskaK. Effects of probiotics, prebiotics, and synbiotics on human health.Nutrients201799102110.3390/nu909102128914794
    [Google Scholar]
  53. PandeyK.R. NaikS.R. VakilB.V. Probiotics, prebiotics and synbiotics- A review.J. Food Sci. Technol.201552127577758710.1007/s13197‑015‑1921‑126604335
    [Google Scholar]
  54. MirmiranpourH. HuseiniH.F. DerakhshanianH. KhodaiiZ. Tavakoli-FarB. Effects of probiotic, cinnamon, and synbiotic supplementation on glycemic control and antioxidant status in people with type 2 diabetes; A randomized, double-blind, placebo-controlled study.J. Diabetes Metab. Disord.2020191536010.1007/s40200‑019‑00474‑332550156
    [Google Scholar]
  55. CiceroA.F.G. FogacciF. BoveM. GiovanniniM. BorghiC. Impact of a short-term synbiotic supplementation on metabolic syndrome and systemic inflammation in elderly patients: A randomized placebo-controlled clinical trial.Eur. J. Nutr.202160265566310.1007/s00394‑020‑02271‑832417946
    [Google Scholar]
  56. ShakeriH. HadaeghH. AbediF. Tajabadi-EbrahimiM. MazroiiN. GhandiY. AsemiZ. Consumption of synbiotic bread decreases triacylglycerol and VLDL levels while increasing HDL levels in serum from patients with type-2 diabetes.Lipids201449769570110.1007/s11745‑014‑3901‑z24706266
    [Google Scholar]
  57. GhafouriA. ZarratiM. ShidfarF. HeydariI. Shokouhi ShoormastiR. EslamiO. Effect of synbiotic bread containing lactic acid on glycemic indicators, biomarkers of antioxidant status and inflammation in patients with type 2 diabetes: A randomized controlled trial.Diabetol. Metab. Syndr.201911110310.1186/s13098‑019‑0496‑931827628
    [Google Scholar]
  58. ParastoueiK. SaeidipoorS. SepandiM. AbbaszadehS. TaghdirM. Effects of synbiotic supplementation on the components of metabolic syndrome in military personnel: A double-blind randomised controlled trial.BMJ Mil. Health2022168536236710.1136/bmjmilitary‑2020‑00145932759229
    [Google Scholar]
  59. AnggerainiA.S. MassiM.N. HamidF. AhmadA. As’adS. BukhariA. Effects of synbiotic supplement on body weight and fasting blood glucose levels in obesity: A randomized placebo-controlled trial.Ann. Med. Surg.20216810254810.1016/j.amsu.2021.10254834434546
    [Google Scholar]
  60. ShiromwarS.S. ChidrawarV.R. SinghS. ChitmeH.R. MaheshwariR. SultanaS. Multi-faceted anti-obesity effects of N-Methyl-D-Aspartate (NMDA) receptor modulators: Central-peripheral crosstalk.J. Mol. Neurosci.20247411310.1007/s12031‑023‑02178‑z38240858
    [Google Scholar]
  61. Xavier-SantosD. BedaniR. LimaE.D. SaadS.M.I. Impact of probiotics and prebiotics targeting metabolic syndrome.J. Funct. Foods20206410366610.1016/j.jff.2019.103666
    [Google Scholar]
  62. KassaianN. FeiziA. RostamiS. AminorroayaA. YaranM. AminiM. The effects of 6 mo of supplementation with probiotics and synbiotics on gut microbiota in the adults with prediabetes: A double blind randomized clinical trial.Nutrition202079-8011085410.1016/j.nut.2020.11085432615392
    [Google Scholar]
  63. KassaianN. FeiziA. AminorroayaA. EbrahimiM.T. NorouziA. AminiM. Effects of probiotics and synbiotic on lipid profiles in adults at risk of type 2 diabetes: A double-blind randomized controlled clinical trial.Funct. Food Health Dis.20199749450710.31989/ffhd.v9i7.617
    [Google Scholar]
  64. HaghighatN. MohammadshahiM. ShayanpourS. HaghighizadehM.H. Effect of synbiotic and probiotic supplementation on serum levels of endothelial cell adhesion molecules in hemodialysis patients: A randomized control study.Probiotics Antimicrob. Proteins20191141210121810.1007/s12602‑018‑9477‑930293208
    [Google Scholar]
  65. OlasB. Probiotics, prebiotics and synbiotics-A promising strategy in prevention and treatment of cardiovascular diseases?Int. J. Mol. Sci.20202124973710.3390/ijms2124973733419368
    [Google Scholar]
  66. SivamaruthiB.S. AlagarsamyK. ThangaleelaS. BharathiM. KesikaP. ChaiyasutC. Composition, microbiota, mechanisms, and anti-obesity properties of rice bran.Foods2023126130010.3390/foods1206130036981226
    [Google Scholar]
  67. RabieiS. HedayatiM. RashidkhaniB. SaadatN. ShakerhossiniR. The effects of synbiotic supplementation on body mass index, metabolic and inflammatory biomarkers, and appetite in patients with metabolic syndrome: A triple-blind randomized controlled trial.J. Diet. Suppl.201916329430610.1080/19390211.2018.145578829672196
    [Google Scholar]
  68. SergeevI.N. AljutailyT. WaltonG. HuarteE. Effects of synbiotic supplement on human gut microbiota, body composition and weight loss in obesity.Nutrients202012122210.3390/nu1201022231952249
    [Google Scholar]
  69. WallC.R. HillR.J. LovellA.L. MatsuyamaM. MilneT. GrantC.C. JiangY. ChenR.X. WouldesT.A. DaviesP.S.W. A multicenter, double-blind, randomized, placebo-controlled trial to evaluate the effect of consuming growing up milk “Lite” on body composition in children aged 12–23 mo.Am. J. Clin. Nutr.2019109357658510.1093/ajcn/nqy30230831579
    [Google Scholar]
  70. Raji LahijiM. ZarratiM. NajafiS. YazdaniB. CheshmazarE. RazmpooshE. JananiL. Raji LahijiM. ShidfarF. Effects of synbiotic supplementation on serum adiponectin and inflammation status of overweight and obese breast cancer survivors: A randomized, triple-blind, placebo-controlled trial.Support. Care Cancer20212974147415710.1007/s00520‑020‑05926‑833404812
    [Google Scholar]
  71. Raji LahijiM. NajafiS. JananiL. YazdaniB. RazmpooshE. ZarratiM. The effect of synbiotic on glycemic profile and sex hormones in overweight and obese breast cancer survivors following a weight-loss diet: A randomized, triple-blind, controlled trial.Clin. Nutr.202140239440310.1016/j.clnu.2020.05.04332698957
    [Google Scholar]
  72. ChaiyasutC. SivamaruthiB.S. KesikaP. KhongtanS. KhampithumN. ThangaleelaS. Synbiotic supplementation improves obesity index and metabolic biomarkers in thai obese adults: A randomized clinical trial.Foods2021107158010.3390/foods1007158034359450
    [Google Scholar]
  73. Totmaj S.A. HaghighatS. JaberzadehS. NavaeiM. VafaS. JananiL. EmamatH. SalehiZ. IzadM. ZarratiM. The effects of synbiotic supplementation on serum anti-inflammatory factors in the survivors of breast cancer with lymphedema following a low calorie diet: A randomized, double-blind, clinical trial.Nutr. Cancer202274386988110.1080/01635581.2021.193309634085881
    [Google Scholar]
  74. LauwS. KeiN. ChanP.L. YauT.K. MaK.L. SzetoC.Y.Y. Effects of synbiotic supplementation on metabolic syndrome traits and gut microbial profile among overweight and obese Hong Kong Chinese individuals: A randomized trial.Nutrients20231519424810.3390/nu1519424837836532
    [Google Scholar]
  75. LaueC. PapazovaE. PannenbeckersA. SchrezenmeirJ. Effect of a probiotic and a synbiotic on body fat mass, body weight and traits of metabolic syndrome in individuals with abdominal overweight: A human, double-blind, randomised, controlled clinical study.Nutrients20231513303910.3390/nu1513303937447365
    [Google Scholar]
  76. AngelinoD. MartinaA. RosiA. VeronesiL. AntoniniM. MennellaI. VitaglioneP. GrioniS. BrighentiF. ZavaroniI. FaresC. TorrianiS. PellegriniN. Glucose- and lipid-related biomarkers are affected in healthy obese or hyperglycemic adults consuming a whole-grain pasta enriched in prebiotics and probiotics: A 12-week randomized controlled trial.J. Nutr.2019149101714172310.1093/jn/nxz07131162597
    [Google Scholar]
  77. HadiA. SepandiM. MarxW. MoradiS. ParastoueiK. Clinical and psychological responses to synbiotic supplementation in obese or overweight adults: A randomized clinical trial.Complement. Ther. Med.20194710221610.1016/j.ctim.2019.10221631780038
    [Google Scholar]
  78. OraphruekP. ChusakC. NgamukoteS. SawaswongV. ChanchaemP. PayungpornS. SuantaweeT. AdisakwattanaS. Effect of a multispecies synbiotic supplementation on body composition, antioxidant status, and gut microbiomes in overweight and obese subjects: A Randomized, double-blind, placebo-controlled study.Nutrients2023158186310.3390/nu1508186337111082
    [Google Scholar]
  79. Kilic YildirimG. DinleyiciM. VandenplasY. DinleyiciE.C. Effects of synbiotic supplementation on intestinal microbiota composition in children and adolescents with exogenous obesity: (Probesity-2 trial).Gut Pathog.20231513610.1186/s13099‑023‑00563‑y37474971
    [Google Scholar]
  80. AtazadeganM.A. Heidari-BeniM. EntezariM.H. SharifianjaziF. KelishadiR. Effects of synbiotic supplementation on anthropometric indices and body composition in overweight or obese children and adolescents: A randomized, double-blind, placebo-controlled clinical trial.World J. Pediatr.202319435636510.1007/s12519‑022‑00664‑936484872
    [Google Scholar]
  81. MistryPS SinghS ChorawalaMR PrajapatiBG KapoorDU Unlocking the potential of carrier mediated nano-biomedicine in management of diabetes mellitus: A review.Chem. Biodivers.2024e20240225810.1002/cbdv.20240225839714589
    [Google Scholar]
  82. KesikaP SivamaruthiBS ChaiyasutC Do probiotics improve the health status of individuals with diabetes mellitus? A review on outcomes of clinical trials.Biomed. Res. Int.2019153156710.1155/2019/153156731950031
    [Google Scholar]
  83. ChaiyasutC. SivamaruthiB.S. LailerdN. SirilunS. ThangaleelaS. KhongtanS. BharathiM. KesikaP. SaeleeM. ChoeisoongnernT. FukngoenP. PeerajanS. SittiprapapornP. Influence of Bifidobacterium breve on the glycaemic control, lipid profile and microbiome of type 2 diabetic subjects: A preliminary randomized clinical trial.Pharmaceuticals202316569510.3390/ph1605069537242478
    [Google Scholar]
  84. KumarA. GoyalN. PramanikJ. BawaY. SinghS. PrajapatiB. Probiotics as an adjunct approach to the prevention and treatment of colon cancer: A review.Curr. Nutr. Food Sci.20242091086109910.2174/0115734013270901231124063616
    [Google Scholar]
  85. EbrahimiZ.S. Effect of symbiotic supplementation on glycemic control, lipid profiles and microalbuminuria in patients with non-obese type 2 diabetes: A randomized, double-blind, clinical trial.J. Diabetes Metab. Disord.20171611010.1186/s40200‑017‑0304‑828589103
    [Google Scholar]
  86. GhafouriA. HeshmatiJ. HeydariI. Shokouhi ShoormastiR. EstêvãoM.D. HoseiniA.S. MorvaridzadehM. Akbari-FakhrabadiM. FarsiF. ZarratiM. PizarroA.B. ShidfarF. ZiaeiS. Effect of synbiotic bread containing lactic acid on blood lipids and apolipoproteins in patients with type 2 diabetes: A randomized controlled trial.Food Sci. Nutr.202210124419443010.1002/fsn3.303936514747
    [Google Scholar]
  87. KanazawaA. AidaM. YoshidaY. KagaH. KatahiraT. SuzukiL. Effects of synbiotic supplementation on chronic inflammation and the gut microbiota in obese patients with type 2 diabetes mellitus: A randomized controlled study.Nutrients202113255810.3390/nu1302055833567701
    [Google Scholar]
  88. ZhaoJ. WangL. ChengS. ZhangY. YangM. FangR. A potential synbiotic strategy for the prevention of type 2 diabetes: Lactobacillus paracasei JY062 and Exopolysaccharide Isolated from Lactobacillus plantarum JY039.Nutrients202214237710.3390/nu1402037735057558
    [Google Scholar]
  89. HorvathA. LeberB. FeldbacherN. TripoltN. RainerF. BleslA. TriebM. MarscheG. SourijH. StadlbauerV. Effects of a multispecies synbiotic on glucose metabolism, lipid marker, gut microbiome composition, gut permeability, and quality of life in diabesity: A randomized, double-blind, placebo-controlled pilot study.Eur. J. Nutr.20205972969298310.1007/s00394‑019‑02135‑w31729622
    [Google Scholar]
  90. GhorbaniZ. KazemiA. U P BartolomaeusT. MartamiF. NoormohammadiM. SalariA. LöberU. BalouH.A. K ForslundS. Mahdavi-RoshanM. The effect of probiotic and synbiotic supplementation on lipid parameters among patients with cardiometabolic risk factors: A systematic review and meta-analysis of clinical trials.Cardiovasc. Res.2023119493395610.1093/cvr/cvac12835934838
    [Google Scholar]
  91. LeiY. XuM. HuangN. YuanZ. Meta-analysis of the effect of probiotics or synbiotics on the risk factors in patients with coronary artery disease.Front. Cardiovasc. Med.202310115488810.3389/fcvm.2023.115488837600034
    [Google Scholar]
  92. HadiA. GhaediE. KhalesiS. PourmasoumiM. ArabA. Effects of synbiotic consumption on lipid profile: A systematic review and meta-analysis of randomized controlled clinical trials.Eur. J. Nutr.20205972857287410.1007/s00394‑020‑02248‑732322969
    [Google Scholar]
  93. RyanP.M. StantonC. CapliceN.M. Bile acids at the cross-roads of gut microbiome-host cardiometabolic interactions.Diabetol. Metab. Syndr.2017910210.1186/s13098‑017‑0299‑929299069
    [Google Scholar]
  94. SinghS. SyukriD.M. UshirY.V. MishraA. OntongJ.C. NwaborO.F. DarekarS.M. SameeW. ChidrawarV.R. ChittasuphoC. Post-operative wound healing efficacy of Eucalyptus camaldulensis phenolic-rich extracts incorporated hydrogel with enhanced antioxidant, antibacterial, and anti-inflammatory activities.J. Polym. Environ.202433126
    [Google Scholar]
  95. SoleimaniA. MotamedzadehA. Mojarrad Z.M. BahmaniF. AmiraniE. OstadmohammadiV. Tajabadi-EbrahimiM. AsemiZ. The effects of synbiotic supplementation on metabolic status in diabetic patients undergoing hemodialysis: A randomized, double-blinded, placebo-controlled trial.Probiotics Antimicrob. Proteins20191141248125610.1007/s12602‑018‑9499‑330560426
    [Google Scholar]
  96. BrubakerP.L. Glucagon-like peptide-2 and the regulation of intestinal growth and function.Compr. Physiol.2018831185121010.1002/cphy.c17005529978894
    [Google Scholar]
  97. VinoloM.A.R. RodriguesH.G. NachbarR.T. CuriR. Regulation of inflammation by short chain fatty acids.Nutrients201131085887610.3390/nu310085822254083
    [Google Scholar]
  98. LiX. HuS. YinJ. PengX. KingL. LiL. XuZ. ZhouL. PengZ. ZeX. ZhangX. HouQ. ShanZ. LiuL. Effect of synbiotic supplementation on immune parameters and gut microbiota in healthy adults: A double-blind randomized controlled trial.Gut Microbes2023152224702510.1080/19490976.2023.224702537614109
    [Google Scholar]
  99. ÇakırM. İşbilen A.A. EyüpoğluI. SağE. ÖremA. Mazlum ŞenT. KaklikkayaN. KayaG. Effects of long-term synbiotic supplementation in addition to lifestyle changes in children with obesity-related non-alcoholic fatty liver disease.Turk. J. Gastroenterol.201728537738310.5152/tjg.2017.1708428797988
    [Google Scholar]
  100. NeyrinckA.M. RodriguezJ. TaminiauB. AmadieuC. HerpinF. AllaertF.A. Improvement of gastrointestinal discomfort and inflammatory status by a synbiotic in middle-aged adults: A double-blind randomized placebo-controlled trial.Sci. Rep.2021111262710.1038/s41598‑020‑80947‑133514774
    [Google Scholar]
  101. SitkinS. PokrotnieksJ. Clinical potential of anti-inflammatory effects of Faecalibacterium prausnitzii and butyrate in inflammatory bowel disease.Inflamm. Bowel Dis.2019254e40e4110.1093/ibd/izy25830085080
    [Google Scholar]
  102. MaykishA. SikalidisA.K. Utilization of hydroxyl-methyl butyrate, leucine, glutamine and arginine supplementation in nutritional management of sarcopenia-implications and clinical considerations for type 2 diabetes mellitus risk modulation.J. Pers. Med.20201011910.3390/jpm1001001932213854
    [Google Scholar]
  103. KumarA. PramanikJ. BattaK. BamalP. PrajapatiB. SinghS. Applications of value-added natural dye fortified with biopolymer-based food packaging: sustainability through smart and sensible applications.Int. J. Food Sci. Technol.20245931268128010.1111/ijfs.16922
    [Google Scholar]
/content/journals/cnf/10.2174/0115734013376664250629214333
Loading

  • Article Type:
    Review Article
Keyword(s): energy harvest; gut dysbiosis; hyperlipidaemia; metabolic disorders; obesity; Synbiotic
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test