Skip to content
2000
Volume 21, Issue 7
  • ISSN: 1573-4013
  • E-ISSN: 2212-3881

Abstract

Background

Legumes are a significant part of the diets of numerous regions worldwide. However, only a limited number of species are cultivated, traded, and consumed. Guanacaste () remains underutilized and insufficiently studied.

Objective

This research aims to assess the nutritional composition and antioxidant properties of this undervalued legume.

Methods

Physical characterization, proximate analysis, and quantification of phenolic compounds, flavonoids, and antioxidant activity were performed on both the pods and seeds to explore their potential for human consumption.

Results

The pod pulp had 59% soluble solids, a pH of 5.6, a notable content of total phenolics (1826.62 mg GAE/100 g) and flavonoids (165.75 mg QE/100 g), and high antioxidant activity (129, 113 and 156 μmol TE/g, by ABTS, DPPH and FRAP, respectively). The seed showed high protein content (34.5%), and a good level of phenolics, flavonoids, and antioxidant capacity (427.97 mg GAE/100 g, 160.69 mg QE/100 g, and 28.20 μmol TE/g, respectively). Both the pod and seed extracts exhibited more than 89% chelating activity (IC of 0.017 and 0.037 mg/mL, respectively). HPLC analysis identified catechin, epicatechin, p-coumaric acid, rutin, and quercetin in the pod; while gallic acid, catechin, epicatechin, p-coumaric acid, rutin, and quercetin were found in the seed. Pods and seeds presented significant amounts of dietary fiber (28.9% and 17.5%, respectively), and, regarding sugar content, sucrose predominated, followed by fructose and glucose.

Conclusion

These findings suggest that this legume has potential for commercial exploitation as a functional food, which would result in economic benefits for the communities that produce it.

Loading

Article metrics loading...

/content/journals/cnf/10.2174/0115734013375585250313014640
2025-03-24
2025-11-03
Loading full text...

Full text loading...

References

  1. Martín-CabrejasM.A. Legumes: An Overview.Legumes: Nutritional Quality, Processing and Potential Health Benefits. 8. Martín-CabrejasM.Á. London, UKThe Royal Society of Chemistry201931810.1039/9781788015721‑00001
    [Google Scholar]
  2. Tor-RocaA. Garcia-AloyM. MattiviF. LlorachR. Andres-LacuevaC. Urpi-SardaM. Phytochemicals in legumes: A qualitative reviewed analysis.J. Agric. Food Chem.20206847134861349610.1021/acs.jafc.0c0438733169614
    [Google Scholar]
  3. DurantiM. Grain legume proteins and nutraceutical properties.Fitoterapia2006772678210.1016/j.fitote.2005.11.00816406359
    [Google Scholar]
  4. GrandeF. StadlmayrB. FialonM. FAO/INFOODS global food composition database for pulses, version 1.0.RomeFAO2017
    [Google Scholar]
  5. Cano-HernándezA. Romero-GuillotS. Uso alimentario y prácticas culinarias del guanacastle (Enterolobium cyclocarpum) en el municipio de Santa María Huatulco, Oaxaca.Cienc. Mar.201216483743
    [Google Scholar]
  6. Martinez PachecoM.M. Del RioR.E. Flores GarciaA. Martinez MuñozR.E. Ron EcheverriaO.A. Raya GonzalezD. Enterolobium cyclocarpum (Jacq.) Griseb: The biotechnological profile of a tropical tree.B Latinoam Caribe Pl.2012115385399
    [Google Scholar]
  7. Barrientos-RamírezL. Vargas-RadilloJ.J. Segura-NietoM. Manríquez-GonzálezR. López-Dellamary ToralF.A. Nutritional evaluation of mature seeds of Enterolobium cyclocarpum (parota) from diverse ecological zones in western Mexico.Bosque20153619510310.4067/S0717‑92002015000100010
    [Google Scholar]
  8. OrwaC. MutuaA. KindtR. JamnadassR. SimonsA. Agroforestree database: A tree species reference and selection guide version 4.0. ICRAF WAC, editor. Nairobi, KE: World Agroforestry Centre ICRAF2009
    [Google Scholar]
  9. Raya-GonzálezD. oz REM-M, Ron-Echeverría OA, Flores-García A, Macias-Rodríguez LI, Martínez-Pacheco MM. Dissuasive effect of an aqueous extract from Enterolobium cyclocarpum (Jacq) Griseb on the drywood termite Incisitermes marginipennis (Isoptera: Kalotermitidae) (latreille).Emir. J. Food Agric.201725752453010.9755/ejfa.v25i7.15987
    [Google Scholar]
  10. MartínezJ.R. Ortega-ZarzosaG. Nieto-VillenaA. Velázquez PérezS.E. Montiel-PalmaS. Herrera-GonzálezA.M. Galván-GarcíaE. GuerreroA.L. Thermostructural and fluorescence properties of Enterolobium cyclocarpum extract embedded in a silica xerogel matrix.Mater. Res. Express20218404520110.1088/2053‑1591/abf610
    [Google Scholar]
  11. Raya-GonzalezD. Pamatz-BolanõsT. Rio-TorresR.E. Martinez- MunõzR.E. Ron-EcheverriaO. Martinez-PachecoM.M. D-(+)-pinitol, a component of the heartwood of Enterolobium cyclocarpum (Jacq.) Griseb.Z. Naturforsch. C J. Biosci.20086311-1292292410.1515/znc‑2008‑11‑122519227847
    [Google Scholar]
  12. BabayemiO. Antinutritional factors, nutritive value and in vitro gas production of foliage and fruit of Enterolobium cyclocarpum.World J Zool.200612113117
    [Google Scholar]
  13. Hernández-MoralesJ. Sánchez-SantillánP. Torres-SaladoN. Herrera-PérezJ. Rojas-GarcíaA.R. Reyes-VázquezI. Mendoza-NúñezM.A. Chemical composition and in vitro degradations of pods and leaves of legumes trees of Mexican dry tropic.Rev. Mex. Cienc. Pecu.20179110512010.22319/rmcp.v9i1.4332
    [Google Scholar]
  14. OjoV. AdeyemiT. AdelusiO. Bolarin-AkinwandeO. AmoduJ. Chemical composition and in vitro gas production of fruits of four tropical forage species.J Anim Prod Res.20183016071
    [Google Scholar]
  15. Carbajal-MárquezU. Sánchez-SantillánP. Rojas-GarcíaA.R. Ayala-MonterM.A. Mendoza-NúñezM.A. Hernández-ValenzuelaD. Effect of parota (Enterolobium cyclocarpum) pod protein supplement on feed intake and digestibility and calf ruminal characteristics.Trop. Anim. Health Prod.202153232310.1007/s11250‑021‑02772‑633991243
    [Google Scholar]
  16. Serratos ArévaloJ.C. Carreón AmayaJ. Castañeda VázquezH. Garzón De la MoraP. García EstradaJ. Nutritional-chemical composition and antinutritional factors in seeds of Enterolobium cyclocarpum.Interciencia200833850854
    [Google Scholar]
  17. Gamal El-DinM. EldahshanO. SingabA.N. AyoubN.A. Genus Enterolobium: Traditional uses, chemistry and biological activities.Arch. Pharm. Sci. Ain Shams Univ.20171111810.21608/aps.2017.10358
    [Google Scholar]
  18. Mejía-DelgadilloM.A. Valdez-HernándezM. Mendoza-MartínezG.D. Torres-SaladoN. Matadamas-OrtízP. CastroA.A. GutiérrezL.A. LeeRangelH.A. NuñezL.M.V. Nutritional evaluation and comparison of extraction processes of parota [Enterolobium cyclocarpum (Jacq.) Griseb. Mimosaceae] almonds.Range Manag. Agrofor.202445117517910.59515/rma.2024.v45.i1.25
    [Google Scholar]
  19. AmarowiczR. PeggR.B. Legumes as a source of natural antioxidants.Eur. J. Lipid Sci. Technol.20081101086587810.1002/ejlt.200800114
    [Google Scholar]
  20. MaratheS.A. RajalakshmiV. JamdarS.N. SharmaA. Comparative study on antioxidant activity of different varieties of commonly consumed legumes in India.Food Chem. Toxicol.20114992005201210.1016/j.fct.2011.04.03921601612
    [Google Scholar]
  21. DaiJ. MumperR.J. Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties.Molecules201015107313735210.3390/molecules1510731320966876
    [Google Scholar]
  22. VauzourD. Rodriguez-MateosA. CoronaG. Oruna-ConchaM.J. SpencerJ.P.E. Polyphenols and human health: Prevention of disease and mechanisms of action.Nutrients20102111106113110.3390/nu211110622254000
    [Google Scholar]
  23. CoryH. PassarelliS. SzetoJ. TamezM. MatteiJ. The role of polyphenols in human health and food systems: A mini-review.Front. Nutr.20185878710.3389/fnut.2018.0008730298133
    [Google Scholar]
  24. CunniffP. AOAC international. Official methods of analysis of AOAC.AOAC InternationalArlington, VA, USAInternational 16th ed1995
    [Google Scholar]
  25. TingS.V. Fruit juice assay, rapid colormetric methods for simultaneous determination of total reducing sugars and fructose in citrus juices.J. Agric. Food Chem.19564326326610.1021/jf60061a009
    [Google Scholar]
  26. WightA.W. Van NiekerkP.J. Determination of reducing sugars, sucrose, and inulin in chicory root by high-performance liquid chromatography.J. Agric. Food Chem.198331228228510.1021/jf00116a024
    [Google Scholar]
  27. ArnaoM.B. CanoA. AcostaM. The hydrophilic and lipophilic contribution to total antioxidant activity.Food Chem.200173223924410.1016/S0308‑8146(00)00324‑1
    [Google Scholar]
  28. SingletonV.L. OrthoferR. Lamuela-RaventósR.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent.Methods in EnzymologyAcademic Press Cambridge, Massachusetts1999152178
    [Google Scholar]
  29. EbrahimzadehM.A. PourmoradF. BekhradniaA.R. Iron chelating activity, phenol and flavonoid content of some medicinal plants from Iran.Afr. J. Biotechnol.200871831883192
    [Google Scholar]
  30. ReR. PellegriniN. ProteggenteA. PannalaA. YangM. Rice-EvansC. Antioxidant activity applying an improved ABTS radical cation decolorization assay.Free Radic. Biol. Med.1999269-101231123710.1016/S0891‑5849(98)00315‑310381194
    [Google Scholar]
  31. Brand-WilliamsW. CuvelierM.E. BersetC. Use of a free radical method to evaluate antioxidant activity.Lebensm. Wiss. Technol.1995281253010.1016/S0023‑6438(95)80008‑5
    [Google Scholar]
  32. BenzieI.F.F. StrainJ.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay.Anal. Biochem.19962391707610.1006/abio.1996.02928660627
    [Google Scholar]
  33. Robles-RamírezM.C. Viramontes-BocanegraR.C. Mora-EscobedoR. Santoyo-TepoleF. Ortega-RoblesE.D. Effect of processing on specific phenolic compounds of two market peanuts grown in Mexico: Possible health implications. Int. J. Food Sci. Agric.20237334034510.26855/ijfsa.2023.09.002
    [Google Scholar]
  34. JanzenD.H. Variation in average seed size and fruit seediness in a fruit crop of a guanacastes tree (Leguminosae: Enterolobium cyclocarpum).Am. J. Bot.19826971169117810.1002/j.1537‑2197.1982.tb13361.x
    [Google Scholar]
  35. IfediN.E. AjayiA.I. Physical, chemical analyses and possible effect of Enterolobium cyclocarpum seed meal on growth, haematological and histological properties of wistar rat.Ann. Food Sci. Technol.2021223378389
    [Google Scholar]
  36. AjayiI.A. NwozoS.O. AdewuyiA. Antimicrobial activity and phytochemical screening of five selected seeds from Nigeria.Int J Biomed Pharmaceut Sci.201042104106
    [Google Scholar]
  37. EkanemN.J. InyangU.A. IkwunzeK. Chemical composition, secondary metabolites and nutritive value of elephant-ear tree (Enterolobium cyclocarpum (Jacq.) Griseb): A review.Niger. J. Anim. Prod.202249227728610.51791/njap.v49i2.3489
    [Google Scholar]
  38. SahuP.K. Cervera-MataA. ChakradhariS. Singh PatelK. TowettE.K. Quesada-GranadosJ.J. Martín-RamosP. Rufián-HenaresJ.A. Seeds as potential sources of phenolic compounds and minerals for the Indian population.Molecules20222710318410.3390/molecules2710318435630662
    [Google Scholar]
  39. MessinaM.J. Legumes and soybeans: Overview of their nutritional profiles and health effects.Am. J. Clin. Nutr.1999703Suppl.439S450S10.1093/ajcn/70.3.439s10479216
    [Google Scholar]
  40. ErbersdoblerH. BarthC. Legumes in human nutrition. Nutrient content and protein quality of pulses.Ernahr.-Umsch.201764913413910.4455/eu.2017.034
    [Google Scholar]
  41. LattimerJ.M. HaubM.D. Effects of dietary fiber and its components on metabolic health.Nutrients20102121266128910.3390/nu212126622254008
    [Google Scholar]
  42. Escudero ÁlvarezE. González SánchezP. Dietary fiber.Nutr. Hosp.2006216172
    [Google Scholar]
  43. BastonO. Production and analysis of Ceratonia siliqua L. powders.Ann. Food Sci. Technol.20161715054
    [Google Scholar]
  44. GubbukH. KafkasE. GuvenD. GunesE. Physical and phytochemical profile of wild and domesticated carob (Ceratonia siliqua L.) genotypes.Span. J. Agric. Res.2010841129113610.5424/sjar/2010084‑1209
    [Google Scholar]
  45. IkramA. KhalidW. Wajeeha ZafarK. AliA. AfzalM.F. AzizA. Faiz ul RasoolI. Al-FargaA. AqlanF. KoraqiH. Nutritional, biochemical, and clinical applications of carob: A review.Food Sci. Nutr.20231173641365410.1002/fsn3.336737457186
    [Google Scholar]
  46. OwenR.W. HaubnerR. HullW.E. ErbenG. SpiegelhalderB. BartschH. HaberB. Isolation and structure elucidation of the major individual polyphenols in carob fibre.Food Chem. Toxicol.200341121727173810.1016/S0278‑6915(03)00200‑X14563398
    [Google Scholar]
  47. Saura-CalixtoF. Effect of condensed tannins in the analysis of dietary fiber in carob pods.J. Food Sci.19885361769177110.1111/j.1365‑2621.1988.tb07838.x
    [Google Scholar]
  48. DurazzoA. TurfaniV. NarducciV. AzziniE. MaianiG. CarceaM. Nutritional characterisation and bioactive components of commercial carobs flours.Food Chem.201415310911310.1016/j.foodchem.2013.12.04524491707
    [Google Scholar]
  49. ZhuB.J. ZayedM.Z. ZhuH.X. ZhaoJ. LiS.P. Functional polysaccharides of carob fruit: A review.Chin. Med.20191414010.1186/s13020‑019‑0261‑x31583011
    [Google Scholar]
  50. BenchikhY. ParisC. LouailecheH. Comparative characterization of green and ripe carob (Ceratonia siliqua L.): physicochemical attributes and phenolic profile.SDRP J. Food Sci. Technol.201713859110.25177/JFST.1.3.1
    [Google Scholar]
  51. Quirós-SaucedaA.E. Palafox-CarlosH. Sáyago-AyerdiS.G. Ayala-ZavalaJ.F. Bello-PerezL.A. Álvarez-ParrillaE. de la RosaL.A. González-CórdovaA.F. González-AguilarG.A. Dietary fiber and phenolic compounds as functional ingredients: Interaction and possible effect after ingestion.Food Funct.2014561063107210.1039/C4FO00073K24740575
    [Google Scholar]
  52. Olivares-PérezJ. Rojas-HernandezS. Camacho-DiazL.M. Cipriano-SalazarM. SalemA.Z.M. Fruits chemical composition and potential ruminal digestion of nine tree species in dry tropic region of Mexico.Agrofor. Syst.201993266567410.1007/s10457‑017‑0161‑y
    [Google Scholar]
  53. Santos RicaldeR.H. Lopez LopezP. Sarmiento FrancoL. Sandoval CastroC. Segura CorreaJ. Borges ArgaezR. Caceres FarfanM. Cetina MontejoL. Effect of an ethanolic extract from Enterolobium cyclocarpum pods on feed intake, egg production, and plasma lipid profile of laying hens.Acta Univ.202231e28561810.15174/au.2021.2856
    [Google Scholar]
  54. PatelK.S. SahuP.K. ChakradhariS. PandeyP.K. Martín-RamosP. Rufián-HenaresJ.A. Examination of total polyphenol and flavonoid composition of some commonly available plants and seeds from India.Curr Top Phytochem.2023194375
    [Google Scholar]
  55. AmpitanT. AdelakunK. Nutrient evaluation of forest plant seeds for their potential application as alternative cost-benefit feeds in livestock rations.Egypt. J. Anim. Prod.20236011610.21608/ejap.2023.160371.1048
    [Google Scholar]
  56. BorowskaE.J. MazurB. Polyphenol, anthocyanin and resveratrol mass fractions and antioxidant properties of cranberry cultivars.Food Technol. Biotechnol.20094715661
    [Google Scholar]
  57. ApakR. GüçlüK. DemirataB. ÖzyürekM. ÇelikS.E. BektaşoğluB. BerkerK.I. ÖzyurtD. Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay.Molecules20071271496154710.3390/1207149617909504
    [Google Scholar]
  58. KuskoskiE. AsueroA. TroncosoA. Mancini-FilhoJ. FettR. Application of various chemical methods to determine antioxidant activity in fruit pulp.Food Sci. Technol.20052572673210.1590/S0101‑20612005000400016
    [Google Scholar]
  59. IoannouG.D. SavvaI.K. ChristouA. StavrouI.J. Kapnissi-ChristodoulouC.P. Phenolic profile, antioxidant activity, and chemometric classification of carob pulp and products.Molecules20232852269228210.3390/molecules2805226936903513
    [Google Scholar]
  60. PancheA.N. DiwanA.D. ChandraS.R. Flavonoids: An overview.J. Nutr. Sci.20165e4710.1017/jns.2016.4128620474
    [Google Scholar]
  61. BarretoG.P.M. BenassiM.T. MercadanteA.Z. Bioactive compounds from several tropical fruits and correlation by multivariate analysis to free radical scavenger activity.J. Braz. Chem. Soc.200920101856186110.1590/S0103‑50532009001000013
    [Google Scholar]
  62. YangJ. LiuR.H. HalimL. Antioxidant and antiproliferative activities of common edible nut seeds.Lebensm. Wiss. Technol.20094211810.1016/j.lwt.2008.07.007
    [Google Scholar]
  63. AbeL.T. LajoloF.M. GenoveseM.I. Comparison of phenol content and antioxidant capacity of nuts.Food Sci. Technol.20103025425910.1590/S0101‑20612010000500038
    [Google Scholar]
  64. Cagri-MehmetogluA. SowemimoA. van de VenterM. Evaluation of antibacterial activity and phenolic contents of four nigerian medicinal plants.Int. J. Food Process. Technol.201741122110.15379/2408‑9826.2017.04.01.03
    [Google Scholar]
  65. Olmedo-JuárezA. Olivares-PerezJ. Velázquez-AntúnezJ. Rojas-HernándezS. Villa-ManceraA. Romero-RosalesT. ZamilpaA. González-CortázarM. DamianM.Á. Phenolic compounds in the fruits of Enterolobium cyclocarpum and the inhibition of Haemonchus contortus eggs.Nat. Prod. Res.202411110.1080/14786419.2024.230291538232035
    [Google Scholar]
  66. BernatonieneJ. KopustinskieneD.M. The role of catechins in cellular responses to oxidative stress.Molecules201823496597510.3390/molecules2304096529677167
    [Google Scholar]
  67. PrakashM. BasavarajB.V. Chidambara MurthyK.N. Biological functions of epicatechin: Plant cell to human cell health.J. Funct. Foods201952142410.1016/j.jff.2018.10.021
    [Google Scholar]
  68. SalehiB. MachinL. MonzoteL. Sharifi-RadJ. EzzatS.M. SalemM.A. MerghanyR.M. El MahdyN.M. KılıçC.S. SytarO. Sharifi-RadM. SharopovF. MartinsN. MartorellM. ChoW.C. Therapeutic potential of quercetin: New insights and perspectives for human health.ACS Omega2020520118491187210.1021/acsomega.0c0181832478277
    [Google Scholar]
  69. SharmaS. AliA. AliJ. SahniJ.K. BabootaS. Rutin: Therapeutic potential and recent advances in drug delivery.Expert Opin. Investig. Drugs20132281063107910.1517/13543784.2013.80574423795677
    [Google Scholar]
  70. EkanemN.J. OkahU. AhamefuleF.O. IfutO.J. IkwunzeK. UdohE.F. EdetH.A. OrokA.M. Effect of method of preservation on the chemical composition of Enterolobium cyclocarpum leaves.Niger. J. Anim. Prod.202047124625610.51791/njap.v47i1.235
    [Google Scholar]
  71. AkinyemiB. DeleP. MozeaK. OkukenuO. BabatundeM. JolaoshoA. Effect of drying methods on the anti-nutritional content of selected browse plants in rain forest zone of Nigeria.Niger. J. Anim. Prod.202249225025610.51791/njap.v49i2.3486
    [Google Scholar]
  72. LozanoM.C. RoaL. MorenoC.A. Verján-GarcíaN. DoncelB. Experimental intoxication of Brahman (Bos indicus) heifers with Enterolobium cyclocarpum fruits.Toxicon2022216576410.1016/j.toxicon.2022.06.01535780973
    [Google Scholar]
  73. El-DashloutyM. The effect of elephant ear (Enterolobium cyclocarpum) powders & leaves as used for treatment of hepatointoxicated rats.Egypt J Spec Stud2019723234810.21608/ejos.2020.91178
    [Google Scholar]
/content/journals/cnf/10.2174/0115734013375585250313014640
Loading
/content/journals/cnf/10.2174/0115734013375585250313014640
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test