Skip to content
2000
Volume 21, Issue 10
  • ISSN: 1573-4013
  • E-ISSN: 2212-3881

Abstract

With the integration of Machine Learning (ML) and Artificial Intelligence (AI) in the food industry, from production to retail, the sector is undergoing a transformative shift. These technologies enhance efficiency through better decision-making and increased automation, helping overcome some of the current challenges in terms of sustainability, food security, and cost reduction. AI and ML are being applied in food processing to optimize production processes, monitor food quality, and detect contaminants, thus achieving higher safety standards and reducing waste. In the supply chain, these technologies enable real-time tracking, predictive analytics for demand forecasting, and optimization of distribution networks to ensure that food reaches consumers in a timely and cost-effective manner. Another area is the use of AI to revolutionize inventory control in retail, helping retailers anticipate consumer demand and prevent food spoilage, thereby maintaining effective stock control. In addition, the current consumer interest in AI-assisted nutrition analysis and personalized recipe recommendations suggests that they are eating healthier. The potential for even greater impacts is vast with the advancement of these technologies. The future directions to be taken forward in this area of concern include precision agriculture, AI for food traceability, and machine learning for predictive models, with further advancements in data science to enhance efficiency, minimize carbon footprints, and maximize security from contamination. The future of food indeed depends significantly on AI and ML; hence, the future is also daunting in its prospects.

Loading

Article metrics loading...

/content/journals/cnf/10.2174/0115734013371588250815061734
2025-08-27
2026-01-07
Loading full text...

Full text loading...

References

  1. AmoreA. PhilipS. Artificial intelligence in food biotechnology: Trends and perspectives.Frontiers in Industrial Microbiology20231125550510.3389/finmi.2023.1255505
    [Google Scholar]
  2. BhattS. Food quality control & assurance using artificial intelligence: A review paper.Int. J. Res. Appl. Sci. Eng. Technol.2023111061110.22214/ijraset.2023.55898
    [Google Scholar]
  3. ChenT-C. YuS-Y. The review of food safety inspection system based on artificial intelligence, image processing, and robotic.Food Sci Technol202242110.1590/fst.35421
    [Google Scholar]
  4. Chidinma-Mary-Agbai. Application of artificial intelligence (AI) in food industry.GSC Biol. Pharm. Sci.202013117117810.30574/gscbps.2020.13.1.0320
    [Google Scholar]
  5. ChoudharyA. SinghJ. BhatA. GuptaN. ReshiM. KourD. Artificial intelligence and its applications in the food.Pharma Innov.2023SP-12713511355
    [Google Scholar]
  6. DeokarS.R. SonawaneG.S. DigheP.S. SaliN.D. Machine learning (ML), data science & artificial intelligence (AI) in food industry: Opportunities, solutions & rising potential.J. Emerg. Technol. Innov. Res.2023101
    [Google Scholar]
  7. FriedlanderA. ZoellnerC. Artificial intelligence opportunities to improve food safety at retail.Food Prot. Trends202040272278
    [Google Scholar]
  8. IkramA. MehmoodH. ArshadM.T. RasheedA. NoreenS. GnedekaK.T. Applications of artificial intelligence (AI) in managing food quality and ensuring global food security.CYTA J. Food2024221239328710.1080/19476337.2024.2393287
    [Google Scholar]
  9. KhanR. Artificial intelligence and machine learning in food industries: A study.J Food Chem Nanotechnol202173606710.17756/jfcn.2021‑114
    [Google Scholar]
  10. KumarI. RawatJ. MohdN. HusainS. Opportunities of artificial intelligence and machine learning in the food industry.J. Food Qual.2021202111010.1155/2021/4535567
    [Google Scholar]
  11. LiuZ. WangS. ZhangY. FengY. LiuJ. ZhuH. Artificial intelligence in food safety: A decade review and bibliometric analysis.Foods2023126124210.3390/foods1206124236981168
    [Google Scholar]
  12. MachireddyJ.R. Artificial intelligence and machine learning application in food processing and its potential in Industry 4.0.Int J Artif Intell Mach Learn202432405310.5281/zenodo.13306484
    [Google Scholar]
  13. MavaniN.R. AliJ.M. OthmanS. HussainM.A. HashimH. RahmanN.A. Application of artificial intelligence in food industry-A guideline.Food Eng. Rev.202214113417510.1007/s12393‑021‑09290‑z40477643
    [Google Scholar]
  14. MenichettiG. RavandiB. MozaffarianD. BarabAsiAL. Machine learning prediction of the degree of food processing.Nat. Commun.2023141231210.1038/s41467‑023‑37457‑137085506
    [Google Scholar]
  15. Nikolola-AlexievaV. ValevaK. PashevS. Artificial intelligence in the food industry.BIO Web Conf20241020400210.1051/bioconf/202410204002
    [Google Scholar]
  16. PalakurtiN.R. AI applications in food safety and quality control.ESP J Eng Technol Adv202223486110.56472/25832646/JETA‑V2I3P111
    [Google Scholar]
  17. PatilB. MorbaleR. NripeshN. Applications and roles of artificial intelligence and machine learning in food industry.Int J Mod Eng Technol Sci202241965974
    [Google Scholar]
  18. PaulA. GaurS. AhamedM. Artificial intelligence: Importance in food chain industry.SSRN Electron J202110.2139/ssrn.3855252
    [Google Scholar]
  19. QianC. MurphyS.I. OrsiR.H. WiedmannM. How can AI help improve food safety?Annu. Rev. Food Sci. Technol.202314151753810.1146/annurev‑food‑060721‑01381536542755
    [Google Scholar]
  20. SaxenaV. GautamA. Machine learning and artificial intelligence in food industry.Int Res J Mod Eng Technol Sci202139585602
    [Google Scholar]
  21. SharmaP. SharmaA. Artificial intelligence in food industry: A comprehensive review.Proceedings of the International Conference on Innovative Computing & Communication (ICICC)202210.2139/ssrn.4024154
    [Google Scholar]
  22. SharmaS. GahlawatV.K. RahulK. MorR.S. MalikM. Sustainable innovations in the food industry through artificial intelligence and big data analytics.Logistics2021546610.3390/logistics5040066
    [Google Scholar]
  23. SonawaneG.S. DeokarS.R. SaliN.D. DigheP.S. Machine learning, data science and AI in food industry: Opportunities, solutions and potential.J. Manag. Res.2023122586710.17697/ibmrd/2023/v12i2/173223
    [Google Scholar]
  24. TajkarimiM. Food safety and quality data management using artificial intelligence.Food Prot. Trends202040646410.4315/1541‑9576‑40.6.464
    [Google Scholar]
  25. TanejaA. NairG. JoshiM. Artificial intelligence: Implications for the agri-food sector.Agronomy2023135139710.3390/agronomy13051397
    [Google Scholar]
  26. AravindS. SivakumarV. A survey on drug suggestion mechanisms using machine learning algorithm.7th International Conference on Intelligent Computing and Control Systems (ICICCS)Madurai, India17-19 May. 202318719110.1109/ICICCS56967.2023.10142523
    [Google Scholar]
  27. VenuS. RahmanZ.A.M. Energy and cluster based efficient routing for broadcasting in mobile ad hoc networks.Cluster Comput.201922S166167110.1007/s10586‑018‑2255‑3
    [Google Scholar]
  28. TaoY. WangD. Recent advances of artificial intelligence applications in food. IUFoST Scientific Information Bulletin.SIB202010.13140/RG.2.2.25942.27203
    [Google Scholar]
  29. SivakumarV. SushruthL.T. SuthersenJ.A.R. GuganS.K. Weed detection in farmlands using RCNN.3rd International Conference on Intelligent Data Communication Technologies and Internet of Things (IDCIoT)Bengaluru, India20251485149110.1109/IDCIOT64235.2025.10915039
    [Google Scholar]
  30. JohriS. JainD. GuptaA. LangBridge: Computational AI solutions for global learning.2024 International Conference on Emerging Research in Computational Science (ICERCS)Coimbatore, India20241810.1109/ICERCS63125.2024.10895947
    [Google Scholar]
  31. VenuS. KumarR.G. KumarM.K. PrasadT.G. SureshB. NeelimaP. An intelligent and service based smart agriculture recommendation system.Int J Intell Syst Appl Eng2023127s153158
    [Google Scholar]
  32. SivakumarV. ReddyA.H. VarmaN.A. GRU in anomaly detection for IoT: A comparative study.2025 IEEE International Students Conference on Electrical, Electronics and Computer Science (SCEECS)Bhopal, India20251710.1109/SCEECS64059.2025.10940416
    [Google Scholar]
  33. RaoK.V. SivakumarV. SwathiR. Generative AI and secure IoMT Systems for enhanced real-time health monitoring and security.In: Utilizing AI of medical things for healthcare security and sustainability.IGI Global Scientific Publishing202546950210.4018/979‑8‑3373‑0690‑2.ch015
    [Google Scholar]
  34. AugustineM.M. SivakumarV. SwathiR. Precision fitness instruction system using vector database.In: Harnessing AI and machine learning for precision wellness.IGI Global Scientific Publishing202522724210.4018/979‑8‑3693‑9521‑9.ch009
    [Google Scholar]
  35. BossardL. GuillauminM. Van GoolL. Food-101 – Mining discriminative components with random forests.European Conference on Computer Vision (ECCV).pp. 44646110.1007/978‑3‑319‑10599‑4_29
    [Google Scholar]
  36. ChenJ. DengZ. ZhuL. HanJ. PFID: Pittsburgh fast-food image dataset.16th IEEE International Conference on Image Processing (ICIP)Cairo, Egypt200928929210.1109/ICIP.2009.5413511
    [Google Scholar]
  37. MarinJ. BiswasA. OfliF. Recipe1M+: A dataset for learning cross-modal embeddings for cooking recipes and food images.IEEE Trans. Pattern Anal. Mach. Intell.201941111410.1109/TPAMI.2018.285882031295105
    [Google Scholar]
  38. YinX. JiangL. LiS. XuC. FoodLMM: A vision-language model for food understanding.CVPR20232385239310.1109/CVPR52688.2023.00236
    [Google Scholar]
  39. RodriguesA. PatelS. LeeK. RecipeI.S. Interactive cooking assistant using AI and NLP.Proc. ACM Hum. Comput. Interact.20237111910.1145/3616749
    [Google Scholar]
  40. VaswaniA. ShazeerN. ParmarN. Attention is All You Need.Adv Neural Inf Process Syst 2017305998600810.48550/arXiv.1706.03762
    [Google Scholar]
  41. AkbariH YuanL QianR YangT SunM ZhouJ. VLMo: Unified vision-language pretraining with mixture-of-modality experts. NeurIPS2021
    [Google Scholar]
  42. NoeverD. WilliamsJ. Personalized AI-based recipe generation using Food AI.J. Artif. Intell. Res.2023678910510.1613/jair.1.12624
    [Google Scholar]
  43. PereiraR.C. SantosF. CostaM. AI in culinary science: Enhancing nutrition and personalization.J. Food Sci. Technol.20225962473248810.1007/s13197‑021‑05102‑7
    [Google Scholar]
  44. SalvadorA. HynesN. AytarY. de FreitasJ. TorralbaA. Inverse cooking: Recipe generation from food images.IEEE Conference on Computer Vision and Pattern Recognition (CVPR)pp. 1040-404910.1109/CVPR.2019.01070
    [Google Scholar]
  45. ChenD. HanY. WangZ. ZhangL. FoodA.I. Advancing automatic recipe generation using multimodal learning.IEEE Trans. Multimed.2022251637164910.1109/TMM.2022.3142012
    [Google Scholar]
  46. GuptaR. SinghP. ChaturvediA. AI-based interactive cooking assistants: Bridging the gap between vision and language.J. Comput. Sci.20239810252710.1016/j.jocs.2023.102527
    [Google Scholar]
  47. BrownM. Culinary AI: The Future of Smart Kitchens.LondonOxford University Press2020
    [Google Scholar]
  48. KumarA. WhiteT. AI in food technology: Enhancing efficiency and creativity.AI and Modern Food Science. SmithR. ZhaoP. New YorkSpringer2021145162
    [Google Scholar]
  49. The role of AI in food security.2023Available from: https://www.fao.org/ai-in-food-security
  50. BossardL. GuillauminM. Van GoolL. Food-101 dataset.Mendeley Data2014
    [Google Scholar]
  51. MarinJ. SalvadoJ. HynesN. AytarY. de FreitasJ. TorralbaA. Recipe1M+ dataset.Mendeley Data2019
    [Google Scholar]
  52. YinX. JiangL. LiS. XuC. FoodLMM dataset for multimodal food analysis.Mendeley Data2023
    [Google Scholar]
  53. CoonE. BerndtM. JanA. Advanced Terrestrial Simulator (ATS).Zenodo202010.5281/zenodo.3727209
    [Google Scholar]
  54. LiuT ZhaoW ChenH. AI-powered food generation models: A review of recent advancements. arXiv2024
    [Google Scholar]
  55. FernandezL PatelR WangY Vision-language models for ingredient understanding: A comparative study.arXiv2023
    [Google Scholar]
  56. ZhangG J MaL F WangX Q ZhouX G Secondary structure and contact guided differential evolution for protein structure prediction.IEEE/ACM Trans Comput Biol Bioinform202017310688110.1109/TCBB.2018.2873691
    [Google Scholar]
  57. ZhongW. GuF. Predicting local protein 3D structures using clustering deep recurrent neural network.IEEE/ACM Trans. Comput. Biol. Bioinformatics202219159360410.1109/TCBB.2020.300597232750880
    [Google Scholar]
  58. TripathiA. MondalR. LahiriT. ChaurasiyaD. PalM.K. TemPred: A novel protein template search engine to improve protein structure prediction.IEEE/ACM Trans. Comput. Biol. Bioinformatics20232032112212110.1109/TCBB.2022.323384637018272
    [Google Scholar]
  59. BhuvaneswariS DeepakrajR UroojS SharmaN PathakN. Computational analysis: Unveiling the quantum algorithms for protein analysis and predictions.IEEE Access202311940233310.1109/ACCESS.2023.3310812
    [Google Scholar]
  60. WangJ. WangW. ShangY. Protein loop modeling using AlphaFold2.IEEE/ACM Trans. Comput. Biol. Bioinformatics20232053306331310.1109/TCBB.2023.326489937037235
    [Google Scholar]
  61. ZhouS ZouH LiuC ZangM LiuT Combining deep neural networks for protein secondary structure prediction.IEEE Access20208843627010.1109/ACCESS.2020.2992084
    [Google Scholar]
  62. ZhangF. ZhangY. ZhuX. ChenX. LuF. ZhangX. DeepSG2PPI: A protein-protein interaction prediction method based on deep learning.IEEE/ACM Trans. Comput. Biol. Bioinformatics20232052907291910.1109/TCBB.2023.326866137079417
    [Google Scholar]
  63. YangJ. LiY. WangG. ChenZ. WuD. An end-to-end knowledge graph fused graph neural network for accurate protein-protein interactions prediction.IEEE/ACM Trans. Comput. Biol. Bioinformatics20242162518253010.1109/TCBB.2024.348621639446541
    [Google Scholar]
  64. JhaK. SahaS. Analyzing effect of multi-modality in predicting protein-protein interactions.IEEE/ACM Trans. Comput. Biol. Bioinformatics202320116217310.1109/TCBB.2022.315753135259112
    [Google Scholar]
  65. ZhongJ. ZhaoH. ZhaoQ. RGCNPPIS: A residual graph convolutional network for protein-protein interaction site prediction.IEEE/ACM Trans. Comput. Biol. Bioinformatics20242161676168410.1109/TCBB.2024.341035038843057
    [Google Scholar]
  66. LakshmiP ManikandanP RamyachitraD An improved bagging of machine learning algorithms to predict motif structures from protein-protein interaction networks.IEEE Access202513450778810.1109/ACCESS.2025.3549880
    [Google Scholar]
  67. YangS. ChengP. LiuY. FengD. WangS. Exploring the knowledge of an outstanding protein to protein interaction transformer.IEEE/ACM Trans. Comput. Biol. Bioinformatics20242151287129810.1109/TCBB.2024.338182538536676
    [Google Scholar]
  68. ZhaoY. YangZ. HongY. Protein function prediction with functional and topological knowledge of gene ontology.IEEE Trans. Nanobiosci.202322475576210.1109/TNB.2023.327803337204950
    [Google Scholar]
  69. YangZ. ZhongW. LvQ. DongT. ChenG. ChenC.Y.C. Interaction-based inductive bias in graph neural networks: Enhancing protein-ligand binding affinity predictions from 3D structures.IEEE Trans. Pattern Anal. Mach. Intell.202446128191820810.1109/TPAMI.2024.340051538739515
    [Google Scholar]
  70. DewanR. RangaswamyS. VenusS. A deep dive into detecting and investigating fileless malware.Int. J. Sensors Wirel. Commun. Control2025152210327937710610.2174/0122103279377106250507052410
    [Google Scholar]
  71. ZakiM. SivakumarV. ShrivastavaS. GauravK. Cybersecurity framework for healthcare industry using NGFW.2021 Third International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV)Tirunelveli, India202119620010.1109/ICICV50876.2021.9388455
    [Google Scholar]
  72. WangH. WangS. OuyangX. ZhaoJ. HeZ. GaoT. Predicting protein-ligand binding affinity with multi-scale structural features.2023 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)Istanbul, Turkiye2023636810.1109/BIBM58861.2023.10385328
    [Google Scholar]
/content/journals/cnf/10.2174/0115734013371588250815061734
Loading
/content/journals/cnf/10.2174/0115734013371588250815061734
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test