Skip to content
2000
Volume 21, Issue 6
  • ISSN: 1573-4013
  • E-ISSN: 2212-3881

Abstract

Background

The search for effective antiviral therapies against the Coronaviridae family, particularly SARS-CoV-2, remains a critical priority. Baicalin and baicalein, natural flavonoid compounds, have shown promising antiviral activity against SARS-CoV-2 in various experimental studies.

Methods

This systematic review, encompassing 25 total articles, analyzed the direct antiviral effects of these compounds against SARS-CoV-2, focusing on their inhibitory activity against key viral proteins.

Results

Baicalin and baicalein exhibit antiviral activity against SARS-CoV-2, primarily by targeting the main protease (3CLpro) and, to a lesser extent, other viral proteins like RdRp, PLpro, and the spike protein. Baicalein consistently demonstrates superior inhibitory activity with lower IC values and higher selectivity indices compared to baicalin. While the article highlights promising antiviral activity, it also notes that baicalein might be a promiscuous Mpro inhibitor and its efficacy may be influenced by the presence of reducing agents like DDT. While baicalein shows potential as a promising antiviral agent, further research is necessary to confirm its efficacy, optimize its pharmacokinetic properties, and fully understand its mechanisms of action.

Conclusion

Further investigation into the potential for off-target effects, particularly the observed renal toxicity, is also warranted.

Loading

Article metrics loading...

/content/journals/cnf/10.2174/0115734013366067250123113307
2025-02-19
2025-09-04
Loading full text...

Full text loading...

References

  1. RazaT. ShehzadM. AbbasM. Impact assessment of COVID-19 global pandemic on water.Environ. Adv.202311100328
    [Google Scholar]
  2. WHO coronavirus (COVID-19) dashboard. 2022. Available from: https://covid19.who.int/
  3. PaglianoP. SellittoC. AscioneT. The preclinical discovery and development of molnupiravir for the treatment of SARS-CoV-2 (COVID-19).Expert Opin. Drug Discov.2022171212991311
    [Google Scholar]
  4. HassineH.I. Ben M’hadhebM. AriasM.L. Lethal mutagenesis of RNA viruses and approved drugs with antiviral mutagenic activity.Viruses202214484110.3390/v14040841 35458571
    [Google Scholar]
  5. LiJ. LaiS. GaoG.F. ShiW. The emergence, genomic diversity and global spread of SARS-CoV-2.Nature2021600788940841810.1038/s41586‑021‑04188‑6 34880490
    [Google Scholar]
  6. MarkovP.V. GhafariM. BeerM. The evolution of SARS-CoV-2.Nat. Rev. Microbiol.202321636137910.1038/s41579‑023‑00878‑2 37020110
    [Google Scholar]
  7. AgarwalD. ZafarI. AhmadS.U. Structural, genomic information and computational analysis of emerging coronavirus (SARS-CoV-2).Bull. Natl. Res. Cent.2022461170 35729950
    [Google Scholar]
  8. BaruahC. DeviP. Sharma DKJBri. Sequence analysis and structure prediction of SARS‐CoV‐2 accessory proteins 9b and ORF14: Evolutionary analysis indicates close relatedness to bat coronavirus.BioMed Res. Int.202020207234961
    [Google Scholar]
  9. ZhouP. YangX.L. WangX.G. A pneumonia outbreak associated with a new coronavirus of probable bat origin.Nature20205797798270273
    [Google Scholar]
  10. YadavR. ChaudharyJ.K. JainN. Role of structural and non-structural proteins and therapeutic targets of SARS-CoV-2 for COVID-19.Cells202110482110.3390/cells10040821 33917481
    [Google Scholar]
  11. RohaimM.A. NaggarE.R.F. ClaytonE. MunirM. Structural and functional insights into non-structural proteins of coronaviruses.Microb. Pathog.202115010464110.1016/j.micpath.2020.104641 33242646
    [Google Scholar]
  12. JhanwarA. SharmaD. DasU. Unraveling the structural and functional dimensions of SARS-CoV2 proteins in the context of COVID-19 pathogenesis and therapeutics.Int. J. Biol. Macromol.2024278Pt 213485010.1016/j.ijbiomac.2024.134850 39168210
    [Google Scholar]
  13. AbebeE.C. DejenieT.A. Recent advances on the structure, genomic arrangement, life cycle, and virus-host proteins interactome of SARS CoV-2.Int. J. Appl. Biol. Pharm. Technol.20221331932
    [Google Scholar]
  14. RedondoN. López ZS, Garrido JJ, Montoya M. SARS-CoV-2 accessory proteins in viral pathogenesis: Knowns and unknowns.Front. Immunol.202112708264
    [Google Scholar]
  15. ShamsiA. MohammadT. AnwarS. Potential drug targets of SARS-CoV-2: From genomics to therapeutics.Int. J. Biol. Macromol.202117719
    [Google Scholar]
  16. QaanehA.A.M. AlshammariT. AldahhanR. AldossaryH. AlkhalifahZ.A. BorgioJ.F. Genome composition and genetic characterization of SARS-CoV-2.Saudi J. Biol. Sci.20212831978198910.1016/j.sjbs.2020.12.053 33519278
    [Google Scholar]
  17. ZhangD. ZhuL. WangY. LiP. GaoY. Translational control of COVID-19 and its therapeutic implication.Front. Immunol.20221385749010.3389/fimmu.2022.857490
    [Google Scholar]
  18. FreireM.C.L.C. NoskeG.D. BitencourtN.V. Non-toxic dimeric peptides derived from the bothropstoxin-I are potent SARS-CoV-2 and papain-like protease inhibitors.Molecules20212616489610.3390/molecules26164896 34443484
    [Google Scholar]
  19. SokolinskayaE.L. IvanovaO.N. FedyakinaI.T. IvanovA.V. LukyanovK.A. Natural-target-mimicking translocation-based fluorescent sensor for detection of SARS-CoV-2 PLpro protease activity and virus infection in living cells.Int. J. Mol. Sci.20242512663510.3390/ijms25126635 38928340
    [Google Scholar]
  20. NazirF. KombeH.K.A. KhalidZ. SARS-CoV-2 replication and drug discovery.Mol. Cell. Probes20247710197310.1016/j.mcp.2024.101973 39025272
    [Google Scholar]
  21. ZandiM. ShafaatiM. NeyestanakiK.D. The role of SARS-CoV-2 accessory proteins in immune evasion.Biomed. Pharmacother.2022156113889
    [Google Scholar]
  22. BrantA.C. TianW. MajerciakV. YangW. ZhengZ.M. SARS-CoV-2: From its discovery to genome structure, transcription, and replication.Cell Biosci.202111113610.1186/s13578‑021‑00643‑z 34281608
    [Google Scholar]
  23. LanJ. GeJ. YuJ. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor.Nature2020581780721522010.1038/s41586‑020‑2180‑5 32225176
    [Google Scholar]
  24. V’kovskiP. KratzelA. SteinerS. StalderH. ThielV. Coronavirus biology and replication: Implications for SARS-CoV-2.Nat. Rev. Microbiol.202119315517010.1038/s41579‑020‑00468‑6 33116300
    [Google Scholar]
  25. WangW. ChenJ. YuX. LanH.Y. Signaling mechanisms of SARS-CoV-2 Nucleocapsid protein in viral infection, cell death and inflammation.Int. J. Biol. Sci.202218124704471310.7150/ijbs.72663 35874957
    [Google Scholar]
  26. KanimozhiG. PradhapsinghB. PawarS.C. KhanH.A. AlrokayanS.H. PrasadN.R. SARS-CoV-2: Pathogenesis, molecular targets and experimental models.Front. Pharmacol.20211263833410.3389/fphar.2021.638334 33967772
    [Google Scholar]
  27. JacksonC.B. FarzanM. ChenB. ChoeH. Mechanisms of SARS-CoV-2 entry into cells.Nat. Rev. Mol. Cell Biol.202223132010.1038/s41580‑021‑00418‑x 34611326
    [Google Scholar]
  28. LiQ. KangC. Progress in developing inhibitors of SARS-CoV-2 3C-like protease.Microorganisms202088125010.3390/microorganisms8081250 32824639
    [Google Scholar]
  29. BanerjeeR. PereraL. TillekeratneL.M.V. Potential SARS-CoV-2 main protease inhibitors.Drug Discov. Today202126380481610.1016/j.drudis.2020.12.005 33309533
    [Google Scholar]
  30. VargasP.J. ShapiraT. OlmsteadA.D. Discovery of lead natural products for developing pan-SARS-CoV-2 therapeutics.Antiviral Res.2023209105484
    [Google Scholar]
  31. FernandesQ. InchakalodyV.P. MerhiM. Emerging COVID-19 variants and their impact on SARS-CoV-2 diagnosis, therapeutics and vaccines.Ann. Med.202254152454010.1080/07853890.2022.2031274 35132910
    [Google Scholar]
  32. KumariM. LuR.M. LiM.C. A critical overview of current progress for COVID-19: Development of vaccines, antiviral drugs, and therapeutic antibodies.J. Biomed. Sci.20222916810.1186/s12929‑022‑00852‑9 36096815
    [Google Scholar]
  33. EichbergJ. MaiwormE. OberpaulM. Antiviral potential of natural resources against influenza virus infections.Viruses20221411245210.3390/v14112452
    [Google Scholar]
  34. ChenX. ChenK. ZhangZ. Investigating derivatives of tanshinone IIA sulfonate sodium and chloroxine for their inhibition activities against the SARS-CoV-2 papain-like protease.ACS Omega2022751484164842610.1021/acsomega.2c06675
    [Google Scholar]
  35. VermaS. TwilleyD. EsmearT. Anti-SARS-CoV natural products with the potential to inhibit SARS-CoV-2 (COVID-19).Front. Pharmacol.20201156133410.3389/fphar.2020.561334 33101023
    [Google Scholar]
  36. ChristyM.P. UekusaY. GerwickL. GerwickW.H. Natural products with potential to treat RNA virus pathogens including SARS-CoV-2.J. Nat. Prod.202184116118210.1021/acs.jnatprod.0c00968 33352046
    [Google Scholar]
  37. KaulR. PaulP. KumarS. BüsselbergD. DwivediV.D. ChaariA. Promising antiviral activities of natural flavonoids against SARS-CoV-2 targets: Systematic review.Int. J. Mol. Sci.202122201106910.3390/ijms222011069 34681727
    [Google Scholar]
  38. AtampugbireG AdomakoEEA QuayeO Medicinal plants as effective antiviral agents and their potential benefits.Nat Prod Commun20241991934578X24128292310.1177/1934578X241282923
    [Google Scholar]
  39. AnandA.V. BalamuralikrishnanB. KaviyaM. Medicinal plants, phytochemicals, and herbs to combat viral pathogens including SARS-CoV-2.Molecules2021266177510.3390/molecules26061775 33809963
    [Google Scholar]
  40. MandalA. JhaA.K. HazraB. Plant products as inhibitors of coronavirus 3CL protease.Front. Pharmacol.20211258338710.3389/fphar.2021.583387 33767619
    [Google Scholar]
  41. MalekmohammadK. KopaeiR.M. Mechanistic aspects of medicinal plants and secondary metabolites against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).Curr. Pharm. Des.202127383996400710.2174/18734286MTE2hNDY1x 34225607
    [Google Scholar]
  42. IdreesM. KhanS. MemonN.H. ZhangZ. Effect of the phytochemical agents against the SARS-CoV and some of them selected for application to COVID-19: A mini-review.Curr. Pharm. Biotechnol.202122444445010.2174/18734316MTA3tODkiy 32619167
    [Google Scholar]
  43. AbouleishM. KeblawyE.A. MosaK.A. SolimanS.S.M. Importance of environmental factors on production of computationally-defined natural molecules against COVID-19 pandemic.Curr. Top. Med. Chem.202020221958196110.2174/156802662022200917110430 33040729
    [Google Scholar]
  44. OgboleO.O. AkinleyeT.E. SegunP.A. FaleyeT.C. AdenijiA.J. In vitro antiviral activity of twenty-seven medicinal plant extracts from Southwest Nigeria against three serotypes of echoviruses.Virol. J.201815111010.1186/s12985‑018‑1022‑7 30021589
    [Google Scholar]
  45. WangY. XuC. GuoX. Phylogenomics analysis of Scutellaria (Lamiaceae) of the world.BMC Biol.202422118510.1186/s12915‑024‑01982‑2 39218872
    [Google Scholar]
  46. BrunoM. PiozziF. RosselliS. Natural and hemisynthetic neoclerodane diterpenoids from Scutellaria and their antifeedant activity.Nat. Prod. Rep.200219335737810.1039/b111150g 12137282
    [Google Scholar]
  47. ZhaoQ. ZhangY. WangG. A specialized flavone biosynthetic pathway has evolved in the medicinal plant, Scutellaria baicalensis.Sci. Adv.201624e150178010.1126/sciadv.1501780 27152350
    [Google Scholar]
  48. XieL. WangX. BasnetP. Evaluation of variation of acteoside and three major flavonoids in wild and cultivated Scutellaria baicalensis roots by micellar electrokinetic chromatography.Chem. Pharm. Bull.200250789689910.1248/cpb.50.896 12130846
    [Google Scholar]
  49. LiH. JiangY. ChenF. Separation methods used for Scutellaria baicalensis active components.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.20048121-227729010.1016/S1570‑0232(04)00545‑8 15556504
    [Google Scholar]
  50. LinC.C. ShiehD.E. The anti-inflammatory activity of Scutellaria rivularis extracts and its active components, baicalin, baicalein and wogonin.Am. J. Chin. Med.1996241313610.1142/S0192415X96000050 8739179
    [Google Scholar]
  51. ChenL.J. GamesD.E. JonesJ. Isolation and identification of four flavonoid constituents from the seeds of Oroxylum indicum by high-speed counter-current chromatography.J. Chromatogr. A200398819510510.1016/S0021‑9673(02)01954‑4 12647824
    [Google Scholar]
  52. MohantaB.C. ArimaS. SatoN. HarigayaY. DindaB. Flavonoids from the stem-bark of Oroxylum indicum.Nat. Prod. Sci.2007133190194
    [Google Scholar]
  53. LiuX. XieW. ZhouH. ZhangH. JinY. A comprehensive overview on antiviral effects of baicalein and its glucuronide derivative baicalin.J. Integr. Med.202422662163610.1016/j.joim.2024.09.003 39368944
    [Google Scholar]
  54. HuZ. GuanY. HuW. XuZ. IshfaqM. An overview of pharmacological activities of baicalin and its aglycone baicalein: New insights into molecular mechanisms and signaling pathways.Iran. J. Basic Med. Sci.20222511426 35656442
    [Google Scholar]
  55. HuangY. TsangS.Y. YaoX. ChenZ.Y. Biological properties of baicalein in cardiovascular system.Curr. Drug Targets Cardiovasc. Haematol. Disord.20055217718410.2174/1568006043586206 15853750
    [Google Scholar]
  56. DindaB. DindaS. DasSharmaS. BanikR. ChakrabortyA. DindaM. Therapeutic potentials of baicalin and its aglycone, baicalein against inflammatory disorders.Eur. J. Med. Chem.2017131688010.1016/j.ejmech.2017.03.004 28288320
    [Google Scholar]
  57. SongJ.W. LongJ.Y. XieL. Applications, phytochemistry, pharmacological effects, pharmacokinetics, toxicity of Scutellaria baicalensis Georgi. and its probably potential therapeutic effects on COVID-19: A review.Chin. Med.202015110210.1186/s13020‑020‑00384‑0 32994803
    [Google Scholar]
  58. HuangH. ZhouW. ZhuH. ZhouP. ShiX. Baicalin benefits the anti-HBV therapy via inhibiting HBV viral RNAs.Toxicol. Appl. Pharmacol.20173233643 28322895
    [Google Scholar]
  59. ShiH. RenK. LvB. Baicalin from Scutellaria baicalensis blocks respiratory syncytial virus (RSV) infection and reduces inflammatory cell infiltration and lung injury in mice.Sci. Rep.2016613585110.1038/srep35851 27767097
    [Google Scholar]
  60. ChuM. XuL. ZhangM.B. ChuZ.Y. WangY.D. Role of baicalin in anti‐influenza virus A as a potent inducer of IFN‐gamma.BioMed Res. Int.20152015263630
    [Google Scholar]
  61. RamosP.R.P.S. MottinM. LimaC.S. Natural compounds as non-nucleoside inhibitors of zika virus polymerase through integration of in silico and in vitro approaches.Pharmaceuticals20221512149310.3390/ph15121493 36558945
    [Google Scholar]
  62. KitamuraK. HondaM. YoshizakiH. Baicalin, an inhibitor of HIV-1 production in vitro.Antiviral Res.199837213114010.1016/S0166‑3542(97)00069‑7 9588845
    [Google Scholar]
  63. DouJ. ChenL. XuG. Effects of baicalein on Sendai virus in vivo are linked to serum baicalin and its inhibition of hemagglutinin-neuraminidase.Arch. Virol.2011156579380110.1007/s00705‑011‑0917‑z 21286764
    [Google Scholar]
  64. QinS. HuangX. QuS. Baicalin induces a potent innate immune response to inhibit respiratory syncytial virus replication via regulating viral non-structural 1 and matrix RNA.Front. Immunol.20221390704710.3389/fimmu.2022.907047 35812414
    [Google Scholar]
  65. JiaY. XuR. HuY. Anti-NDV activity of baicalin from a traditional Chinese medicine in vitro.J. Vet. Med. Sci.201678581982410.1292/jvms.15‑0572 26902693
    [Google Scholar]
  66. ZandiK. TeohB.T. SamS.S. WongP.F. MustafaM.R. AbuBakarS. Novel antiviral activity of baicalein against dengue virus.BMC Complement. Altern. Med.201212121410.1186/1472‑6882‑12‑214 23140177
    [Google Scholar]
  67. LowZ.X. OuYong BM, Hassandarvish P, Poh CL, Ramanathan B. Antiviral activity of silymarin and baicalein against dengue virus.Sci. Rep.20211112122110.1038/s41598‑021‑98949‑y 34707245
    [Google Scholar]
  68. VermaE. KumarA. DaimaryU.D. Potential of baicalein in the prevention and treatment of cancer: A scientometric analyses based review.J. Funct. Foods202186104660
    [Google Scholar]
  69. MoherD. ShamseerL. ClarkeM. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement.Syst. Rev.2015411910.1186/2046‑4053‑4‑1 25554246
    [Google Scholar]
  70. FaggionC.M.Jr Guidelines for reporting pre-clinical in vitro studies on dental materials.J. Evid. Based Dent. Pract.201212418218910.1016/j.jebdp.2012.10.001 23177493
    [Google Scholar]
  71. HooijmansC.R. RoversM.M. Vries dRBM, Leenaars M, Hoitinga RM, Langendam MW. SYRCLE’s risk of bias tool for animal studies.BMC Med. Res. Methodol.20141414310.1186/1471‑2288‑14‑43 24667063
    [Google Scholar]
  72. SongJ. ZhangL. XuY. The comprehensive study on the therapeutic effects of baicalein for the treatment of COVID-19 in vivo and in vitro.Biochem. Pharmacol.202118311430210.1016/j.bcp.2020.114302 33121927
    [Google Scholar]
  73. HengphasatpornK. WilasluckP. DeetanyaP. Halogenated baicalein as a promising antiviral agent toward SARS-CoV-2 main protease.J. Chem. Inf. Model.20226261498150910.1021/acs.jcim.1c01304 35245424
    [Google Scholar]
  74. TunN.M.M. ToumeK. LuvaiE. The discovery of herbal drugs and natural compounds as inhibitors of SARS-CoV-2 infection in vitro.J. Nat. Med.202276240240910.1007/s11418‑021‑01596‑w 35006524
    [Google Scholar]
  75. ElebeedyD. ElkhatibW.F. KandeilA. Anti-SARS-CoV-2 activities of tanshinone IIA, carnosic acid, rosmarinic acid, salvianolic acid, baicalein, and glycyrrhetinic acid between computational and in vitro insights.RSC Advances20211147292672928610.1039/D1RA05268C 35492070
    [Google Scholar]
  76. LiuJ. MengJ. LiR. Integrated network pharmacology analysis, molecular docking, LC-MS analysis and bioassays revealed the potential active ingredients and underlying mechanism of Scutellariae radix for COVID-19.Front Plant Sci20221398865510.3389/fpls.2022.988655 36186074
    [Google Scholar]
  77. MoriM. QuaglioD. CalcaterraA. Natural flavonoid derivatives have pan-coronavirus antiviral activity.Microorganisms202311231410.3390/microorganisms11020314 36838279
    [Google Scholar]
  78. ZhangK. WangT. LiM. Discovery of quinazolin-4-one-based non-covalent inhibitors targeting the severe acute respiratory syndrome coronavirus 2 main protease (SARS-CoV-2 Mpro).Eur. J. Med. Chem.202325711548710.1016/j.ejmech.2023.115487 37257212
    [Google Scholar]
  79. ZandiK. MusallK. OoA. Baicalein and baicalin inhibit SARS-CoV-2 RNA-Dependent-RNA polymerase.Microorganisms20219589310.3390/microorganisms9050893 33921971
    [Google Scholar]
  80. LiuH. YeF. SunQ. Scutellaria baicalensis extract and baicalein inhibit replication of SARS-CoV-2 and its 3C-like protease in vitro.J. Enzyme Inhib. Med. Chem.202136149750310.1080/14756366.2021.1873977 33491508
    [Google Scholar]
  81. SuH. YaoS. ZhaoW. Anti-SARS-CoV-2 activities in vitro of Shuanghuanglian preparations and bioactive ingredients.Acta Pharmacol. Sin.20204191167117710.1038/s41401‑020‑0483‑6 32737471
    [Google Scholar]
  82. KhamtoN. UtamaK. BoontaweeP. Inhibitory activity of flavonoid scaffolds on SARS-CoV-2 3CLpro: Insights from the computational and experimental investigations.J. Chem. Inf. Model.202464387489110.1021/acs.jcim.3c01477 38277124
    [Google Scholar]
  83. HongS. SeoS.H. WooS.J. KwonY. SongM. HaN.C. Epigallocatechin gallate inhibits the uridylate-specific endoribonuclease Nsp15 and efficiently neutralizes the SARS-CoV-2 strain.J. Agric. Food Chem.202169215948595410.1021/acs.jafc.1c02050 34015930
    [Google Scholar]
  84. ZhuD. SuH. KeC. Efficient discovery of potential inhibitors for SARS-CoV-2 3C-like protease from herbal extracts using a native MS-based affinity-selection method.J. Pharm. Biomed. Anal.202220911453810.1016/j.jpba.2021.114538 34929567
    [Google Scholar]
  85. XiaoT. CuiM. ZhengC. Both baicalein and gallocatechin gallate effectively inhibit SARS-CoV-2 replication by targeting M(pro) and sepsis in mice.Inflammation202245310761088 34822072
    [Google Scholar]
  86. JoS. KimS. KimD.Y. KimM.S. ShinD.H. Flavonoids with inhibitory activity against SARS-CoV-2 3CLpro.J. Enzyme Inhib. Med. Chem.20203511539154410.1080/14756366.2020.1801672 32746637
    [Google Scholar]
  87. LinC. TsaiF.J. HsuY.M. Study of baicalin toward COVID-19 treatment: In silico target analysis and in vitro inhibitory effects on SARS-CoV-2 proteases.Biomed. Hub20216312213710.1159/000519564 34934765
    [Google Scholar]
  88. YanH. ZhangR. YanG. LiuX. LiN. ChenY. Validation of baicalein and oridonin as nonspecific SARS‐CoV‐2 main protease inhibitors.Phytother. Res.20243831161116410.1002/ptr.7829 37042347
    [Google Scholar]
  89. WanL. LiY. LiaoW. Synergistic inhibition effects of andrographolide and baicalin on coronavirus mechanisms by downregulation of ACE2 protein level.Sci. Rep.2024141428710.1038/s41598‑024‑54722‑5 38383655
    [Google Scholar]
  90. DjouonzoP.T. MukimM.S.I. KemdaP.N. SARS-CoV-2 main protease inhibitors from the stem barks of Discoglypremna caloneura (Pax) Prain (Euphorbiaceae) and Pterocarpus erinaceus Poir (Fabaceae) and their molecular docking investigation.Appl. Biol. Chem.20236617610.1186/s13765‑023‑00833‑y
    [Google Scholar]
  91. ZhangR. YanH. ZhouJ. Improved fluorescence‐based assay for rapid screening and evaluation of SARS‐CoV‐2 main protease inhibitors.J. Med. Virol.2024963e2949810.1002/jmv.29498 38436148
    [Google Scholar]
  92. HusseinM.A. BorikR.M. NafieM.S. SalemA.H.M. BoshraS.A. MohamedZ.N. Structure activity relationship and molecular docking of some quinazolines bearing sulfamerazine moiety as new 3CLpro, cPLA2, sPLA2 inhibitors.Molecules20232816605210.3390/molecules28166052 37630304
    [Google Scholar]
  93. GocA. RathM. NiedzwieckiA. Composition of naturally occurring compounds decreases activity of Omicron and SARS-CoV-2 RdRp complex.Eur. J. Microbiol. Immunol.2022122394510.1556/1886.2022.00009 35895480
    [Google Scholar]
  94. CoronaA. WyciskK. TalaricoC. Natural compounds inhibit SARS-CoV-2 nsp13 unwinding and ATPase enzyme activities.ACS Pharmacol. Transl. Sci.20225422623910.1021/acsptsci.1c00253 35434533
    [Google Scholar]
  95. MengJ.R. LiuJ. FuL. Anti-entry activity of natural flavonoids against SARS-CoV-2 by targeting spike RBD.Viruses20221411 36366444
    [Google Scholar]
  96. MaC. HuY. TownsendJ.A. Ebselen, disulfiram, carmofur, PX-12, tideglusib, and shikonin are nonspecific promiscuous SARS-CoV-2 main protease inhibitors.ACS Pharmacol. Transl. Sci.2020361265127710.1021/acsptsci.0c00130 33330841
    [Google Scholar]
  97. LinC.H. ChangH.J. LinM.W. YangX.R. LeeC.H. LinC.S. Inhibitory efficacy of main components of Scutellaria baicalensis on the interaction between spike protein of SARS-CoV-2 and human angiotensin-converting enzyme II.Int. J. Mol. Sci.2024255293510.3390/ijms25052935 38474182
    [Google Scholar]
  98. BugnonM Röhrig UF, Goullieux M, et al SwissDock 2024: Major enhancements for small-molecule docking with attracting cavities and autodock vina.Nucleic Acids Res.202452W1W324-3210.1093/nar/gkae300 38686803
    [Google Scholar]
  99. EberhardtJ. MartinsS.D. TillackA.F. ForliS. AutoDock Vina 1.2. 0: New docking methods, expanded force field, and python bindings.J. Chem. Inf. Model.20216183891389810.1021/acs.jcim.1c00203 34278794
    [Google Scholar]
/content/journals/cnf/10.2174/0115734013366067250123113307
Loading
/content/journals/cnf/10.2174/0115734013366067250123113307
Loading

Data & Media loading...

Supplements

PRISMA checklist is available as supplementary material on the publisher’s website along with the published article. Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Review Article
Keyword(s): antiviral; Baicalein; baicalin; bioactive compounds; COVID-19; SARS-CoV-2
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test