Skip to content
2000
Volume 21, Issue 5
  • ISSN: 1573-4013
  • E-ISSN: 2212-3881

Abstract

Background

Microencapsulated GS4 (MTCC 12683) with prebiotics and chitosan coating can be used in food functional products, enhancing shelf life and restoring probiotic properties.

Objective

This study aimed to analyze the effects of inulin (I) fructooligosaccharide (FOS) and chitosan coating in microencapsulation of probiotic strain GS4 survivability in simulated gastrointestinal (GI) conditions and at different storage conditions.

Methods

To enhance the stable viability of probiotic . GS4, inulin, and FOS were separately combined into alginate (Alg) following chitosan (C) coating during the process of microencapsulation. Encapsulation efficiency, morphological characterization, and cell survival of different microbeads were evaluated before and after exposure to simulated GI conditions at different storage conditions.

Results

Alginate-inulin-FOS combined chitosan coated (Alg/I/FOS/C) microbeads showed higher viability than other groups. Chitosan-coated beads had increased diameter (2.52- 2.71 mm) in comparison to uncoated beads (1.98- 2.42 mm). On successive challenges through simulated GI conditions, microencapsulated probiotics demonstrated higher viable cells than control cells (<0.05). At different storage conditions, stable cell viability occurred at -20°C > 4°C > room temperature.

Conclusion

In conclusion, Alg/I/FOS/C beads stored at -20°C maintained stable probiotic viability and are found to be suitable for food technological applications.

Loading

Article metrics loading...

/content/journals/cnf/10.2174/0115734013359717241125101907
2025-01-14
2025-09-05
Loading full text...

Full text loading...

References

  1. Food and Agricultural Organization of the United Nations and World Health OrganizationHealth and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid BacteriaWorld Health Organization2001
    [Google Scholar]
  2. RequeP.M. BrandelliA. An introduction to probiotics.Probiotics.Academic Press202211710.1016/B978‑0‑323‑85170‑1.00017‑8
    [Google Scholar]
  3. SinghM. GoelG. Milk based extrusion method for microencapsulation of probiotics.2018
    [Google Scholar]
  4. NigamD. Probiotics as functional foods in enhancing gut immunity.Functional Food and Human HealthSpringer : Singapore2018; 59-8210.1007/978‑981‑13‑1123‑9_4
    [Google Scholar]
  5. FioccoD. LongoA. ArenaM.P. RussoP. SpanoG. CapozziV. How probiotics face food stress: They get by with a little help.Crit. Rev. Food Sci. Nutr.20206091552158010.1080/10408398.2019.158067330880406
    [Google Scholar]
  6. YohaK.S. NidaS. DuttaS. MosesJ.A. AnandharamakrishnanC. Targeted delivery of probiotics: Perspectives on research and commercialization.Probiotics Antimicrob. Proteins2022141154810.1007/s12602‑021‑09791‑733904011
    [Google Scholar]
  7. ĐorđevićV. ParaskevopoulouA. MantzouridouF.T. LalouS. PantićM. BugarskiB. NedovićV. Encapsulation technologies for food industry. Emerging and traditional technologies for safe, healthy and quality food201632938210.1007/978‑3‑319‑24040‑4_18
    [Google Scholar]
  8. RodriguesF.J. CedranM.F. BicasJ.L. SatoH.H. Encapsulated probiotic cells: Relevant techniques, natural sources as encapsulating materials and food applications – A narrative review.Food Res. Int.202013710968210.1016/j.foodres.2020.10968233233258
    [Google Scholar]
  9. ErdélyiL. FenyvesiF. GálB. HaimhofferÁ. VasváriG. BudaiI. RemenyikJ. BereczkiI. FehérP. UjhelyiZ. BácskayI. VecsernyésM. KovácsR. VáradiJ. Investigation of the role and effectiveness of chitosan coating on probiotic microcapsules.Polymers2022149166410.3390/polym1409166435566837
    [Google Scholar]
  10. CheowW.S. HadinotoK. Biofilm-like Lactobacillus rhamnosus probiotics encapsulated in alginate and carrageenan microcapsules exhibiting enhanced thermotolerance and freeze-drying resistance.Biomacromolecules20131493214322210.1021/bm400853d23985031
    [Google Scholar]
  11. CălinoiuL.F. ŞtefănescuB.E. PopI.D. MunteanL. VodnarD.C. Chitosan coating applications in probiotic microencapsulation.Coatings20199319410.3390/coatings9030194
    [Google Scholar]
  12. JiR. WuJ. ZhangJ. WangT. ZhangX. ShaoL. ChenD. WangJ. Extending viability of Bifidobacterium longum in chitosan-coated alginate microcapsules using emulsification and internal gelation encapsulation technology.Front. Microbiol.201910138910.3389/fmicb.2019.0138931316479
    [Google Scholar]
  13. NualkaekulS. LentonD. CookM.T. KhutoryanskiyV.V. CharalampopoulosD. Chitosan coated alginate beads for the survival of microencapsulated Lactobacillus plantarum in pomegranate juice.Carbohydr. Polym.20129031281128710.1016/j.carbpol.2012.06.07322939342
    [Google Scholar]
  14. KrasaekooptW. WatcharapokaS. Effect of addition of inulin and galactooligosaccharide on the survival of microencapsulated probiotics in alginate beads coated with chitosan in simulated digestive system, yogurt and fruit juice.Lebensm. Wiss. Technol.201457276176610.1016/j.lwt.2014.01.037
    [Google Scholar]
  15. RashidinejadA. BahramiA. RehmanA. RezaeiA. BabazadehA. SinghH. JafariS.M. Co-encapsulation of probiotics with prebiotics and their application in functional/synbiotic dairy products.Crit. Rev. Food Sci. Nutr.20226292470249410.1080/10408398.2020.185416933251846
    [Google Scholar]
  16. ParsanaY. YadavM. KumarS. Microencapsulation in the chitosan-coated alginate-inulin matrix of Limosilactobacillus reuteri SW23 and Lactobacillus salivarius RBL50 and their characterization.Carbohydr. Polym. Technol. Appl2023510028510.1016/j.carpta.2023.100285
    [Google Scholar]
  17. JeznienėS. BružaitėI. ŠipailienėA. Application of biomacromolecules encapsulation systems for the long-term storage of Lactobacillus plantarum F1 and Lactobacillus reuteri 182.Heliyon2024105e26566
    [Google Scholar]
  18. ChávarriM. MarañónI. AresR. IbáñezF.C. MarzoF. VillaránM.C. Microencapsulation of a probiotic and prebiotic in alginate-chitosan capsules improves survival in simulated gastro-intestinal conditions.Int. J. Food Microbiol.20101421-218518910.1016/j.ijfoodmicro.2010.06.02220659775
    [Google Scholar]
  19. DarjaniP. Hosseini N.M. KadkhodaeeR. MilaniE. Influence of prebiotic and coating materials on morphology and survival of a probiotic strain of Lactobacillus casei exposed to simulated gastrointestinal conditions.Lebensm. Wiss. Technol.20167316216710.1016/j.lwt.2016.05.032
    [Google Scholar]
  20. PadhmavathiV. ShruthyR. PreethaR. Chitosan coated skim milk-alginate microspheres for better survival of probiotics during gastrointestinal transit.J. Food Sci. Technol.202360388989510.1007/s13197‑021‑05179‑136908352
    [Google Scholar]
  21. VivekK. ReddyK.K. ReddyP.V. KumarM. NarsaiahK. Effect of co-encapsulation of probiotics with prebiotics and their survivability in dahi during storage.Int. J. Agric. Food Sci. Technol.2013416775
    [Google Scholar]
  22. SukumarG. GhoshA.R. Pediococcus spp. A potential probiotic isolated from khadi (an Indian Fermented Food) and identified by 16S rDNA sequence analysis.Afr. J. Food Sci.20104959760210.5897/ajfs.9000216
    [Google Scholar]
  23. SukumarG. GhoshA.R. Anti-oxidative potential of probiotic bacteria from Indian fermented food.20112983986
    [Google Scholar]
  24. GhoshB. SukumarG. GhoshA.R. Purification and characterization of pediocin from probiotic Pediococcus pentosaceus GS4, MTCC 12683.Folia Microbiol.201964676577810.1007/s12223‑019‑00689‑030796707
    [Google Scholar]
  25. DubeyV. MishraA.K. GhoshA.R. Cell adherence efficacy of probiotic Pediococcus pentosaceus GS4 (MTCC 12683) and demonstrable role of its surface layer protein (Slp).J. Proteomics202022610389410.1016/j.jprot.2020.10389432652219
    [Google Scholar]
  26. DubeyV. GhoshA.R. MandalB.K. Appraisal of conjugated linoleic acid production by probiotic potential of Pediococcus spp. GS4.Appl. Biochem. Biotechnol.201216851265127610.1007/s12010‑012‑9855‑922971829
    [Google Scholar]
  27. DubeyV. GhoshA.R. BishayeeK. Khuda-BukhshA.R. Probiotic Pediococcus pentosaceus strain GS4 alleviates azoxymethane-induced toxicity in mice.Nutr. Res.2015351092192910.1016/j.nutres.2015.08.00126319614
    [Google Scholar]
  28. DubeyV. GhoshA.R. BishayeeK. Khuda-BukhshA.R. Appraisal of the anti-cancer potential of probiotic Pediococcus pentosaceus GS4 against colon cancer: In vitro and in vivo approaches.J. Funct. Foods201623667910.1016/j.jff.2016.02.032
    [Google Scholar]
  29. DubeyV. MishraA.K. GhoshA.R. MandalB.K. Probiotic Pediococcus pentosaceus GS 4 shields brush border membrane and alleviates liver toxicity imposed by chronic cadmium exposure in Swiss albino mice.J. Appl. Microbiol.201912641233124410.1111/jam.1419530614180
    [Google Scholar]
  30. BagadM. PandeR. GhoshA.R. Determination of viability of Pediococcus spp. GS4 after storage into hard gelatin capsule and its survival under in vitro simulated gastrointestinal condition.Int. J. Res. Ayurveda Pharm.20123233237
    [Google Scholar]
  31. BagadM. PandeR. DubeyV. GhoshA.R. Survivability of freeze-dried probiotic Pediococcus pentosaceus strains GS4, GS17 and Lactobacillus gasseri (ATCC 19992) during storage with commonly used pharmaceutical excipients within a period of 120 days.Asian Pac. J. Trop. Biomed.201771092192910.1016/j.apjtb.2017.09.005
    [Google Scholar]
  32. JiangS. CaiL. LvL. LiL. Pediococcus pentosaceus, a future additive or probiotic candidate.Microb. Cell Fact.20212011-410.1186/s12934‑021‑01537‑y33593360
    [Google Scholar]
  33. CookM.T. TzortzisG. CharalampopoulosD. KhutoryanskiyV.V. Production and evaluation of dry alginate-chitosan microcapsules as an enteric delivery vehicle for probiotic bacteria.Biomacromolecules20111272834284010.1021/bm200576h21574635
    [Google Scholar]
  34. CookM.T. TzortzisG. CharalampopoulosD. KhutoryanskiyV.V. Microencapsulation of a synbiotic into PLGA/alginate multiparticulate gels.Int. J. Pharm.20144661-240040810.1016/j.ijpharm.2014.03.03424657143
    [Google Scholar]
  35. ApiwattanasiriP. CharoenR. PhattayakornK. JantraseeS. SavedbowornW. Effect of protein and prebiotic on the survival of encapsulated probiotic during storage.E3S Web Conf.20213020200610.1051/e3sconf/202130202006
    [Google Scholar]
  36. WusqyN.K. SuronoI.S. Shelf life of microencapsulated and free cells of Lactobacillus plantarum IS-10506 at different temperatures.IOP Conf. Ser. Earth Environ. Sci.2021794101214710.1088/1755‑1315/794/1/012147
    [Google Scholar]
  37. HuangH-Y. TangY-J. KingV.A-E. ChouJ-W. TsenJ-H. Properties of Lactobacillus reuteri chitosan-calcium-alginate encapsulation under simulated gastrointestinal conditions.Int. Microbiol.2015181616910.2436/20.1501.01.23526415668
    [Google Scholar]
  38. ZanjaniK. Microencapsulation of probiotics by calcium alginate-gelatinized starch with chitosan coating and evaluation of survival in simulated human gastro-intestinal condition. Iran. J. Pharm. Res. IJPR2014133843852
    [Google Scholar]
  39. Barajas-ÁlvarezP. González-ÁvilaM. Espinosa-AndrewsH. Recent advances in probiotic encapsulation to improve viability under storage and gastrointestinal conditions and their impact on functional food formulation.Food Rev. Int.2023392992101310.1080/87559129.2021.1928691
    [Google Scholar]
  40. MenezesM.F.S.C. Da SilvaT.M. EtchepareM.A. FonsecaB.S. SonzaV.P. CodevillaC.F. BarinJ.S. De Bona Da SilvaC.B. MenezesC.R. Improvement of the viability of probiotics (Lactobacillus acidophilus) by multilayer encapsulation.Cien. Rural201949910.1590/0103‑8478cr20181020
    [Google Scholar]
/content/journals/cnf/10.2174/0115734013359717241125101907
Loading
/content/journals/cnf/10.2174/0115734013359717241125101907
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keyword(s): Chitosan; FOS; inulin; microencapsulation; Pediococcus pentosaceus GS4; probiotics
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test