Skip to content
2000
image of Effect of Yeast (Saccharomyces cerevisiae) on Blood and Intestinal Histopathology of Nile Tilapia (Oreochromis niloticus)

Abstract

Background

Aquaculture advises against using antibiotics and synthetic hormones for tilapia fish growth due to concerns about antimicrobial resistance, environmental contamination, and disruption of the fish microbiome. The search for alternative fish growth promotion strategies has been an extensive one. The effect of yeast () on intestinal histology, biochemical parameters, and haematology indices of is examined in this study.

Methods

To produce the experimental diet of 35% crude protein, yeast at varying quantities were added to the basal feed ingredient in the following amounts: 0, 5, 10 and 15 g/kg, which corresponded to the groups G1 (control), G2, G3, and G4, respectively. Twelve (12) concrete ponds, each with a capacity of 1,500 litres, were the culture structures for the experiment. Two hundred and forty mixed-sex fingerlings were stocked, and each pond was randomly allocated twenty fingerlings. Each parameter assessed was replicated 3 times.

Results

The result on growth parameters showed that the highest final mean weight (86.33± 3.51 g), average daily growth (1.14±0.05 g), percentage mean weight gain (278.05±4.59%), and Specific Growth rate (7.41±0.08 g) were obtained in G3 fed with 10g/kg of . While the lowest final weight (38.00±4.58 g), average daily growth (0.28±0.07 g), percentage mean weight gain (68.23±16.66%), Specific Growth rate (4.84±0.50 g) was obtained in G1, fish fed with control diet. The study's results on blood parameters indicate that the fed 5 g/kg of yeast in G2 had the highest mean values of Red Blood Cells at 4.49±0.23 × 106 µ/l, Haemoglobin at 3.73±0.20 g/dl, and Mean Cell Haemoglobin Content at 46.03±0.07. While the fish fed 15 g/kg of yeast in G4 had the lowest mean values of 3.48±0.35 × 106 µ/l, 3.73±0.31 g/dl, and 31.80±0.05, respectively. The greatest mean values of White Blood Cells at 10.53±0.35 × 103 µ/l, Parked Cell Volume at 15.50±0.50%, and Mean (red) Cell Volume at 38.08±0.06 were observed in fish fed with the control diet. Fish given 5 g/kg (G2) had the greatest levels of total protein, glucose, globulin, and cholesterol, with mean values of 62.00±0.93 g/dl, 14.30±0.20 g/dl, 48.00±1.00 and 3.34±0.05 g/dl respectively.

Conclusion

The study suggests that increasing yeast concentration in diets increases mucosa surface area and promotes nutrient absorption, with minimal adverse effects on intestinal histology, biochemical parameters, and haematology indices of .

Loading

Article metrics loading...

/content/journals/cnf/10.2174/0115734013357533250529050326
2025-07-11
2025-09-24
Loading full text...

Full text loading...

References

  1. El-Sayed A.F.M. Fitzsimmons K. From Africa to the world - The journey of Nile tilapia. Rev. Aquacult. 2023 15 S1 6 21 10.1111/raq.12738
    [Google Scholar]
  2. Bonham V. Oreochromis niloticus (Nile tilapia). 2022 Available from: https://www.cabidigitallibrary.org/doi/pdf/10.1079/cabicompendium.72086
    [Google Scholar]
  3. Hoseinifar S.H. Ashouri G. Marisaldi L. Reducing the use of antibiotics in European aquaculture with vaccines, functional feed additives and optimization of the gut microbiota. J. Mar. Sci. Eng. 2024 12 2 204 10.3390/jmse12020204
    [Google Scholar]
  4. Yuan X. Lv Z. Zhang Z. Han Y. Liu Z. Zhang H. A review of antibiotics, antibiotic resistant bacteria, and resistance genes in aquaculture: Occurrence, contamination, and transmission. Toxics 2023 11 5 420 10.3390/toxics11050420 37235235
    [Google Scholar]
  5. Tian M. He X. Feng Y. Pollution by antibiotics and antimicrobial resistance in livestock and poultry manure in China, and countermeasures. Antibiotics (Basel) 2021 10 5 539 10.3390/antibiotics10050539 34066587
    [Google Scholar]
  6. Food and Agriculture Organization of the United Nations, issuing body, and issuing body World Health Organization. Probiotics in Food: Health and Nutritional Properties and Guidelines for Evaluation. Rome: World Health Organization 2006 https://openknowledge.fao.org/server/api/core/bitstreams/382476b3-4d54-4175-803f-2f26f3526256/content
    [Google Scholar]
  7. Okasha L.A. Abdellatif J.I. Abd-Elmegeed O.H. Sherif A.H. Overview on the role of dietary Spirulina platensis on immune responses against Edwardsiellosis among Oreochromis niloticus fish farms. BMC Vet. Res. 2024 20 1 290 10.1186/s12917‑024‑04131‑7 38965554
    [Google Scholar]
  8. Dawood M.A.O. Koshio S. Recent advances in the role of probiotics and prebiotics in carp aquaculture: A review. Aquaculture 2016 454 243 251 10.1016/j.aquaculture.2015.12.033
    [Google Scholar]
  9. Dawood M.A.O. Koshio S. Ishikawa M. El-Sabagh M. Esteban M.A. Zaineldin A.I. Probiotics as an environment-friendly approach to enhance red sea bream, Pagrus major growth, immune response and oxidative status. Fish Shellfish Immunol. 2016 57 170 178 10.1016/j.fsi.2016.08.038 27542618
    [Google Scholar]
  10. Dawood M.A.O. Zommara M. Eweedah N.M. Helal A.I. The evaluation of growth performance, blood health, oxidative status and immune-related gene expression in Nile tilapia (Oreochromis niloticus) fed dietary nanoselenium spheres produced by lactic acid bacteria. Aquaculture 2020 515 734571 10.1016/j.aquaculture.2019.734571
    [Google Scholar]
  11. Nayak S.K. Probiotics and immunity: A fish perspective. Fish Shellfish Immunol. 2010 29 1 2 14 10.1016/j.fsi.2010.02.017 20219683
    [Google Scholar]
  12. Abu-Elala N. Marzouk M. Moustafa M. Use of different Saccharomyces cerevisiae biotic forms as immune-modulator and growth promoter for Oreochromis niloticus challenged with some fish pathogens. Int. J. Vet. Sci. Med. 2013 1 1 21 29 10.1016/j.ijvsm.2013.05.001
    [Google Scholar]
  13. Yang X. Chi S. Tan B. Yeast hydrolysate helping the complex plant proteins to improve the growth performance and feed utilization of Litopenaeus vannamei. Aquacult. Rep. 2020 17 100375 10.1016/j.aqrep.2020.100375
    [Google Scholar]
  14. Burr G. Hume M. Ricke S. Nisbet D. Gatlin D. A preliminary in vitro assessment of GroBiotic®-A, brewer’s yeast and fructooligosaccharide as prebiotics for the red drum Sciaenops ocellatus. J. Environ. Sci. Health B 2008 43 3 253 260 10.1080/03601230701771438 18368546
    [Google Scholar]
  15. He S. Zhou Z. Meng K. Effects of dietary antibiotic growth promoter and Saccharomyces cerevisiae fermentation product on production, intestinal bacterial community and non-specific immunity of hybrid tilapia (Oreochromis niloticus female x Oreochromis aureus male). J. Anim. Sci. 2011 89 84 92 10.2527/jas.2010‑3032 20852079
    [Google Scholar]
  16. Majharul Islam S.M. Fazle Rohani M.D. Shahjahan M. D: Probiotic yeast enhances growth performance of Nile tilapia (Oreochromis niloticus) through morphological modifications of intestine. Aquacult. Rep. 2021 21 100800 10.1016/j.aqrep.2021.100800
    [Google Scholar]
  17. Li P. Gatlin D.M. Evaluation of brewers yeast (Saccharomyces cerevisiae) as a feed supplement for hybrid striped bass (Morone chrysops×M. saxatilis). Aquaculture 2003 219 1-4 681 692 10.1016/S0044‑8486(02)00653‑1
    [Google Scholar]
  18. Taoka Y. Maeda H. Jo J.Y. Use of live and dead probiotic cells in tilapia Oreochromis niloticus. Fish. Sci. 2006 72 4 755 766 10.1111/j.1444‑2906.2006.01215.x
    [Google Scholar]
  19. Molook P. Kamali A. Hajimoradloo A. Alizadeh M. Ghorbani R. Effect of using yeast (Saccharomyces cerevisiae) as probiotic on growth parameters, survival and carcass quality in rainbow trout Oncorhynchus mykis fry. Int. Aquatic Res 2009 1 39 44
    [Google Scholar]
  20. Salnur S. Gultepe N. Hossu B. Replacement of fish meal by yeast (Saccharomyces cerevisiae): Effects on Gilthead Sea bream (Sparus aurata). J. Anim. Vet. Adv. 2009 8 12 2557 2561
    [Google Scholar]
  21. Banu M.R. Akter S. Islam M.R. Mondol M.N. Hossain M.A. Probiotic yeast enhanced growth performance and disease resistance in freshwater catfish gulsa tengra, Mystus cavasius. Aquacult. Rep. 2020 16 100237 10.1016/j.aqrep.2019.100237
    [Google Scholar]
  22. Sherif A.H. Khalil R.H. Tanekhy M. Sabry N.M. Harfoush M.A. Elnagar M.A. Lactobacillus plantarum ameliorates the immunological impacts of titanium dioxide nanoparticles (rutile) in Oreochromis niloticus. Aquacult. Res. 2022 53 10 3736 3747 10.1111/are.15877
    [Google Scholar]
  23. Esmaeili N. Blood performance: A new formula for fish growth and health. Biology (Basel) 2021 10 12 1236 10.3390/biology10121236 34943151
    [Google Scholar]
  24. Seibel H. Baßmann B. Rebl A. Blood will tell: What hematological analyses can reveal about fish welfare. Front. Vet. Sci. 2021 8 616955 10.3389/fvets.2021.616955 33860003
    [Google Scholar]
  25. Ansari F. Lee C-C. Rashidimehr A. The role of probiotics in improving food safety: Inactivation of pathogens and biological toxins. Curr. Pharm. Biotechnol. 2023 25 8 962 980 10.2174/1389201024666230601141627 37264621
    [Google Scholar]
  26. Mendonça A.A. Pinto-Neto W.P. da Paixão G.A. Santos D.S. De Morais M.A. De Souza R.B. Journey of the probiotic bacteria: Survival of the fittest. Microorganisms 2022 11 1 95 10.3390/microorganisms11010095 36677387
    [Google Scholar]
  27. Oniszczuk A. Oniszczuk T. Gancarz M. Szymańska J. Role of gut microbiota, probiotics and prebiotics in the cardiovascular diseases. Molecules 2021 26 4 1172 10.3390/molecules26041172 33671813
    [Google Scholar]
  28. Parapouli M. Vasileiadi A. Afendra A.S. Hatziloukas E. Saccharomyces cerevisiae and its industrial applications. AIMS Microbiol. 2020 6 1 1 32 10.3934/microbiol.2020001 32226912
    [Google Scholar]
  29. Raghavan V. Aquadro C.F. Alani E. Baker’s yeast clinical isolates provide a model for how pathogenic yeasts adapt to stress. Trends Genet. 2019 35 11 804 817 10.1016/j.tig.2019.08.002 31526615
    [Google Scholar]
  30. Ghosh K. Harikrishnan R. Mukhopadhyay A. Ringø E. Fungi and actinobacteria: Alternative probiotics for sustainable aquaculture. Fishes 2023 8 12 575 10.3390/fishes8120575
    [Google Scholar]
  31. Eldessouki EA, Salama SSA, Mohamed R, Sherif AH. Using nutraceutical to alleviate transportation stress in the Nile tilapia. Egypt J Aquat Biol Fish 2023 27 1 413 429 10.21608/ejabf.2023.287741
    [Google Scholar]
  32. Sherif A.H. Farag E.A.H. Mahmoud A.E. Temperature fluctuation alters immuno-antioxidant response and enhances the susceptibility of Oreochromis niloticus to Aeromonas hydrophila challenge. Aquacult. Int. 2024 32 2 2171 2184 10.1007/s10499‑023‑01263‑9
    [Google Scholar]
  33. Abidemi-Iromini A.O. Assessment of stomach contents of Oreochromis niloticus from the Lagos Lagoon, Nigeria. Int J Fish Aquac 2019 11 1 1 6 10.5897/IJFA2018.0687
    [Google Scholar]
  34. Ogutu-Ohwayo R. Wandera S.B. Kamanyi J.R. Fishing gear selectivity for Lates niloticus L., Oreochromis niloticus L. and Rastrineobola argentea P. in Lakes Victoria, Kyoga and Nabugabo. Uganda J Agric Sci 1998 3 33 38
    [Google Scholar]
  35. Obaroh I.O. Nzeh G.C. Oguntoye S.O. Bawa D.Y. Growth response of Oreochromis niloticus (L) fed crude extract of Azadirachta indica saponins. IOSR J. Pharm. Biol. Sci. 2014 9 3 44 48 10.9790/3008‑09334448
    [Google Scholar]
  36. AOAC Official Method of Analysis of Association of Analytical Chemists International. 17th Edition Horowitz, Maryland 2000
    [Google Scholar]
  37. Hung S.S.O. Lutes P.B. Conte F.S. Storebakken T. Growth and feed efficiency of white sturgeon (Acipenser transmontanus) sub-yearlings at different feeding rates. Aquaculture 1989 80 1-2 147 153 10.1016/0044‑8486(89)90280‑9
    [Google Scholar]
  38. Pouomonge V. Mbonglang J. Effect of feeding rate on the growth of tilapia (Oreochromis niloticus) in earthen ponds. Bamidegh 1993 45 147 153
    [Google Scholar]
  39. Bowen R.A.R. Remaley A.T. Interferences from blood collection tube components on clinical chemistry assays. Biochem. Med. (Zagreb) 2014 24 1 31 44 10.11613/BM.2014.006 24627713
    [Google Scholar]
  40. Crosado B. Löffler S. Ondruschka B. Zhang M. Zwirner J. Hammer N. Phenoxyethanol-based embalming for anatomy teaching: An 18 years’ experience with crosado embalming at the University of Otago in New Zealand. Anat. Sci. Educ. 2020 13 6 778 793 10.1002/ase.1933 31758863
    [Google Scholar]
  41. Ozório R.O.A. Portz L. Borghesi R. Cyrino J.E.P. Effects of dietary yeast (Saccharomyces cerevisia) supplementation in practical diets of tilapia (Oreochromis niloticus). Animals (Basel) 2012 2 1 16 24 10.3390/ani2010016 26486773
    [Google Scholar]
  42. Obaroh I.O. Adamu I. Dikko O.C. Joseph E.K. Arilewo F.V. Sani K.A. Changes in gonad of Nile tilapia (Oreochromis niloticus) fed with crude extract of guava (Psidium guajava Linnaeus) leaves. J. Appl. Sci. Environ. Manag. 2018 22 6 895 89 10.4314/jasem.v22i6.9
    [Google Scholar]
  43. Sun J. Li Y. Ren T. Effects of yeast extract supplemented in diet on growth performance, digestibility, intestinal histology, and the antioxidant capacity of the juvenile turbot (Scophthalmus maximus). Front. Physiol. 2024 15 1329721 10.3389/fphys.2024.1329721 38328303
    [Google Scholar]
  44. Sheikhzadeh N. Heidarieh M. Karimi Pashaki A. Nofouzi K. Ahrab Farshbafi M. Akbari M. Hilyses®, fermented Saccharomyces cerevisiae, enhances the growth performance and skin non-specific immune parameters in rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol. 2012 32 6 1083 1087 10.1016/j.fsi.2012.03.003 22440584
    [Google Scholar]
  45. Lara-Flores M. Olvera-Novoa M.A. Guzmán-Méndez B.E. López-Madrid W. Use of the bacteria Streptococcus faecium and Lactobacillus acidophilus, and the yeast Saccharomyces cerevisiae as growth promoters in Nile tilapia (Oreochromis niloticus). Aquaculture 2003 216 1-4 193 201 10.1016/S0044‑8486(02)00277‑6
    [Google Scholar]
  46. Bhim Kumari S. Ugyen L. Gyembo T. Tenzin P. Effect of yeast (Saccharomyces cerevisiae) as feed additive on growth performance of weaned piglets. Bhutan J Animal Sci 2024 8 1 11 17
    [Google Scholar]
  47. Welker T.L. Lim C. Use of probiotics in diets of tilapia. J. Aquac. Res. Dev. 2011 14 S1 1 8 10.4172/2155‑9546.S1‑014
    [Google Scholar]
  48. Forough M. Seyed M.M. Mohammad Z. Ebtesam A. Effect of dietary probiotic, Saccharomyces cerevisiae on growth performance, survival rate and body biochemical composition of three spot cichlid (Cichlasoma trimaculatum). Aquacult. Aquarium Conserv. Legis. 2016 9 3 451 457
    [Google Scholar]
  49. Buts J.P. Keyser N.D. Raedemaeker L.D. Saccharomyces boulardii enhances rat intestinal enzyme expression by endoluminal release of polyamines. Pediatr. Res. 1994 36 4 522 527 10.1203/00006450‑199410000‑00019 7816529
    [Google Scholar]
  50. Marzouk M.S. Moustafa M.M. Nermeen M.M. The influence of some probiotics on the growth performance and intestinal microbial flora of Oreochromis niloticus. 8th International Symposium on Tilapia in Aquacultur 2008 1059 1071
    [Google Scholar]
  51. Khatun M.S. Saha S.B. Effect of differnt probiotic on growth, survival and production of monosex Oreochromis niloticus. Int. J. Fish. Aquat. Stud. 2017 5 1 346 351
    [Google Scholar]
  52. Farzaneh M. Mohammad K.K. Kaivan H. Effects of pre- and probiotics on growth, survival, body composition, and hematology of common carp (Cyprinus carpio L.) fry from the Caspian Sea. Turk. J. Fish. Aquat. Sci. 2018 18 597 602
    [Google Scholar]
  53. Talpur A.D. Memon A.J. Khan M.I. Ikhwanuddin M. Danish M.M. Daniel A. Inhibition of pathogens by lactic acid bacteria and application as water additive multi isolates in early stages larviculture of P. pelagicus (Linnaeus, 1758). J. Anim. Plant Sci. 2012 22 54 64
    [Google Scholar]
  54. Andani H.R.R. Tukmechi A. Meshkini S. Sheikhzadeh N. Antagonistic activity of two potential probiotic bacteria from fish intestines and investigation of their effects on growth performance and immune response in rainbow trout (Oncorhynchus mykiss). J. Appl. Ichthyology 2012 28 5 728 734 10.1111/j.1439‑0426.2012.01974.x
    [Google Scholar]
  55. Han B. Long W. He J. Liu Y. Si Y. Tian L. Effects of dietary Bacillus licheniformis on growth performance, immunological parameters, intestinal morphology and resistance of juvenile Nile tilapia (Oreochromis niloticus) to challenge infections. Fish Shellfish Immunol. 2015 46 2 225 231 10.1016/j.fsi.2015.06.018 26108035
    [Google Scholar]
  56. Lazado C.C. Caipang C.M.A. Mucosal immunity and probiotics in fish. Fish Shellfish Immunol. 2014 39 1 78 89 10.1016/j.fsi.2014.04.015 24795079
    [Google Scholar]
  57. Akhter N. Wu B. Memon A.M. Mohsin M. Probiotics and prebiotics associated with aquaculture: A review. Fish Shellfish Immunol. 2015 45 2 733 741 10.1016/j.fsi.2015.05.038 26044743
    [Google Scholar]
  58. Chowdhury M.A. Roy N.C. Probiotic supplementation for enhanced growth of striped catfish (Pangasianodon hypophthalmus) in cages. Aquacult. Rep. 2020 18 100504 10.1016/j.aqrep.2020.100504
    [Google Scholar]
  59. Lawal M.O. Lawal A.Z. Adewumi G.A. Mudiaga A. Growth, nutrient utilization, haematology and biochemical parameters of African catfish (Clarias gariepinus, Burchell, 1822) fed with varying levels of Bacillus subtilis. Agrosearch 2019 19 1 13 10.4314/agrosh.v19i1.2
    [Google Scholar]
  60. Sherif A.H. Khalil R.H. Talaat T.S. Baromh M.Z. Elnagar M.A. Dietary nanocomposite of vitamin C and vitamin E enhanced the performance of Nile tilapia. Sci. Rep. 2024 14 1 15648 10.1038/s41598‑024‑65507‑1 38977810
    [Google Scholar]
  61. El-Shenawy N.S. Risk assessment of some heavy metals in two fish species Oreochromis Niloticus and Clarias Gariepinus from Sharqia Province, Egypt. J Vet Med Res 2021 8 1 1204
    [Google Scholar]
  62. Hamid S. Ahmed F. Ali I. Physical & chemical characteristics of blood of two fish species (Oreochromis niloticus and Clarias lazera). World Vet J 2013 3 1 17 20
    [Google Scholar]
  63. Ahmed I. Sheikh Z.A. Comparative study of hematological parameters of snow trout Schizopyge plagiostomus and Schizopyge niger inhabiting two different habitats. Eur. Zool. J. 2020 87 1 12 19 10.1080/24750263.2019.1705647
    [Google Scholar]
  64. Witeska M. Kondera E. Ługowska K. Bojarski B. Hematological methods in fish – Not only for beginners. Aquaculture 2022 547 737498 10.1016/j.aquaculture.2021.737498
    [Google Scholar]
  65. Salah W Gaafar AY Tanekhy M Efficacy of dietary Saccharomyces cerevisiae supplementation with inclusion of Q Z Toss™ on Nile Tilapia. Damanhour J Vet Sci 2019 3 1 10.21608/djvs.2019.18115.1004
    [Google Scholar]
  66. Huyben D. Vidakovic A. Sundh H. Sundell K. Kiessling A. Lundh T. Haematological and intestinal health parameters of rainbow trout are influenced by dietary live yeast and increased water temperature. Fish Shellfish Immunol. 2019 89 525 536 10.1016/j.fsi.2019.04.047 30999040
    [Google Scholar]
  67. Ringø E. Song S.K. Application of dietary supplements (synbiotics and probiotics in combination with plant products and β-glucans) in aquaculture. Aquac. Nutr. 2016 22 1 4 24 10.1111/anu.12349
    [Google Scholar]
  68. Sharma S. Dahiya T. Jangra M. Muwal A. Singh C. Saccharomyces cerevisiae as probiotics in aquaculture. J. Entomol. Zool. Stud. 2022 10 1 101 104 10.22271/j.ento.2022.v10.i1b.8918
    [Google Scholar]
  69. Bittencourt N.L.R. Molinari L. Oliveira D. Haematological and biochemical values for Nile tilapia Oreochromis niloticus cultured in semi-intensive system. Acta Sci. Biol. Sci. 2003 25 2 385 389
    [Google Scholar]
  70. Elnagar M.A. Khalil R.H. Talaat T.S. Sherif A.H. A blend of chitosan-vitamin C and vitamin E nanoparticles robust the immunosuppressed- status in Nile tilapia treated with salt. BMC Vet. Res. 2024 20 1 331 10.1186/s12917‑024‑04180‑y 39039592
    [Google Scholar]
  71. Sayed A.E.D.H. Idriss S.K. Abdel-Ghaffar S.K. Hussein A.A.A. Haemato-biochemical, mutagenic, and histopathological changes in Oreochromis niloticus exposed to BTX. Environ. Sci. Pollut. Res. Int. 2023 30 21 59301 59315 10.1007/s11356‑023‑26604‑2 37004609
    [Google Scholar]
  72. Belinskaia D.A. Voronina P.A. Goncharov N.V. Integrative role of albumin: Evolutionary, biochemical and pathophysiological aspects. J. Evol. Biochem. Physiol. 2021 57 6 1419 1448 10.1134/S002209302106020X 34955553
    [Google Scholar]
  73. Andreeva A.M. Evolutionary transformations of albumin using the example of model species of jawless agnatha and bony jawed fish (review). Inland Water Biol. 2022 15 5 641 658 10.1134/S1995082922050029
    [Google Scholar]
  74. Oluwalola O.I. Fagbenro O.A. Adebayo O.T. Haematological and serum biochemical profiles of Nile tilapia, Oreochromis niloticus from different culture enclosures. Int J Fish Aquat 2020 8 3 489 493
    [Google Scholar]
  75. Jimoh W.A. Ayeloja A.A. Ajasin F.O. Okemakin F.Y. Abdusalami S.A. Adekunle O.F. Some haematological and biochemical profile of blood of Nile tilapia (Oreochromis niloticus) fed on diets containing watermelon (Citrullus lanatus) seedmeal. Bayero J. Pure Appl. Sci. 2015 8 1 109 114 10.4314/bajopas.v8i1.19
    [Google Scholar]
  76. Obaroh IO Keta JN Elinge M Nwaogu J Changes in the histology of Oreochromis niloticus liver Fed crude extract of Azadirachta indica Saponins. Res J Recent Sci 2015 4 ISC-2014 32 6
    [Google Scholar]
  77. Obaroh I.O. Keta J.N. Fathalla S.I. Abalkhail A. Behiry A.E. Alkafafy M.A. The potential impact of Moringa Oleifera for diminishing the microbial contamination and prolonging the quality and shelf-life of chilled meat. J. Pure Appl. Microbiol. 2020 15 2 826 838 10.3923/ajbs.2020.335.340
    [Google Scholar]
  78. Mazziotta C. Tognon M. Martini F. Torreggiani E. Rotondo J.C. Probiotics mechanism of action on immune cells and beneficial effects on human health. Cells 2023 12 1 184 10.3390/cells12010184 36611977
    [Google Scholar]
  79. Dawood M.A.O. Eweedah N.M. Khalafalla M.M. Saccharomyces cerevisiae increases the acceptability of Nile tilapia (Oreochromis niloticus) to date palm seed meal. Aquacult. Rep. 2020 17 100314 10.1016/j.aqrep.2020.100314
    [Google Scholar]
  80. El-Nokrashy A.M. El-Banna R.A. Edrise B.M. Impact of nucleotide enriched diets on the production of gilthead seabream, Sparus aurata fingerlings by modulation of liver mitochondrial enzyme activitity, antioxidant status, immune gene expression, and gut microbial ecology. Aquaculture 2021 535 736398 10.1016/j.aquaculture.2021.736398
    [Google Scholar]
  81. Hossain M.K. Hossain M.M. Mim Z.T. Khatun H. Hossain M.T. Shahjahan M. Multi-species probiotics improve growth, intestinal microbiota and morphology of Indian major carp mrigal Cirrhinus cirrhosus. Saudi J. Biol. Sci. 2022 29 9 103399 10.1016/j.sjbs.2022.103399 35983478
    [Google Scholar]
  82. Ringø E. Harikrishnan R. Soltani M. Ghosh K. The effect of gut microbiota and probiotics on metabolism in fish and shrimp. Animals (Basel) 2022 12 21 3016 10.3390/ani12213016 36359140
    [Google Scholar]
  83. Abareethan A. Amsath A. Characterization and evaluation of probiotic fish feed. Int J Pure Appl Zool 2015 3 2 148 153
    [Google Scholar]
  84. Elahi S.S. Mirnejad R. Kazempoor R. Sotoodehnejadnematalahi F. Study of the histopathologic effects of probiotic Lactobacillus acidophilus in exposure to E. coli O157: H7 in zebrafish intestine. Iran. Red Crescent Med. J. 2020 22 4 6
    [Google Scholar]
  85. Obaroh I.O. Nzeh G.C. Oguntoye S.O. Control of reproduction in Oreochromis niloticus (L) using crude extract of Azadirachta indica saponin. Adv. Environ. Biol. 2012 6 4 1353 1356
    [Google Scholar]
/content/journals/cnf/10.2174/0115734013357533250529050326
Loading
/content/journals/cnf/10.2174/0115734013357533250529050326
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test