Skip to content
2000
Volume 21, Issue 6
  • ISSN: 1573-4013
  • E-ISSN: 2212-3881

Abstract

Background

Nitrate and acrylamide as carcinogenic substances are increased during the baking process of foods, such as cereals.

Objective

This study aimed to reduce the amount of acrylamide and nitrate in three types of cereals, wheat, barley, and maize, by treatment with probiotic bacteria and several plant extracts.

Methods

Three types of plant extracts were prepared from , and leaves and stem. Also, subspecies rhamnosus LCR6013 was used as probiotic bacteria for bacterial treatment. Acrylamide and nitrate were measured by HPLC and UV-vis spectrophotometry.

Results

Adding plant extracts and LCR 6013 bacteria could reduce the level of nitrate and acrylamide in the cereal samples. Among plant extracts, nigella could reduce nitrate in all samples below detectable levels. Also, it was effective in reducing acrylamide content from samples to the extent of 87% in barley, 60% in wheat, and 100% in corn. Bacterial treatment could also reduce nitrate levels between 70 and 100% while having a variable impact on decreasing acrylamide. One-way analysis of variance (ANOVA) was used to determine statistically significant results.

Conclusion

It was concluded that pre-baking exposure to plant extract and bacteria is effective in the reduction of nitrate and acrylamide quantity in the heat processing of cereals.

Loading

Article metrics loading...

/content/journals/cnf/10.2174/0115734013336390250218062311
2025-02-24
2025-10-26
Loading full text...

Full text loading...

References

  1. BaşaranB. ÇuvalcıB. KabanG. Dietary acrylamide exposure and cancer risk: A systematic approach to human epidemiological studies.Foods202312234610.3390/foods1202034636673439
    [Google Scholar]
  2. BorrelliR.C. ViscontiA. MennellaC. AneseM. FoglianoV. Chemical characterization and antioxidant properties of coffee melanoidins.J. Agric. Food Chem.200250226527653310.1021/jf025686o12381145
    [Google Scholar]
  3. MichalakJ. Czarnowska-KujawskaM. KlepackaJ. GujskaE. Effect of microwave heating on the acrylamide formation in foods.Molecules20202518414010.3390/molecules2518414032927728
    [Google Scholar]
  4. MesíasM. MoralesF.J. Acrylamide in coffee: Estimation of exposure from vending machines.J. Food Compos. Anal.20164881210.1016/j.jfca.2016.02.005
    [Google Scholar]
  5. JungM.Y. BaekC.H. MaY. LeeH.W. Acrylamide formation in air-fryer roasted legumes as affected by legume species and roasting degree: The correlation of acrylamide with asparagine and free sugars.Food Sci. Biotechnol.202433102333234210.1007/s10068‑024‑01633‑w39145120
    [Google Scholar]
  6. LyonF. Some industrial chemicals.Human Immunodeficiency Viruses and Human T-Cell Lymphotropic Viruses.World Health Organization International Agency for Research on Cancer1994389433
    [Google Scholar]
  7. ÇelikF.S. CoraT. YiginA.K. Investigation of genotoxic and cytotoxic effects of acrylamide in HEK293 cell line.J. Cancer Prev. Curr. Res.20189526026410.15406/jcpcr.2018.09.00365
    [Google Scholar]
  8. ZamaniE. ShokrzadehM. FallahM. ShakiF. A review of acrylamide toxicity and its mechanism. Pharm. Biomed. Res.,20173117
    [Google Scholar]
  9. WaltonB. KaplanN. HrdlickaB. MehtaK. ArendtL.M. Obesity induces DNA damage in mammary epithelial cells exacerbated by acrylamide treatment through CYP2E1-mediated oxidative stress.Toxics202412748410.3390/toxics1207048439058136
    [Google Scholar]
  10. AdaniG. FilippiniT. WiseL.A. HalldorssonT.I. BlahaL. VincetiM. Dietary intake of acrylamide and risk of breast, endometrial, and ovarian cancers: A systematic review and dose–response meta-analysis.Cancer Epidemiol. Biomarkers Prev.20202961095110610.1158/1055‑9965.EPI‑19‑162832169997
    [Google Scholar]
  11. Dimitrieska-StojkovikjE. AngeleskaA. Stojanovska-DimzoskaB. Hajrulai-MusliuZ. KocevaD. UzunovR. IlievskaG. StojkovicG. JankuloskiD. Acrylamide content in food commodities and its risk assessment in the population.J. Food Qual. Hazards Control2019610110810.18502/jfqhc.6.3.1383
    [Google Scholar]
  12. MaanA.A. AnjumM.A. KhanM.K.I. NazirA. SaeedF. AfzaalM. AadilR.M. Acrylamide formation and different mitigation strategies during food processing: A review.Food Rev. Int.2022381708710.1080/87559129.2020.1719505
    [Google Scholar]
  13. KarwowskaM. KononiukA. Nitrates/nitrites in food—Risk for nitrosative stress and benefits.Antioxidants20209324110.3390/antiox903024132188080
    [Google Scholar]
  14. SalehzadehH. MalekiA. RezaeeR. ShahmoradiB. PonnetK. The nitrate content of fresh and cooked vegetables and their health-related risks.PLoS One2020151e022755110.1371/journal.pone.022755131917821
    [Google Scholar]
  15. SeyyedsalehiM.S. MohebbiE. TourangF. SasanfarB. BoffettaP. ZendehdelK. Association of dietary nitrate, nitrite, and N-nitroso compounds intake and gastrointestinal cancers: A systematic review and meta-analysis.Toxics202311219010.3390/toxics1102019036851064
    [Google Scholar]
  16. ZhongL. BondonnoN.P. SiervoM. BondonnoC.P. Editorial: Dietary nitrate: Friend or foe.Front. Nutr.202411151681110.3389/fnut.2024.151681139659909
    [Google Scholar]
  17. GovindarajuI. SanaM. ChakrabortyI. RahmanM.H. BiswasR. MazumderN. Dietary acrylamide: A detailed review on formation, detection, mitigation, and its health impacts.Foods202413455610.3390/foods1304055638397533
    [Google Scholar]
  18. KurutasE.B. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: Current state.Nutr. J.20151517110.1186/s12937‑016‑0186‑527456681
    [Google Scholar]
  19. PilipovićK. Jurišić GrubešićR. DolenecP. KučićN. JuretićL. Mršić-PelčićJ. Plant-based antioxidants for prevention and treatment of neurodegenerative diseases: Phytotherapeutic potential of laurus nobilis, aronia melanocarpa, and celastrol.Antioxidants202312374610.3390/antiox1203074636978994
    [Google Scholar]
  20. HreliaS. AngeloniC. New mechanisms of action of natural antioxidants in health and disease.Antioxidants20209434410.3390/antiox904034432340104
    [Google Scholar]
  21. MalcangiG. PatanoA. CiociaA.M. NettiA. ViapianoF. PalumboI. TrilliI. GuglielmoM. InchingoloA.D. DipalmaG. InchingoloF. MinettiE. InchingoloA.M. Benefits of natural antioxidants on oral health.Antioxidants2023126130910.3390/antiox1206130937372039
    [Google Scholar]
  22. LourençoS.C. Moldão-MartinsM. AlvesV.D. Antioxidants of natural plant origins: From sources to food industry applications.Molecules20192422413210.3390/molecules2422413231731614
    [Google Scholar]
  23. AL-OqlaF.M. SapuanS.M. AnwerT. JawaidM. HoqueM.E. Natural fiber reinforced conductive polymer composites as functional materials: A review.Synth. Met.2015206425410.1016/j.synthmet.2015.04.014
    [Google Scholar]
  24. HeckmannM. StadlbauerV. DrotarovaI. GramatteT. FeichtingerM. ArnautV. AtzmüllerS. SchwarzingerB. RöhrlC. Blank-LandeshammerB. WeghuberJ. Identification of oxidative-stress-reducing plant extracts from a novel extract library—comparative analysis of cell-free and cell-based in vitro assays to quantitate antioxidant activity.Antioxidants202413329710.3390/antiox1303029738539831
    [Google Scholar]
  25. ZhangY.J. GanR.Y. LiS. ZhouY. LiA.N. XuD.P. LiH.B. Antioxidant phytochemicals for the prevention and treatment of chronic diseases.Molecules20152012211382115610.3390/molecules20121975326633317
    [Google Scholar]
  26. Hammoudi HalatD. KrayemM. KhaledS. YounesS. A focused insight into thyme: Biological, chemical, and therapeutic properties of an indigenous Mediterranean herb.Nutrients20221410210410.3390/nu1410210435631245
    [Google Scholar]
  27. Prasanth ReddyV. Ravi VitalK. VarshaP. SatyamS. Review on Thymus vulgaris traditional uses and pharmacological properties.Med. Aromat. Plants2014316421670412
    [Google Scholar]
  28. MirajS. KianiS. Study of pharmacological effect of Thymus vulgaris: A review.Pharm. Lett.201689315320
    [Google Scholar]
  29. AeschbachR. LöligerJ. ScottB.C. MurciaA. ButlerJ. HalliwellB. AruomaO.I. Antioxidant actions of thymol, carvacrol, 6-gingerol, zingerone and hydroxytyrosol.Food Chem. Toxicol.1994321313610.1016/0278‑6915(84)90033‑47510659
    [Google Scholar]
  30. KowalczykA. PrzychodnaM. SopataS. BodalskaA. FeckaI. Thymol and thyme essential oil—new insights into selected therapeutic applications.Molecules20202518412510.3390/molecules2518412532917001
    [Google Scholar]
  31. GumusR. ErcanN. ImikH. The effect of thyme essential oil (Thymus vulgaris) added to quail diets on performance, some blood parameters, and the antioxidative metabolism of the serum and liver tissues.Rev. Bras. Cienc. Avic.201719229730410.1590/1806‑9061‑2016‑0403
    [Google Scholar]
  32. NietoG. A review on applications and uses of thymus in the food industry.Plants20209896110.3390/plants908096132751488
    [Google Scholar]
  33. KarimiZ. Mirza A.A. Ezzati N.D.J. DehghanP. Nigella sativaand its derivatives as food toxicity protectant agents.Adv. Pharm. Bull.201991223710.15171/apb.2019.00431011555
    [Google Scholar]
  34. ChaturvediS. GuptaR. GuptaN. AnsariN. GhaziN. NaseemA. ChaudhryR.K. AnsariU.A. KhanA. JahanS. Nigella sativa and its chemical constituents: A promising approach against neurodegenerative disorders.Black Seeds (Nigella sativa).Elsevier202214917610.1016/B978‑0‑12‑824462‑3.00013‑5
    [Google Scholar]
  35. AgbariaR. GabarinA. DahanA. Ben-ShabatS. Anticancer activity of Nigella sativa (black seed) and its relationship with the thermal processing and quinone composition of the seed.Drug Des. Devel. Ther.201593119312426124636
    [Google Scholar]
  36. MalikU. PalD. Nigella sativa (Black Cumin) seed: A natural source of antioxidant and antiproliferative agent.Seeds: Anti-proliferative Storehouse for Bioactive Secondary Metabolites.Springer202442745010.1007/978‑981‑97‑3014‑8_14
    [Google Scholar]
  37. MandalS. MandalM. Coriander (Coriandrum sativum L.) essential oil: Chemistry and biological activity.Asian Pac. J. Trop. Biomed.20155642142810.1016/j.apjtb.2015.04.001
    [Google Scholar]
  38. AgrawalM. SinghalM. JasoriaY. ChaudharyH. PrajapatiB.G. Pharmacological aspects of coriander essential oils.Pharmacological Aspects of Essential Oils.CRC Press2024227242
    [Google Scholar]
  39. DarugheF. BarzegarM. SahariM. Antioxidant and antifungal activity of Coriander (Coriandrum sativum L.) essential oil in cake.Int. Food Res. J.201219312531260
    [Google Scholar]
  40. HajlaouiH. ArraouadiS. NoumiE. AouadiK. AdnanM. KhanM.A. KadriA. SnoussiM. Antimicrobial, antioxidant, anti-acetylcholinesterase, antidiabetic, and pharmacokinetic properties of Carum carvi L. and Coriandrum sativum L. essential oils alone and in combination.Molecules20212612362510.3390/molecules2612362534199316
    [Google Scholar]
  41. GhalebiM. HamidiS. NematiM. High-performance liquid chromatography determination of acrylamide after its extraction from potato chips.Pharma. Sci. 201925433834410.15171/PS.2019.42
    [Google Scholar]
  42. ArissetoA.P. de Figueiredo ToledoM.C. GovaertY. van LocoJ. FraselleS. DegroodtJ.M. A modified sample preparation for acrylamide determination in cocoa and coffee products.Food Anal. Methods200811495510.1007/s12161‑007‑9001‑4
    [Google Scholar]
  43. MastovskaK. LehotayS.J. Rapid sample preparation method for LC-MS/MS or GC-MS analysis of acrylamide in various food matrices.J. Agric. Food Chem.200654197001700810.1021/jf061330r16968055
    [Google Scholar]
  44. El haniO. KarratA. DiguaK. AmineA. Development of a simplified spectrophotometric method for nitrite determination in water samples.Spectrochim. Acta A Mol. Biomol. Spectrosc.2022267Pt 212057410.1016/j.saa.2021.12057434772633
    [Google Scholar]
  45. UddinR. IslamG.M.R. UddinM.Z. ThakurM.U. Development and validation of an effective and sensitive technique for nitrate determination in fruits and vegetables using HPLC/PDA.BMC Chem.202317110510.1186/s13065‑023‑01008‑y37620944
    [Google Scholar]
  46. CovielloD. PascaleR. CirielloR. SalviA.M. GuerrieriA. ContursiM. ScranoL. BufoS.A. CataldiT.R.I. BiancoG. Validation of an analytical method for nitrite and nitrate determination in meat foods for infants by ion chromatography with conductivity detection.Foods202099123810.3390/foods909123832899742
    [Google Scholar]
  47. NerdyN. De Lux PutraE. Spectrophotometric method for determination of nitrite and nitrate levels in broccoli and cauliflower with different fertilization treatment.Orient. J. Chem.20183462983299110.13005/ojc/340639
    [Google Scholar]
  48. MuthaiahP.M. GovindaswamyA. SemwalA.D. SharmaG.K. HPLC-UV quantitative analysis of acrylamide in snack foods of India.Def. Life Sci. J.201841455410.14429/dlsj.4.12190
    [Google Scholar]
  49. AbbasiM. BehbahaniM. RoumiM. Reduction of nitrate and acrylamide in heat-processed meats using treatment with Lactobacillus Casei and plant extracts.Curr. Nutr. Food Sci.202420786587410.2174/0115734013266678231108080412
    [Google Scholar]
  50. ZengS. ChenW. YeJ. YangC. Investigation on the contents of acrylamide in baked and fried foods.IOP Conf. Ser.: Earth Environ. Sci.512202001205810.1088/1755‑1315/512/1/012058
    [Google Scholar]
  51. AzhdarpoorA. KhosrozadehL. ShirdarrehM. Nitrate removal from water using complex of activated carbon with Fe3+.Water Sci. Technol. Water Supply20191941097110210.2166/ws.2018.157
    [Google Scholar]
  52. TaghipourH. HemmatiS. FaramarziE. SomiM.H. DastgiriS. NowrouzeP. Determination of nitrate concentration in consumed vegetables and estimation of that’s dietary intake in Shabestar and Khameneh City, northwest of Iran: Azar Cohort study.Prog. Nutr.201921336340
    [Google Scholar]
  53. ErkanN. AyranciG. AyranciE. Antioxidant activities of rosemary (Rosmarinus Officinalis L.) extract, blackseed (Nigella sativa L.) essential oil, carnosic acid, rosmarinic acid and sesamol.Food Chem.20081101768210.1016/j.foodchem.2008.01.05826050168
    [Google Scholar]
  54. El-ShawafA. El-ZamzamyF. MekkyT. Reduction of acrylamide formation in potato chips using natural antioxidants sources from plant extracts.Middle East J. Agric. Res.2014318999
    [Google Scholar]
  55. Nasiri EsfahaniB. KadivarM. ShahediM. Soleimanian-ZadS. Reduction of acrylamide in whole-wheat bread by combining lactobacilli and yeast fermentation.Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess.201734111904191410.1080/19440049.2017.137844428952425
    [Google Scholar]
  56. ColomboM. OliveiraA.E.Z. CarvalhoA.F. NeroL.A. Development of an alternative culture medium for the selective enumeration of Lactobacillus casei in fermented milk.Food Microbiol.201439899510.1016/j.fm.2013.11.00824387857
    [Google Scholar]
  57. KrishnakumarT. VisvanathanR. Acrylamide in food products: A review.J. Food Process. Technol.2014571
    [Google Scholar]
  58. LingnertH. GrivasS. JägerstadM. SkogK. TörnqvistM. ÅmanP. Acrylamide in food: Mechanisms of formation and influencing factors during heating of foods.Scand. J. Nutr.200246415917210.1080/110264802762225273
    [Google Scholar]
  59. ZahraN. SyedQ-A. KalimI. KhurshidZ. AhmadI. SaeedM.K. Determination of acrylamide in branded and non-branded potato chips by using high performance liquid chromatography.Pak. J. Anal. Environ. Chem.2018191919510.21743/pjaec/2018.06.10
    [Google Scholar]
  60. KhezerolouA. Alizadeh-SaniM. Zolfaghari FirouzsalariN. EhsaniA. Formation, properties, and reduction methods of acrylamide in foods: A review study.J. Nutr. Fasting Health.201865259
    [Google Scholar]
  61. MarkováL. CiesarováZ. KukurováK. ZielińskiH. PrzygodzkaM. BednárikováA. ŠimkoP. Influence of various spices on acrylamide content in buckwheat ginger cakes.Chem. Pap.2012661094995410.2478/s11696‑012‑0218‑3
    [Google Scholar]
  62. ZhangY. ZhangY. Formation and reduction of acrylamide in Maillard reaction: A review based on the current state of knowledge.Crit. Rev. Food Sci. Nutr.200747552154210.1080/1040839060092007017558658
    [Google Scholar]
  63. MousavinejadG. RezaeiK. KhodaiyanF. Reducing acrylamide in fried potato pancake using baker’s yeast, lactobacilli and microalgae.Qual. Assur. Saf. Crops Foods20157577978710.3920/QAS2014.0461
    [Google Scholar]
  64. KarimiS. GoudarziF. SoleimaniD. HazratianS. MahakiB. PourmehdiM. NachvakS.M. FattahiN. Evaluation of acrylamide and malondialdehyde levels in Tah-Dig of fried starchy foods: A case study in Iran.J. Food Meas. Charact.20221632434243910.1007/s11694‑022‑01343‑z
    [Google Scholar]
  65. MottramD.S. WedzichaB.L. DodsonA.T. Acrylamide is formed in the Maillard reaction.Nature2002419690644844910.1038/419448a12368844
    [Google Scholar]
  66. StadlerR.H. BlankI. VargaN. RobertF. HauJ. GuyP.A. RobertM.C. RiedikerS. Acrylamide from Maillard reaction products.Nature2002419690644945010.1038/419449a12368845
    [Google Scholar]
  67. KeramatJ. LeBailA. ProstC. JafariM. Acrylamide in baking products: A review article.Food Bioprocess Technol.20114453054310.1007/s11947‑010‑0495‑1
    [Google Scholar]
  68. ZiaratiP. Mir Mohammad-MakkiF. Removal of nitrate and nitrite from tomato derived products by lemon juice.Biosci. Biotechnol. Res. Asia201512Special-Edn276777210.13005/bbra/2258
    [Google Scholar]
  69. MartínezL. BastidaP. CastilloJ. RosG. NietoG. Green alternatives to synthetic antioxidants, antimicrobials, nitrates, and nitrites in clean label Spanish Chorizo.Antioxidants20198618410.3390/antiox806018431248107
    [Google Scholar]
  70. ChadzinikolauT. Formela-LuboińskaM. Nitrogen metabolism and antioxidant capacity of selected vegetables from organic and conventional crops.Appl. Sci.202313201117010.3390/app132011170
    [Google Scholar]
  71. KukhtynM. HoriukY. YaroshenkoT. Laiter-MoskaliukS. LevytskaV. ReshetnykA. Effect of lactic acid microorganisms on the content of nitrates in tomato in the process of pickling. East.-Eur. J. Enterp. Technol.20181116975
    [Google Scholar]
/content/journals/cnf/10.2174/0115734013336390250218062311
Loading
/content/journals/cnf/10.2174/0115734013336390250218062311
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): carcinogenic food; coriander; food safety; natural antioxidants; nigella; Thyme
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test