Skip to content
2000
Volume 21, Issue 4
  • ISSN: 1573-4013
  • E-ISSN: 2212-3881

Abstract

Background

Despite the potential role of vitamin D in the acute phase of COVID-19, studies on its prevalence and association with long COVID severity are limited, leaving the relationship between vitamin D levels and long COVID symptoms unclear.

Aim

The objective of this study was to investigate the prevalence of vitamin D deficiency in patients with fatigue or neuropsychiatric symptoms of long COVID and its correlation with the severity of symptoms.

Methods

A cross-sectional, single-center study was conducted at Thammasat University Hospital, Thailand. The study recruited participants between the ages of 18 and 60 years who had received a diagnosis of COVID-19 and had at least one long COVID symptom, including fatigue or neuropsychiatric symptoms. Vitamin D level was collected, and clinical severity was assessed using the Chalder Fatigue Scale (CFQ-11), Depression, Anxiety and Stress Scale-21 Items (DASS-21), Pittsburgh Sleep Quality Index (PSQI), Addenbrooke's Cognitive Examination III (ACE), and Trail Making Test A & B (TMT-A and TMT-B).

Results

A total of 82 patients were recruited; most were female (78%), with a mean age of 34.2 years. Most participants had a vitamin D deficiency (<20 ng/mL, 73.2%), accounting for 23.2% vitamin D insufficiency (20-30 ng/mL), and 3.6% had an adequate vitamin D level. Only gender was associated with vitamin D levels. Multivariable analysis demonstrated that the vitamin D level was not correlated with all clinical outcomes, including total CFQ, total DASS, DASS depression, DASS anxiety, total PSQI, total ACE score, and total TMT scores.

Conclusion

The prevalence of vitamin D insufficiency and deficiency was high in patients with long COVID, with female gender serving as predictors of lower vitamin D levels. However, no associations were found between vitamin D level and fatigue syndrome, depression, anxiety, sleep problems, or cognitive function.

Loading

Article metrics loading...

/content/journals/cnf/10.2174/0115734013330182240930072138
2024-10-11
2025-09-02
Loading full text...

Full text loading...

References

  1. NasserieT. HittleM. GoodmanS.N. Assessment of the frequency and variety of persistent symptoms among patients with COVID-19: A systematic review.JAMA Netw. Open202145e211141710.1001/jamanetworkopen.2021.1141734037731
    [Google Scholar]
  2. TaquetM. DerconQ. LucianoS. GeddesJ.R. HusainM. HarrisonP.J. Incidence, co-occurrence, and evolution of long-COVID features: A 6-month retrospective cohort study of 273,618 survivors of COVID-19.PLoS Med.2021189e100377310.1371/journal.pmed.100377334582441
    [Google Scholar]
  3. BadenochJ.B. RengasamyE.R. WatsonC. JansenK. ChakrabortyS. SundaramR.D. HafeezD. BurchillE. SainiA. ThomasL. CrossB. HuntC.K. ContiI. RalovskaS. HussainZ. ButlerM. PollakT.A. KoychevI. MichaelB.D. HollingH. NicholsonT.R. RogersJ.P. RooneyA.G. Persistent neuropsychiatric symptoms after COVID-19: A systematic review and meta-analysis.Brain Commun.202241fcab29710.1093/braincomms/fcab29735169700
    [Google Scholar]
  4. HolickM.F. BinkleyN.C. Bischoff-FerrariH.A. GordonC.M. HanleyD.A. HeaneyR.P. MuradM.H. WeaverC.M. Endocrine Society Evaluation, treatment, and prevention of vitamin D deficiency: An endocrine society clinical practice guideline.J. Clin. Endocrinol. Metab.20119671911193010.1210/jc.2011‑038521646368
    [Google Scholar]
  5. CroweF.L. SteurM. AllenN.E. ApplebyP.N. TravisR.C. KeyT.J. Plasma concentrations of 25-hydroxyvitamin D in meat eaters, fish eaters, vegetarians and vegans: results from the EPIC–Oxford study.Public Health Nutr.201114234034610.1017/S136898001000245420854716
    [Google Scholar]
  6. PalaciosC GonzalezL. Is vitamin D deficiency a major global public health problem?J Steroid Biochem Mol Biol.2014144Pt A138145
    [Google Scholar]
  7. AmreinK. ScherklM. HoffmannM. Neuwersch-SommereggerS. KöstenbergerM. Tmava BerishaA. MartucciG. PilzS. MalleO. Vitamin D deficiency 2.0: An update on the current status worldwide.Eur. J. Clin. Nutr.202074111498151310.1038/s41430‑020‑0558‑y31959942
    [Google Scholar]
  8. OristrellJ. OlivaJ.C. CasadoE. SubiranaI. DomínguezD. TolobaA. BaladoA. GrauM. Vitamin D supplementation and COVID-19 risk: A population-based, cohort study.J. Endocrinol. Invest.202245116717910.1007/s40618‑021‑01639‑934273098
    [Google Scholar]
  9. SealK.H. BertenthalD. CareyE. GrunfeldC. BikleD.D. LuC.M. Association of vitamin D status and COVID-19-related hospitalization and mortality.J. Gen. Intern. Med.202237485386110.1007/s11606‑021‑07170‑034981368
    [Google Scholar]
  10. OscanoaT. AmadoJ. VidalX. LairdE. GhashutR. Romero-OrtunoR. The relationship between the severity and mortality of SARS-CoV-2 infection and 25-hydroxyvitamin D concentration - a metaanalysis.Adv. Respir. Med.202189214515710.5603/ARM.a2021.003733966262
    [Google Scholar]
  11. TownsendL. DyerA.H. McCluskeyP. O’BrienK. DowdsJ. LairdE. BannanC. BourkeN.M. Ní CheallaighC. ByrneD.G. KennyR.A. Investigating the relationship between vitamin D and persistent symptoms following SARS-CoV-2 infection.Nutr.2021137243010.3390/nu1307243034371940
    [Google Scholar]
  12. Mohamed H.A.A.R. GalalI. AminM.T. MoshnibA.A. MakhloufN.A. MakhloufH.A. Abd-ElaalH.K. KholiefK.M.S. Abdel TawabD.A. Kamal EldinK.A. AttiaA.M. OthmanA.E.A. ShahJ. AiashH. Prevalence of vitamin D deficiency among patients attending Post COVID-19 follow-up clinic: A cross-sectional study.Eur. Rev. Med. Pharmacol. Sci.20222683038304535503606
    [Google Scholar]
  13. CharoenpornV. TungsukruthaiP. CharernboonT. SriyakulK. SukprasertS. KamalashiranC. Fatigue and neuropsychiatric manifestations of post-acute sequelae of COVID-19 (PASC): Examining the relationship with clinical and inflammatory markers.Fatigue: Biomed. Health Behav.2024121143110.1080/21641846.2023.2286028
    [Google Scholar]
  14. Institute of Medicine (US) committee to review dietary reference intakes for vitamin d and calcium.Dietary Reference Intakes for Calcium and Vitamin D.The National Academies PressWashington, DC201110.17226/13050
    [Google Scholar]
  15. ChalderT. BerelowitzG. PawlikowskaT. WattsL. WesselyS. WrightD. WallaceE.P. Development of a fatigue scale.J. Psychosom. Res.199337214715310.1016/0022‑3999(93)90081‑P8463991
    [Google Scholar]
  16. LovibondP.F. LovibondS.H. The structure of negative emotional states: Comparison of the depression anxiety stress scales (DASS) with the beck depression and anxiety inventories.Behav. Res. Ther.199533333534310.1016/0005‑7967(94)00075‑U7726811
    [Google Scholar]
  17. BuysseD.J. ReynoldsC.F.III MonkT.H. BermanS.R. KupferD.J. The Pittsburgh sleep quality index: A new instrument for psychiatric practice and research.Psychiatry Res.198928219321310.1016/0165‑1781(89)90047‑42748771
    [Google Scholar]
  18. HsiehS. SchubertS. HoonC. MioshiE. HodgesJ.R. Validation of the addenbrooke’s cognitive examination III in frontotemporal dementia and Alzheimer’s disease.Dement. Geriatr. Cogn. Disord.2013363-424225010.1159/00035167123949210
    [Google Scholar]
  19. CharernboonT. Adjusting the thai version of the addenbrooke’s cognitive examination III for education to screen for dementia.Neurodegener. Dis. Manag.202111429930510.2217/nmt‑2021‑000134232071
    [Google Scholar]
  20. CharernboonT. JaisinK. LerthattasilpT. The thai version of the addenbrooke’s cognitive examination III.Psychiatry Investig.201613557157310.4306/pi.2016.13.5.57127757137
    [Google Scholar]
  21. CharernboonT. ChompookardP. Detecting cognitive impairment in patients with schizophrenia with the addenbrooke’s cognitive examination.Asian J. Psychiatr.201940192210.1016/j.ajp.2019.01.00630690276
    [Google Scholar]
  22. CroweS.F. The differential contribution of mental tracking, cognitive flexibility, visual search, and motor speed to performance on parts A and B of the trail making test.J. Clin. Psychol.199854558559110.1002/(SICI)1097‑4679(199808)54:5<585::AID‑JCLP4>3.0.CO;2‑K9696108
    [Google Scholar]
  23. NimitphongH. ChailurkitL. ChanprasertyothinS. SritaraP. OngphiphadhanakulB. The Association of vitamin D status and fasting glucose according to body fat mass in young healthy Thais.BMC Endocr. Disord.20131316010.1186/1472‑6823‑13‑6024369921
    [Google Scholar]
  24. ChailurkitL. KruavitA. RajatanavinR. Vitamin D status and bone health in healthy Thai elderly women.Nutr.201127216016410.1016/j.nut.2009.12.00120392596
    [Google Scholar]
  25. KruavitA. ChailurkitL. ThakkinstianA. SriphrapradangC. RajatanavinR. Prevalence of vitamin D insufficiency and low bone mineral density in elderly Thai nursing home residents.BMC Geriatr.20121214910.1186/1471‑2318‑12‑4922938528
    [Google Scholar]
  26. AnurojK. Vitamin D deficiency and depression in Thai medical students during COVID-19 pandemic: A cross-sectional study.East Asian Arch. Psychiatry2022323515610.12809/eaap220936172722
    [Google Scholar]
  27. ChailurkitL. AekplakornW. OngphiphadhanakulB. Regional variation and determinants of vitamin D status in sunshine-abundant Thailand.BMC Public Health201111185310.1186/1471‑2458‑11‑85322074319
    [Google Scholar]
  28. RoyS. ShermanA. Monari-SparksM. SchweikerO. HunterK. Correction of low vitamin D improves fatigue: Effect of correction of low vitamin D in fatigue study (EViDiF study).N. Am. J. Med. Sci.20146839640210.4103/1947‑2714.13929125210673
    [Google Scholar]
  29. KashidM. RaiS.K. GuptaT.P. ShakiO. ChakrabartyB. UpretiV. Can self-perceived easy fatigability be a predictor of vitamin D deficiency in young Indian women?J. Family Med. Prim. Care202092997100210.4103/jfmpc.jfmpc_862_1932318457
    [Google Scholar]
  30. BičíkováM. DuškováM. VítkůJ. KalvachováB. ŘípováD. MohrP. StárkaL. Vitamin D in anxiety and affective disorders.Physiol. Res.201564Suppl. 2S101S10310.33549/physiolres.93308226680471
    [Google Scholar]
  31. AnglinR.E.S. SamaanZ. WalterS.D. McDonaldS.D. Vitamin D deficiency and depression in adults: Systematic review and meta-analysis.Br. J. Psychiatry2013202210010710.1192/bjp.bp.111.10666623377209
    [Google Scholar]
  32. DavisH.E. McCorkellL. VogelJ.M. TopolE.J. Long COVID: Major findings, mechanisms and recommendations.Nat. Rev. Microbiol.202321313314610.1038/s41579‑022‑00846‑236639608
    [Google Scholar]
  33. CashmanK.D. Vitamin D deficiency: Defining, prevalence, causes, and strategies of addressing.Calcif. Tissue Int.20201061142910.1007/s00223‑019‑00559‑431069443
    [Google Scholar]
/content/journals/cnf/10.2174/0115734013330182240930072138
Loading
/content/journals/cnf/10.2174/0115734013330182240930072138
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): cognitive impairment; Depression, fatigue; long COVID; Post-COVID-19; vitamin D
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test