Skip to content
2000
Volume 21, Issue 8
  • ISSN: 1573-4013
  • E-ISSN: 2212-3881

Abstract

Introduction

Herbal therapies and application of medicinal plants have been applied for the prevention and treatment of skin conditions for decades in different parts of the world, especially in China. The most common groups for which medicinal herbs and plants are used are acne, psoriasis, dermatitis and wart.

Methods

This review aims to promote the utilization of traditional Chinese medicine for different skin diseases by considering the importance of medicinal plants according to their medicinal properties, lastly, future challenges and research directions are discussed. The most important chemical components for treatment of acne, , skin cancer, wart, and hives are lupeol, artemetin, hydroquinone, hypericin, epicatechin, curcumin, schizandrin, lobelanidine, celacinnine, glycyrrhizin, licoflavanone, isoliquiritigenin, glabridin, liquiritin, liquiritigenin, glycyrrhisoflavone, cyanidin, baicalin, cupressuflavone, paeonol, hinokiflavone, resveratrol, silibinin. Some of the most important medicinal plants used for wound healing are Benth., Edgew, Mill., Lam., Spreng., (L.) Urb., Baill., L., L., Hochst., and L.

Results

Traditional Chinese medicinal plants which have been used in treatment of acne are , Gaertn, , Polygonum , , , , spp., and formosanae, while some prescriptions such as Sanhuang anti-itching lotion, Chushi decoction, Xiaofeng power, Xiao Feng Dan formular and Jianpi Chushi decoction should be considered for treatment of eczema. The extract of extract, extract, leaf extract, extract, and fruit are also important for the treatment of eczema.

Conclusion

The authorization and validations only indicate the significance and importance of traditional Chinese medicine in treating skin diseases, but also clarify its uniqueness and importance.

Loading

Article metrics loading...

/content/journals/cnf/10.2174/0115734013329822250420091953
2025-05-13
2025-12-23
Loading full text...

Full text loading...

References

  1. ZhangH. ShahrajabianM.H. CuiH. KuangY. SunW. Novel aspects and directions in pest control and management-proteins with insecticidal properties.Curr. Green Chem.202411327228510.2174/0122133461275040231026045521
    [Google Scholar]
  2. ShahrajabianM.H. SunW. Mechanism of action of collagen and epidermal growth factor: A review on theory and research methods.Mini Rev. Med. Chem.202424445347710.2174/138955752366623081609005437587815
    [Google Scholar]
  3. CuiH. ShahrajabianM.H. KuangY. ZhangH.Y. SunW. Heterologous expression and function of cholesterol oxidase: A review.Protein Pept. Lett.202330753154010.2174/092986653066623052516254537231716
    [Google Scholar]
  4. SunW. ShahrajabianM.H. ChengQ. Fenugreek cultivation with emphasis on historical aspects and its uses in traditional medicine and modern pharmaceutical science.Mini Rev. Med. Chem.202121672473010.2174/18755607MTEx4OTAn533245271
    [Google Scholar]
  5. SunW. ShahrajabianM.H. ChengQ. Natural dietary and medicinal plants with anti-obesity therapeutics activities for treatment and prevention of obesity during lock down and in post-COVID-19 era.Appl. Sci. (Basel)20211117788910.3390/app11177889
    [Google Scholar]
  6. ShahrajabianM.H. Medicinal herbs with anti-inflammatory activities for natural and organic healing.Curr. Org. Chem.202125232885290110.2174/1385272825666211110115656
    [Google Scholar]
  7. XingM. ZhangS. MaY. ChenY. YangG. ZhouZ. GaoY. Preparation and evaluation of dissolving microneedle loaded with azelaic acid for acne vulgaris therapy.J. Drug Deliv. Sci. Technol.20227510366710.1016/j.jddst.2022.103667
    [Google Scholar]
  8. TangL. FuQ. ZhouZ. LiuL. HuangM. ZhengQ. HuangF. ZhangM. ZhouX. A systematic review and meta-analysis of randomized clinical trials of fire needle combined with ALA-PDT for the treatment of moderate-to- severe acne.Photodiagn. Photodyn. Ther.20234210320010.1016/j.pdpdt.2022.10320036384211
    [Google Scholar]
  9. ShahrajabianM.H. SunW. ChengQ. The importance of flavonoids and phytochemicals of medicinal plants with antiviral activities.Mini Rev. Org. Chem.202219329331810.2174/1570178618666210707161025
    [Google Scholar]
  10. ShahrajabianM.H. PetropoulosS.A. SunW. Survey of the influences of microbial biostimulants on horticultural crops: Case studies and successful paradigms.Horticulturae20239219310.3390/horticulturae9020193
    [Google Scholar]
  11. ZhuZ. ZengQ. WangZ. XueY. ChenT. HuY. WangY. WuY. ShenQ. JiangC. ShenC. LiuL. ZhuH. LiuQ. Skin microbiome reconstruction and lipid metabolism profile alteration reveal the treatment mechanism of Cryptotanshinone in the acne rat.Phytomedicine202210115410110.1016/j.phymed.2022.15410135472695
    [Google Scholar]
  12. LiuP. LiuX. ZhangL. YanG. ZhangH. XuD. WuY. ZhangG. WangP. ZengQ. WangX. ALA-PDT augments intense inflammation in the treatment of acne vulgaris by COX2/TREM1 mediated M1 macrophage polarization.Biochem. Pharmacol.202320811540310.1016/j.bcp.2022.11540336592708
    [Google Scholar]
  13. BurrisJ. RietkerkW. WoolfK. Acne: the role of medical nutrition therapy.J. Acad. Nutr. Diet.2013113341643010.1016/j.jand.2012.11.01623438493
    [Google Scholar]
  14. HeX. FangJ. HuangL. WangJ. HuangX. Sophora flavescens Ait.: Traditional usage, phytochemistry and pharmacology of an important traditional Chinese medicine.J. Ethnopharmacol.2015172102910.1016/j.jep.2015.06.01026087234
    [Google Scholar]
  15. GuoJ. QiC. LiuY. GuoX. MengY. ZhaoJ. FuJ. DiT. ZhangL. GuoX. LiuQ. WangY. LiP. WangY. Terrestrosin D ameliorates skin lesions in an imiquimod-induced psoriasis-like murine model by inhibiting the interaction between Substance P and Dendritic cells.Phytomedicine20229515386410.1016/j.phymed.2021.15386434923236
    [Google Scholar]
  16. WangX. LiY. WuL. XiaoS. JiY. TanY. JiangC. ZhangG. Dysregulation of the gut-brain-skin axis and key overlapping inflammatory and immune mechanisms of psoriasis and depression.Biomed. Pharmacother.202113711106510.1016/j.biopha.2020.11106533540138
    [Google Scholar]
  17. MengS. LinZ. WangY. WangZ. LiP. ZhengY. Psoriasis therapy by Chinese medicine and modern agents.Chin. Med.20181311610.1186/s13020‑018‑0174‑029588654
    [Google Scholar]
  18. SunX. WeiZ. LinH. JitM. LiZ. FuC. Incidence and disease burden of herpes zoster in the population aged ≥50 years in China: Data from an integrated health care network.J. Infect.202182225326010.1016/j.jinf.2020.12.01333359014
    [Google Scholar]
  19. SunW. ShahrajabianM.H. LinM. Research progress of fermented foods and protein factory-microbial fermentation technology.Fermentation (Basel)202281268810.3390/fermentation8120688
    [Google Scholar]
  20. TangF. LiuS. ChengF. WangQ. WangX. Liangxue Xiaoban decoction and its disassembled prescriptions ameliorate psoriasis-like skin lesions induced by imiquimod in mice via T cell regulation.J. Tradit. Chin. Med. Sci.20229440941910.1016/j.jtcms.2022.09.003
    [Google Scholar]
  21. KraftJ. FreimanA. Management of acne.CMAJ20111837E430E43510.1503/cmaj.09037421398228
    [Google Scholar]
  22. ShahrajabianM.H. SunW. ChengQ. Traditional herbal medicine for the prevention and treatment of cold and flu in the Autumn of 2020, overlapped with Covid-19.Nat. Prod. Commun.20201581934578X2095143110.1177/1934578X20951431
    [Google Scholar]
  23. ShahrajabianM.H. SunW. ChengQ. Chemical components and pharmacological benefits of Basil ( Ocimum basilicum ): A review.Int. J. Food Prop.20202311961197010.1080/10942912.2020.1828456
    [Google Scholar]
  24. AbbasiA.M. KhanM.A. AhmadM. ZafarM. JahanS. SultanaS. Ethnopharmacological application of medicinal plants to cure skin diseases and in folk cosmetics among the tribal communities of North-West Frontier Province, Pakistan.J. Ethnopharmacol.2010128232233510.1016/j.jep.2010.01.05220138210
    [Google Scholar]
  25. AnandU. TuduC.K. NandyS. SunitaK. TripathiV. LoakeG.J. DeyA. ProćkówJ. Ethnodermatological use of medicinal plants in India: From ayurvedic formulations to clinical perspectives – A review.J. Ethnopharmacol.202228411474410.1016/j.jep.2021.11474434656666
    [Google Scholar]
  26. Manjia NJ. Njayou NF. JoshiA. UpadhyayK. ShirsathK. Devkar VR. Moundipa FP. The anti-aging potential of medicinal plants in Cameroon - Harungana madagascariensis Lam. and Psorospermum aurantiacum Engl. prevent in vitro ultraviolet B light-induced skin damage.Eur. J. Integr. Med.20192910092510.1016/j.eujim.2019.05.011
    [Google Scholar]
  27. SalhiN. BouyahyaA. FettachS. ZellouA. CherrahY. Ethnopharmacological study of medicinal plants used in the treatment of skin burns in occidental Morocco (area of Rabat).S. Afr. J. Bot.201912112814210.1016/j.sajb.2018.10.038
    [Google Scholar]
  28. MabonaU. Van VuurenS.F. Southern African medicinal plants used to treat skin diseases.S. Afr. J. Bot.20138717519310.1016/j.sajb.2013.04.002
    [Google Scholar]
  29. TadegH. MohammedE. AsresK. Gebre-MariamT. Antimicrobial activities of some selected traditional Ethiopian medicinal plants used in the treatment of skin disorders.J. Ethnopharmacol.20051001-216817510.1016/j.jep.2005.02.03116054532
    [Google Scholar]
  30. ThibaneV.S. AbdelgadirH.A. FinnieJ.F. Van StadenJ. NdhlalaA.R. Phytochemistry and cosmetic importance of medicinal plants used for skin beauty and healthcare from the Eastern Cape Province, South Africa.S. Afr. J. Bot.201710937110.1016/j.sajb.2017.01.185
    [Google Scholar]
  31. XabaV.M. BuwaL.V. Pharmacological screening of traditional medicinal plants used to treat skin ailments in the Free State Province of South Africa.S. Afr. J. Bot.201610335510.1016/j.sajb.2016.02.192
    [Google Scholar]
  32. RajanJ.P. SinghK.B. KumarS. MishraR.K. Trace elements content in the selected medicinal plants traditionally used for curing skin diseases by the natives of Mizoram, India.Asian Pac. J. Trop. Med.201471S410S41410.1016/S1995‑7645(14)60267‑425312159
    [Google Scholar]
  33. MalathiS. PavithraP.S. SrideviS. VermaR.S. Fabrication of nanopatterned PLGA films of curcumin and TPGS for skin cancer.Int. J. Pharm.202057811910010.1016/j.ijpharm.2020.11910032014600
    [Google Scholar]
  34. MaoK.L. FanZ.L. YuanJ.D. ChenP.P. YangJ.J. XuJ. ZhuGeD.L. JinB.H. ZhuQ.Y. ShenB.X. SohawonY. ZhaoY.Z. XuH.L. Skin-penetrating polymeric nanoparticles incorporated in silk fibroin hydrogel for topical delivery of curcumin to improve its therapeutic effect on psoriasis mouse model.Colloids Surf. B Biointerfaces201716070471410.1016/j.colsurfb.2017.10.02929035818
    [Google Scholar]
  35. BoscariolR. Oliveira JuniorJ.M. BaldoD.A. BalcãoV.M. VilaM.M.D.C. Transdermal permeation of curcumin promoted by choline geranate ionic liquid: Potential for the treatment of skin diseases.Saudi Pharm. J.202230438239710.1016/j.jsps.2022.01.02335527836
    [Google Scholar]
  36. PriyaP. Mohan RajR. VasanthakumarV. RajV. Curcumin-loaded layer-by-layer folic acid and casein coated carboxymethyl cellulose/casein nanogels for treatment of skin cancer.Arab. J. Chem.202013169470810.1016/j.arabjc.2017.07.010
    [Google Scholar]
  37. XiangH. XuS. ZhangW. LiY. ZhouY. MiaoX. Skin permeation of curcumin nanocrystals: Effect of particle size, delivery vehicles, and permeation enhancer.Colloids Surf. B Biointerfaces202322411320310.1016/j.colsurfb.2023.11320336791520
    [Google Scholar]
  38. Basu-ModakS. GordonM.J. DobsonL.H. SpencerJ.P.E. Rice-EvansC. TyrrellR.M. Epicatechin and its methylated metabolite attenuate UVA-induced oxidative damage to human skin fibroblasts.Free Radic. Biol. Med.200335891092110.1016/S0891‑5849(03)00436‑214556855
    [Google Scholar]
  39. KhanA. ChangM.W. The role of nutrition in acne vulgaris and hidradenitis suppurativa.Clin. Dermatol.202240211412110.1016/j.clindermatol.2022.04.00135398509
    [Google Scholar]
  40. XuJ. LinR. WangJ. WuY. WangY. ZhangY. XiC. WuQ. Effect of acupuncture anesthesia on acne vulgaris of pricking-bloodletting cupping: A single-blind randomized clinical trail.J. Tradit. Chin. Med.201333675275610.1016/S0254‑6272(14)60007‑824660606
    [Google Scholar]
  41. WangP. WangB. ZhangL. LiuX. ShiL. KangX. LeiX. ChenK. ChenZ. LiC. ZhangC. TuP. PanM. JuQ. ManX. LuY. YuN. LiY. ZhuH. ZhangR. SuJ. TaoS. QiaoJ. MuQ. ZengW. LiZ. GaoY. GuH. WangX. Clinical practice Guidelines for 5-Aminolevulinic acid photodynamic therapy for acne vulgaris in China.Photodiagn. Photodyn. Ther.20234110326110.1016/j.pdpdt.2022.10326136587863
    [Google Scholar]
  42. ZhangJ. ZhangD. WangW. TCM comprehensive external therapy for acne oriented by damp-heat constitution.World J. Acupunct. Moxibustion2017273788210.1016/S1003‑5257(17)30145‑9
    [Google Scholar]
  43. ChenY. YiS. WangQ. XiongH. YuanJ. ZhangY. YangL. ZhongG. LiX. ZhuT. Lutein attenuates Propionibacterium acnes-induced inflammation by inhibiting pyroptosis of human keratinocyte cells via TLR4/NLRP3/Caspase-1 pathway.Int. Immunopharmacol.202311710993710.1016/j.intimp.2023.10993737012890
    [Google Scholar]
  44. ZhuX. MaoY. GuoM. YuH. HaoL. HuaQ. LuZ. HongM. AnF. Enhancement of anti-acne effect of Scutellaria baicalensis extract by fermentation with symbiotic fungus Penicillium decumbens. J. Biosci. Bioeng.2020130545746310.1016/j.jbiosc.2020.06.00832747300
    [Google Scholar]
  45. ChenH.Y. LinY.H. ChenY.C. Identifying Chinese herbal medicine network for treating acne: Implications from a nationwide database.J. Ethnopharmacol.20161791810.1016/j.jep.2015.12.03226721214
    [Google Scholar]
  46. JiJ. ZhangR. LiH. ZhuJ. PanY. GuoQ. Analgesic and anti-inflammatory effects and mechanism of action of borneol on photodynamic therapy of acne.Environ. Toxicol. Pharmacol.20207510332910.1016/j.etap.2020.10332931978868
    [Google Scholar]
  47. MansuS.S.Y. CoyleM. WangK. MayB. ZhangA.L. XueC.C.L. Herbal medicine Eriobotrya japonica formula for acne vulgaris: A systematic review.J. Herb. Med.201811122310.1016/j.hermed.2017.09.001
    [Google Scholar]
  48. WeiM. QiuJ. LiL. XieY. YuH. GuoY. YaoW. Saponin fraction from Sapindus mukorossi Gaertn as a novel cosmetic additive: Extraction, biological evaluation, analysis of anti-acne mechanism and toxicity prediction.J. Ethnopharmacol.202126811355210.1016/j.jep.2020.11355233152431
    [Google Scholar]
  49. MiglaniA. ManchandaR.K. Observational study of Arctium lappa in the treatment of acne vulgaris. Homeopathy2014103320320710.1016/j.homp.2013.12.00224931753
    [Google Scholar]
  50. KimB. KimK. LeeJ. KimK. Inhibitory effects of Cheongsangbangpoong-tang on both inflammatory acne lesion and facial heat in patients with acne vulgaris: A double-blinded randomized controlled trial.Complement. Ther. Med.20194411011510.1016/j.ctim.2019.03.01831126542
    [Google Scholar]
  51. YanC.Y. OuyangS.H. WangX. WuY.P. SunW.Y. DuanW.J. LiangL. LuoX. KuriharaH. LiY.F. HeR.R. Celastrol ameliorates Propionibacterium acnes/LPS-induced liver damage and MSU-induced gouty arthritis via inhibiting K63 deubiquitination of NLRP3.Phytomedicine20218015339810.1016/j.phymed.2020.15339833130474
    [Google Scholar]
  52. GuoM. AnF. YuH. WeiX. HongM. LuY. Comparative effects of schisandrin A, B, and C on Propionibacterium acnes-induced, NLRP3 inflammasome activation-mediated IL-1β secretion and pyroptosis.Biomed. Pharmacother.20179612913610.1016/j.biopha.2017.09.09728972885
    [Google Scholar]
  53. XiaoY. XuJ. MaoC. JinM. WuQ. ZouJ. GuQ. ZhangY. ZhangY. 18β-glycyrrhetinic acid ameliorates acute Propionibacterium acnes-induced liver injury through inhibition of macrophage inflammatory protein-1α.J. Biol. Chem.201028521128113710.1074/jbc.M109.03770519897483
    [Google Scholar]
  54. HanS.M. LeeK.G. PakS.C. Effects of cosmetics containing purified honeybee (Apis mellifera L.) venom on acne vulgaris. J. Integr. Med.201311532032610.3736/jintegrmed201304324063779
    [Google Scholar]
  55. TangH.C. HuangH.J. LeeC.C. ChenC.Y.C. Network pharmacology-based approach of novel traditional Chinese medicine formula for treatment of acute skin inflammation in silico. Comput. Biol. Chem.201771708110.1016/j.compbiolchem.2017.08.01328987294
    [Google Scholar]
  56. CoenyeT. BrackmanG. RigoleP. De WitteE. HonraetK. RosselB. NelisH.J. Eradication of Propionibacterium acnes biofilms by plant extracts and putative identification of icariin, resveratrol and salidroside as active compounds.Phytomedicine201219540941210.1016/j.phymed.2011.10.00522305279
    [Google Scholar]
  57. TuY. SunL. GuoM. ChenW. The medicinal uses of Callicarpa L. in traditional Chinese medicine: An ethnopharmacological, phytochemical and pharmacological review.J. Ethnopharmacol.2013146246548110.1016/j.jep.2012.12.05123313870
    [Google Scholar]
  58. TsaiT.H. TsaiT.H. WuW.H. TsengJ.T.P. TsaiP.J. In vitro antimicrobial and anti-inflammatory effects of herbs against Propionibacterium acnes. Food Chem.2010119396496810.1016/j.foodchem.2009.07.062
    [Google Scholar]
  59. RaoufinejadK. RajabiM. SarafianG. Licorice in the treatment of Acne vulgaris and Postinflammatory hyperpigmentation: A review.J Pharm Care202084186195
    [Google Scholar]
  60. TeohS.M. XiS.Y. WangY.H. QianX.Y. Comprehension and experience of acne treated with traditional Chinese medicine facial mask of Bai Zhi ( Radix angelicae formosanae) and Bai Fu Zi (Rhizoma typhonii gigantei) as the basis formula by external application.Chin. Med. (Irvine Calif.)201232879310.4236/cm.2012.32014
    [Google Scholar]
  61. RuanS. XiangS. WuW. CaoS. DuQ. WangZ. ChenT. ShenQ. LiuL. ChenH. WengL. ZhuH. LiuQ. Potential role of mTORC1 and the PI3K-Akt pathway in anti-acne properties of licorice flavonoids.J. Funct. Foods20207010396810.1016/j.jff.2020.103968
    [Google Scholar]
  62. SavitriD. DjawadK. HattaM. WahyuniS. BukhariA. Active compounds in kepok banana peel as anti-inflammatory in acne vulgaris: Review article.Ann. Med. Surg.20228410486810.1016/j.amsu.2022.10486836582904
    [Google Scholar]
  63. YangX. HuangG. YouL. ShengH. SunY. FengY. LuQ. XuA. High-throughput RNA sequencing reveals the anti-inflammatory mechanism of baicalin on Propionibacterium acnes-induced acne in rabbits.J. Tradit. Chin. Med. Sci.20196320121010.1016/j.jtcms.2019.09.001
    [Google Scholar]
  64. KwonH.H. YoonJ.Y. ParkS.Y. MinS. KimY. ParkJ.Y. LeeY.S. ThiboutotD.M. SuhD.H. Activity-guided purification identifies lupeol, a pentacyclic triterpene, as a therapeutic agent multiple pathogenic factors of acne.J. Invest. Dermatol.201513561491150010.1038/jid.2015.2925647437
    [Google Scholar]
  65. WeiM. YuH. GuoY. ChengY. XieY. YaoW. Synergistic antibacterial combination of Sapindoside A and B changes the fatty acid compositions and membrane properties of Cutibacterium acnes. Microbiol. Res.202225512692410.1016/j.micres.2021.12692434837782
    [Google Scholar]
  66. ZhangR. NieY. WangY. ZhaiX. ZhuJ. DuanY. Effectiveness of traditional Chinese medicine preparations for facial seborrheic dermatitis: Case reports.Heliyon2022812e1233810.1016/j.heliyon.2022.e1233836582725
    [Google Scholar]
  67. HouH.S. BonkuE.M. ZhaiR. ZengR. HouY.L. YangZ.H. QuanC. Extraction of essential oil from Citrus reticulate Blanco peel and its antibacterial activity against Cutibacterium acnes (formerly Propionibacterium acnes).Heliyon2019512e0294710.1016/j.heliyon.2019.e0294731872120
    [Google Scholar]
  68. LiX.N. WuD. LiuY. ZhangS.S. TianF.L. SunQ. WeiW. CaoX. JiaL.H. Prenatal exposure to bisphenols, immune responses in cord blood and infantile eczema: A nested prospective cohort study in China.Ecotoxicol. Environ. Saf.202122811298710.1016/j.ecoenv.2021.11298734781129
    [Google Scholar]
  69. NorbäckD. ZhangX. TianL. ZhangY. ZhangZ. YangL. ChenX. ZengZ. LuC. ZhaoZ. Prenatal and perinatal home environment and reported onset of wheeze, rhinitis and eczema symptoms in preschool children in Northern China.Sci. Total Environ.202177414570010.1016/j.scitotenv.2021.14570033609817
    [Google Scholar]
  70. LuC. NorbäckD. ZhangY. LiB. ZhaoZ. HuangC. ZhangX. QianH. SunY. SundellJ. WangJ. LiuW. DengQ. Onset and remission of eczema at pre-school age in relation to prenatal and postnatal air pollution and home environment across China.Sci. Total Environ.2021755Pt 114246710.1016/j.scitotenv.2020.14246733035972
    [Google Scholar]
  71. ThanikE. WisniewskiJ.A. Nowak-WegrzynA. SampsonH. LiX.M. Effect of traditional Chinese medicine on skin lesions and quality of life in patients with moderate to severe eczema.Ann. Allergy Asthma Immunol.2018121113513610.1016/j.anai.2018.03.00429530759
    [Google Scholar]
  72. SrivastavaK. YangN. UzunS. ThanikE. EhrlichP. ChungD. YuanQ. Nowak-WegrzynA. LiX-M. Effect of Traditional Chinese Medicine (TCM) in moderate-to-severe eczema in clinic and animal model: Beyond corticosteroids.J. Allergy Clin. Immunol.20201452AB19810.1016/j.jaci.2019.12.291
    [Google Scholar]
  73. WangZ. WangZ.Z. GeliebterJ. TiwariR. LiX.M. Traditional Chinese medicine for food allergy and eczema.Ann. Allergy Asthma Immunol.2021126663965410.1016/j.anai.2020.12.00233310179
    [Google Scholar]
  74. ChanB.C.L. HonK.L.E. LeungP.C. SamS.W. FungK.P. LeeM.Y.H. LauH.Y.A. Traditional Chinese medicine for atopic eczema: PentaHerbs formula suppresses inflammatory mediators release from mast cells.J. Ethnopharmacol.20081201859110.1016/j.jep.2008.07.03418725279
    [Google Scholar]
  75. HuangC. LiS. GuoW. ZhangZ. MengX. LiX. GaoB. WenR. NiuH. ZhangC. LiM. Cymbaria daurica L.: A Mongolian herbal medicine for treating eczema via natural killer cell-mediated cytotoxicity pathway.J. Ethnopharmacol.202330811624610.1016/j.jep.2023.11624636791926
    [Google Scholar]
  76. LiuL. LuoY. ZhouM. LuY. XingM. RuY. SunX. ChenX. LiS. HongS. WangS. LiF. LiB. LiX. Tripterygium agents for the treatment of atopic eczema: A Bayesian analysis of randomized controlled trials.Phytomedicine20195915291410.1016/j.phymed.2019.15291430991183
    [Google Scholar]
  77. LeeH.S. KimE.N. JeongG.S. Oral administration of Helianthus annuus leaf extract ameliorates atopic dermatitis by modulation of T cell activity in vivo. Phytomedicine202210615444310.1016/j.phymed.2022.15444336108372
    [Google Scholar]
  78. KimH.J. SongH.K. ParkS.H. JangS. ParkK.S. SongK.H. LeeS.K. KimT. Terminalia chebula Retz. extract ameliorates the symptoms of atopic dermatitis by regulating anti-inflammatory factors in vivo and suppressing STAT1/3 and NF-ĸB signaling in vitro. Phytomedicine202210415431810.1016/j.phymed.2022.15431835830757
    [Google Scholar]
  79. DengC. YaoN. WangB. ZhangX. Development of microwave-assisted extraction followed by headspace single-drop microextraction for fast determination of paeonol in traditional Chinese medicines.J. Chromatogr. A200611031152110.1016/j.chroma.2005.11.02316309693
    [Google Scholar]
  80. LeeY.S. RyuH.W. YangW.K. ParkM.H. ParkY.C. KimD.Y. KwonH.J. KimS.Y. OhS.R. KimS.H. A combination of Olea europaea leaf extract and Spirodela polyrhiza extract alleviates atopic dermatitis by modulating immune balance and skin barrier function in a 1-chloro-2,4-dinitrobenzene-induced murine model.Phytomedicine20218215340710.1016/j.phymed.2020.15340733571899
    [Google Scholar]
  81. LeeS. ParkN.J. BongS.K. JegalJ. ParkS. KimS.N. YangM.H. Ameliorative effects of Juniperus rigida fruit on oxazolone- and 2,4-dinitrochlorobenzene-induced atopic dermatitis in mice.J. Ethnopharmacol.201821416016710.1016/j.jep.2017.12.02229258854
    [Google Scholar]
  82. LeeH.J. KimM.H. ChoiY.Y. KimE.H. HongJ. KimK. YangW.M. Improvement of atopic dermatitis with topical application of Spirodela polyrhiza. J. Ethnopharmacol.2016180121710.1016/j.jep.2016.01.01026778605
    [Google Scholar]
  83. KimE.C. LeeH.S. KimS.K. ChoiM.S. LeeS. HanJ.B. AnH.J. UmJ.Y. KimH.M. LeeN.Y. BaeH. MinB.I. The bark of Betula platyphylla var. japonica inhibits the development of atopic dermatitis-like skin lesions in NC/Nga mice.J. Ethnopharmacol.2008116227027810.1016/j.jep.2007.11.04218191513
    [Google Scholar]
  84. ChoiJ.H. JinS.W. ParkB.H. KimH.G. KhanalT. HanH.J. HwangY.P. ChoiJ.M. ChungY.C. HwangS.K. JeongT.C. JeongH.G. Cultivated ginseng inhibits 2,4-dinitrochlorobenzene-induced atopic dermatitis-like skin lesions in NC/Nga mice and TNF-α/IFN-γ-induced TARC activation in HaCaT cells.Food Chem. Toxicol.20135619520310.1016/j.fct.2013.02.03723454147
    [Google Scholar]
  85. ParkS.H. JangS. KimH.K. Gardenia jasminoides extract ameliorates DfE-induced atopic dermatitis in mice through restoration of barrier function and T-helper 2-mediated immune response.Biomed. Pharmacother.202214511234410.1016/j.biopha.2021.11234434847477
    [Google Scholar]
  86. FanP. YangY. LiuT. LuX. HuangH. ChenL. KuangY. Anti-atopic effect of Viola yedoensis ethanol extract against 2,4-dinitrochlorobenzene-induced atopic dermatitis-like skin dysfunction.J. Ethnopharmacol.202128011447410.1016/j.jep.2021.11447434332065
    [Google Scholar]
  87. ZhangF. LiY. RenW. LiS. ChenY. Clinical efficacy of a combination treatment of traditional Chinese medicine for scalp seborrheic dermatitis.J. Cosmet. Dermatol.202322113072307710.1111/jocd.1581837218571
    [Google Scholar]
  88. UzunS. WangZ. McKnightT.A. EhrlichP. ThanikE. Nowak-WegrzynA. YangN. LiX.M. Improvement of skin lesions in corticosteroid withdrawal-associated severe eczema by multicomponent traditional Chinese medicine therapy.Allergy Asthma Clin. Immunol.20211716810.1186/s13223‑021‑00555‑034243796
    [Google Scholar]
  89. ČižmárováB. HubkováB. TomečkováV. BirkováA. Flavonoids as promising natural compounds in the prevention and treatment of selected skin diseases.Int. J. Mol. Sci.2023247632410.3390/ijms2407632437047297
    [Google Scholar]
  90. NgC. YenH. HsiaoH.Y. SuS.C. Phytochemicals in skin cancer prevention and treatment: An updated review.Int. J. Mol. Sci.201819494110.3390/ijms1904094129565284
    [Google Scholar]
  91. MaT. ChaiY. LiS. SunX. WangY. XuR. ChenJ. ZhouM. ZhouM. LiB. XuW. LiX. Efficacy and safety of Qinzhuliangxue decoction for treating atopic eczema: A randomized controlled trial.Ann. Palliat. Med.20209387088210.21037/apm.2020.04.1732389012
    [Google Scholar]
  92. LiuW. SongW. LuoY. DanH. LiL. ZhangZ. ZhouD. YouP. Angelica Yinzi alleviates 1-chloro-2,4-dinitrobenzene-induced atopic dermatitis by inhibiting activation of NLRP3 inflammasome and down-regulating the MAPKs/NF-kB signaling pathway.Saudi Pharm. J.202230101426143410.1016/j.jsps.2022.07.00336387340
    [Google Scholar]
  93. LuJ. LiuX. XiaoY. MaS. Shizhenqing granule stimulates the hypothalamic-pituitary-adrenal axis and reduces serum pro-inflammatory factors in a rat model with chronic eczema.J. Tradit. Chin. Med. Sci.20207438639210.1016/j.jtcms.2020.10.006
    [Google Scholar]
  94. DingY.F. WeiJ. QuanX. GuW. XiL. ZhengY. ZhaoY. LuoJ. LiS. MokG.S.P. WangR. Hyaluronic acid-based supramolecular medicine with polyamines sequestration capability for cooperative anti-psoriasis.Carbohydr. Polym.202229611996810.1016/j.carbpol.2022.11996836088007
    [Google Scholar]
  95. SongP. LysvandH. YuheY. LiuW. IversenO.J. Expression of the psoriasis-associated antigen, Pso p27, is inhibited by Traditional Chinese Medicine.J. Ethnopharmacol.2010127117117410.1016/j.jep.2009.09.03019781613
    [Google Scholar]
  96. LuC. DengJ. LiL. WangD. LiG. Application of metabolomics on diagnosis and treatment of patients with psoriasis in traditional Chinese medicine.Biochim. Biophys. Acta. Proteins Proteomics20141844128028810.1016/j.bbapap.2013.05.01923747921
    [Google Scholar]
  97. LiT. GaoS. HanW. GaoZ. WeiY. WuG. QiqiuW. ChenL. FengY. YueS. KuangH. JiangX. Potential effects and mechanisms of Chinese herbal medicine in the treatment of psoriasis.J. Ethnopharmacol.202229411527510.1016/j.jep.2022.11527535487447
    [Google Scholar]
  98. TsouW.H. HeinrichM. BookerA. Chinese and western herbal medicines for the topical treatment of psoriasis – A critical review of efficacy and safety.J. Herb. Med.20223410057910.1016/j.hermed.2022.100579
    [Google Scholar]
  99. SongJ. JiangJ. KuaiL. LuoY. XingM. LuoY. RuY. SunX. ZhangH. LiuT. LiX. LiB. TMT-based proteomics analysis reveals the protective effect of Jueyin granules on imiquimod-induced psoriasis mouse model by causing autophagy.Phytomedicine20229615384610.1016/j.phymed.2021.15384634785109
    [Google Scholar]
  100. IlievE. BroshtilovaV. Traditional chinese medicine principles in the pathogenesis and treatment of psoriasis vulgaris. Semin. Integr. Med.20031314515010.1016/S1543‑1150(03)00027‑9
    [Google Scholar]
  101. ChiangC.C. ChengW.J. LinC.Y. LaiK.H. JuS.C. LeeC. YangS.H. HwangT.L. Kan-Lu-Hsiao-Tu-Tan, a traditional Chinese medicine formula, inhibits human neutrophil activation and ameliorates imiquimod-induced psoriasis-like skin inflammation.J. Ethnopharmacol.202024611224610.1016/j.jep.2019.11224631539577
    [Google Scholar]
  102. YangZ. ZengB. TangX. WangH. WangC. YanZ. HuangP. PanY. XuB. MicroRNA-146a and miR-99a are potential biomarkers for disease activity and clinical efficacy assessment in psoriasis patients treated with traditional Chinese medicine.J. Ethnopharmacol.201619472773210.1016/j.jep.2016.08.02827562321
    [Google Scholar]
  103. SongC. YangC. MengS. LiM. WangX. ZhuY. KongL. LvW. QiaoH. SunY. Deciphering the mechanism of Fang-Ji-Di-Huang-Decoction in ameliorating psoriasis-like skin inflammation via the inhibition of IL-23/Th17 cell axis.J. Ethnopharmacol.202128111457110.1016/j.jep.2021.11457134464701
    [Google Scholar]
  104. LiY. CuiH. LiS. LiX. GuoH. NandakumarK.S. LiZ. Kaempferol modulates IFN-γ induced JAK-STAT signaling pathway and ameliorates imiquimod-induced psoriasis-like skin lesions.Int. Immunopharmacol.202311410958510.1016/j.intimp.2022.10958536527884
    [Google Scholar]
  105. LiY. ZhouT. ZhangJ. ZhangL. KeH. ZhangC. LiP. Clinical trait-connected network analysis reveals transcriptional markers of active psoriasis treatment with Liangxue-Jiedu decoction.J. Ethnopharmacol.202126811355110.1016/j.jep.2020.11355133152434
    [Google Scholar]
  106. ZouG. LiuZ. FangC. XieY. WangD. Heat-clearing and blood-cooling decoction alleviates psoriasis by suppressing proliferation and inflammatory response of keratinocytes via EZH2/NF-κB.Eur. J. Integr. Med.20225510217010.1016/j.eujim.2022.102170
    [Google Scholar]
  107. GuoW. WangY. DengY. ChengL. LiuX. XiR. ZhuS. FengX. HuaL. ZeK. ZhuJ. GuoD. LiF. Therapeutic effects of the extract of Sancao Formula, a Chinese herbal compound, on imiquimod-induced psoriasis via cysteine-rich protein 61.J. Integr. Med.202220437638410.1016/j.joim.2022.04.00435491357
    [Google Scholar]
  108. LiX.Q. ChenY. DaiG.C. ZhouB.B. YanX.N. TanR.X. Abietic acid ameliorates psoriasis-like inflammation and modulates gut microbiota in mice.J. Ethnopharmacol.202127211393410.1016/j.jep.2021.11393433607198
    [Google Scholar]
  109. YazdanpanahM.J. Vahabi-AmlashiS. PishgouyM. ImaniM. BanihashemiM. MohammadpoorA.H. KhajedalueeM. Bahrami-TaghanakiH. AziziH. Comparing the topical preparations of Indigo naturalis from Chinese and Iranian origin in the treatment of plaque-type psoriasis: A preliminary randomized double-blind pilot study.Eur. J. Integr. Med.20214310131010.1016/j.eujim.2021.101310
    [Google Scholar]
  110. HuX. QiC. FengF. WangY. DiT. MengY. WangY. ZhaoN. ZhangX. LiP. ZhaoJ. Combining network pharmacology, RNA-seq, and metabolomics strategies to reveal the mechanism of Cimicifugae Rhizoma - Smilax glabra Roxb herb pair for the treatment of psoriasis.Phytomedicine202210515438410.1016/j.phymed.2022.15438435963195
    [Google Scholar]
  111. SuY. ZhangF. WuL. KuangH. WangQ. ChengG. Total withanolides ameliorates imiquimod-induced psoriasis-like skin inflammation.J. Ethnopharmacol.202228511489510.1016/j.jep.2021.11489534875348
    [Google Scholar]
  112. XieX. DiT. WangY. WangM. MengY. LinY. XuX. LiP. ZhaoJ. Indirubin ameliorates imiquimod-induced psoriasis-like skin lesions in mice by inhibiting inflammatory responses mediated by IL-17A-producing γδ T cells.Mol. Immunol.201810138639510.1016/j.molimm.2018.07.01130064075
    [Google Scholar]
  113. RuY. LiH. ZhangR. LuoY. SongJ. KuaiL. XingM. HongS. SunX. DingX. LuY. LiuL. NaC. ZhouY. LiB. LiX. Role of keratinocytes and immune cells in the anti-inflammatory effects of Tripterygium wilfordii Hook. f. in a murine model of psoriasis.Phytomedicine20207715329910.1016/j.phymed.2020.15329932823074
    [Google Scholar]
  114. WengS-W. ChenB-C. WangY-C. LiuC-K. SunM-F. ChangC-M. LinJ-G. YenH-R. Traditional Chinese medicine use among patients with Psoriasis in Taiwan: A nationwide population-based study.Evid. Based Complement. Alternat. Med.20162016316410510.1155/2016/3164105
    [Google Scholar]
  115. WangD. LuC. YuJ. ZhangM. ZhuW. GuJ. Chinese medicine for Psoriasis vulgaris based on syndrome pattern: A network pharmacological study.Evid. Based Complement. Alternat. Med.20202020523985410.1155/2020/5239854
    [Google Scholar]
  116. ZhaoJ. DiT. WangY. WangY. LiuX. LiangD. LiP. Paeoniflorin inhibits imiquimod-induced psoriasis in mice by regulating Th17 cell response and cytokine secretion.Eur. J. Pharmacol.201677213114310.1016/j.ejphar.2015.12.04026738780
    [Google Scholar]
  117. SunY. DongY. JiangH.J. CaiT.T. ChenL. ZhouX. ChenT. XuQ. Dissection of the role of paeoniflorin in the traditional Chinese medicinal formula Si-Ni-San against contact dermatitis in mice.Life Sci.20098411-1233734410.1016/j.lfs.2008.12.02319211027
    [Google Scholar]
  118. HanS. ChoiS. LeeY.H. KimG.W. Acute bullous irritant contact dermatitis caused by a Pulsatilla koreana extract.J. Herb. Med.20223110052210.1016/j.hermed.2021.100522
    [Google Scholar]
  119. YangN. ShaoH. DengJ. YangY. TangZ. WuG. LiuY. Dictamnine ameliorates chronic itch in DNFB-induced atopic dermatitis mice via inhibiting MrgprA3.Biochem. Pharmacol.202320811536810.1016/j.bcp.2022.11536836493846
    [Google Scholar]
  120. YuanX.Y. LiuW. ZhangP. WangR.Y. GuoJ.Y. Effects and mechanisms of aloperine on 2, 4-dinitrofluorobenzene-induced allergic contact dermatitis in BALB/c mice.Eur. J. Pharmacol.20106291-314715210.1016/j.ejphar.2009.12.00720006963
    [Google Scholar]
  121. LinJ.F. LiuP.H. HuangT.P. LienA.S.Y. OuL.S. YuC.H. YangS.L. ChangH.H. YenH.R. Characteristics and prescription patterns of traditional Chinese medicine in atopic dermatitis patients: Ten-year experiences at a Medical Center in Taiwan.Complement. Ther. Med.201422114114710.1016/j.ctim.2013.12.00324559829
    [Google Scholar]
  122. JuY. LuoM. YanT. ZhouZ. ZhangM. ZhaoZ. LiuX. MeiZ. XiongH. TRPA1 is involved in the inhibitory effect of Ke-teng-zi on allergic contact dermatitis via MAPK and JAK/STAT3 signaling pathways.J. Ethnopharmacol.202330711618210.1016/j.jep.2023.11618236706935
    [Google Scholar]
  123. YangH. MingY. WangW. JinY. HaoZ. LiuG. ZhangD. LinJ. Anti-inflammatory and anti-pruritic effects of Chi-Huang Solution in a murine model of allergic contact dermatitis.J. Ethnopharmacol.202229811554310.1016/j.jep.2022.11554335870683
    [Google Scholar]
  124. KimY. OhY. LeeH. YangB. ChoiC.H. JeongH. KimH. AnW. Prediction of the therapeutic mechanism responsible for the effects of Sophora japonica flower buds on contact dermatitis by network-based pharmacological analysis.J. Ethnopharmacol.202127111384310.1016/j.jep.2021.11384333493588
    [Google Scholar]
  125. ShenW. LiS.Y. PanY.Q. LiuH. DongX.W. ZhangX.Q. YeW.C. HuX.L. WangH. Prinsepia utilis Royle leaf extract: Ameliorative effects on allergic inflammation and skin lesions in allergic contact dermatitis and polyphenolic profiling through UPLC–MS/MS coupled to chemometric analysis.J. Ethnopharmacol.202330511609310.1016/j.jep.2022.11609336603785
    [Google Scholar]
  126. MaX. KuaiL. SongJ. LuoY. RuY. WangM. GaoC. JiangW. LiuY. BaiY. LiB. Therapeutic effects and mechanisms of Ku-Gan formula on atopic dermatitis: A pilot clinical study and modular pharmacology analysis with animal validation.J. Ethnopharmacol.202330711619410.1016/j.jep.2023.11619436716903
    [Google Scholar]
  127. LeeJ.E. ChoiY.W. ImD.S. Inhibitory effect of α-cubebenoate on atopic dermatitis-like symptoms by regulating Th2/Th1/Th17 balance in vivo.J. Ethnopharmacol.202229111516210.1016/j.jep.2022.11516235278605
    [Google Scholar]
  128. WuX. QiX. WangJ. ZhangY. XiaoY. TuC. WangA. Paeonifloring attenurates the allergic contact dermatitis response via inhibiting the IFN-γ production and the NF-ĸB/IĸBα signaling pathway in T lymphocytes.Int. Immunopharmacol.20219610768710.1016/j.intimp.2021.10768733965879
    [Google Scholar]
  129. KimH. LeeM.R. LeeG.S. AnW.G. ChoS.I. Effect of Sophora flavescens Aiton extract on degranulation of mast cells and contact dermatitis induced by dinitrofluorobenzene in mice.J. Ethnopharmacol.2012142125325810.1016/j.jep.2012.04.05322580027
    [Google Scholar]
  130. YangB. KimS. KimJ.H. LimC. KimH. ChoS. Gentiana scabra Bunge roots alleviates skin lesions of contact dermatitis in mice.J. Ethnopharmacol.201923314114710.1016/j.jep.2018.12.04630630090
    [Google Scholar]
  131. FuR. ZhangY. PengT. GuoY. ChenF. Phenolic composition and effects on allergic contact dermatitis of phenolic extracts Sapium sebiferum (L.) Roxb. leaves.J. Ethnopharmacol.201516217618010.1016/j.jep.2014.12.07225576898
    [Google Scholar]
  132. ChenF. YeX. YangY. TengT. LiX. XuS. YeY. Proanthocyanidins from the bark of Metasequoia glyptostroboides ameliorate allergic contact dermatitis through directly inhibiting T cells activation and Th1/Th17 responses.Phytomedicine201522451051510.1016/j.phymed.2015.03.00625925974
    [Google Scholar]
  133. YuX. NiuY. ZhengJ. LiuH. JiangG. ChenJ. HongM. Radix Saposhnikovia extract suppresses mouse allergic contact dermatitis by regulating dendritic-cell-activated Th1 cells.Phytomedicine201522131150115810.1016/j.phymed.2015.09.00226598913
    [Google Scholar]
  134. LiH. LimE. AngG. LimZ. CaiM.H. LohJ. NgC. SeetohP. TianE. GohL.B. Qualitative and quantitative analysis of Arnebiae Radix and Dictamni Cortex and efficacy study of herbal extracts on allergic contact dermatitis using 3D human reconstructed epidermis.Chin. Herb. Med.202113455656410.1016/j.chmed.2021.10.00636119360
    [Google Scholar]
  135. RajputM. KumarN. Medicinal plants: A potential source of novel bioactive compounds showing antimicrobial efficacy against pathogens infecting hair and scalp.Gene Rep.20202110087910.1016/j.genrep.2020.100879
    [Google Scholar]
  136. LiuC. GaoX. ZhangM. WangQ. MengL. XieJ. Case report of seborrheic dermatitis.World J. Acupunct. Moxibustion2021311737510.1016/j.wjam.2020.09.001
    [Google Scholar]
  137. ShahrajabianM.H. MarmittD.J. ChengQ. SunW. Natural antioxidant of the underutilized and neglected plant species of Asia and South America.Lett. Drug Des. Discov.202320101512153710.2174/1570180819666220616145558
    [Google Scholar]
  138. ThambyayahM. AmuthanA. Infantile seborrheic dermatitis: A pediatric Siddha medicine treatise.Clin. Dermatol.201533335536110.1016/j.clindermatol.2014.12.01325889138
    [Google Scholar]
  139. AntonialiD. LugãoH.B. EliasD. SouzaC.S. Seborrheic-like dermatitis and liver dysfunction in an infant: Signs of Langerhans cell histiocytosis.An. Bras. Dermatol.202297112312510.1016/j.abd.2020.08.03534839984
    [Google Scholar]
  140. PopeE. KowalskiE. TauskF. Topical ruxolitinib in the treatment of refractory facial seborrheic dermatitis.JAAD Case Rep.202224596010.1016/j.jdcr.2022.04.00335619595
    [Google Scholar]
  141. MangionS.E. MackenzieL. RobertsM.S. HolmesA.M. Seborrheic dermatitis: Topical therapeutics and formulation design.Eur. J. Pharm. Biopharm.202318514816410.1016/j.ejpb.2023.01.02336842718
    [Google Scholar]
  142. MarmittD.J. ShahrajabianM.H. Plant species used in Brazil and Asia regions with toxic properties.Phytother. Res.20213594703472610.1002/ptr.710033793002
    [Google Scholar]
  143. AyatollahiA. FiroozA. LotfaliE. MojabF. FattahiM. Herbal therapy for the management of seborrheic dermatitis: A narrative review.Recent Adv. Anti-Infect. Drug Discov.202116320922610.2174/277243441666621102911321335026970
    [Google Scholar]
  144. XuanM. LuC. HeZ. Clinical characteristics and quality of life in seborrheic dermatitis patients: A cross-sectional study in China.Health Qual. Life Outcomes202018130810.1186/s12955‑020‑01558‑y32938485
    [Google Scholar]
  145. YasarE. KemerizF. GurlevikU. Evaluation of dry eye disase and meibomian gland dysfunction with meibography in seborrheic dermatitis.Cont. Lens Anterior Eye201942667567810.1016/j.clae.2019.03.00530922551
    [Google Scholar]
  146. XiaoM. ZhangB. WangY. NieA. Chinese herbal medicine for seborrheic dermatitis complicated by allergy to topical agent: A case report.J. Tradit. Chin. Med. Sci.20174438038310.1016/j.jtcms.2017.12.004
    [Google Scholar]
  147. MustarichieR. RostinawatiT. PitalokaD.A.E. SaptariniN.M. IskandarY. Herbal therapy for the treatment of seborrhea dermatitis.Clin. Cosmet. Investig. Dermatol.2022152391240510.2147/CCID.S37670036387964
    [Google Scholar]
  148. NawrotJ. Gornowicz-PorowskaJ. NowakG. Phytotherapy perspectives for treating fungal infections, migraine, sebhorreic dermatitis and hyperpigmentations with the plants of the Centaureinae subtribe (Asteraceae).Molecules20202522532910.3390/molecules2522532933203185
    [Google Scholar]
  149. ZhangY. HeH. WangD. SongL. HeC. Evaluation of in vitro anti-acne activities of Ocimum basilicum L. water extract.Ind. Crops Prod.202218611520510.1016/j.indcrop.2022.115205
    [Google Scholar]
  150. ZhaoN. LaiL. WangX. JiaL. LiX. LaiB. HuR. ShiN. QinY. HanM. LiuZ. LiuJ. Fire needling for herpes zoster: A systematic review and meta-analysis of randomized clinical trials.J. Tradit. Chin. Med. Sci.20196131210.1016/j.jtcms.2018.12.003
    [Google Scholar]
  151. WangT. ShenH. DengH. PanH. HeQ. NiH. TaoJ. LiuS. XuL. YaoM. Quantitative proteomic analysis of human plasma using tandem mass tags to identify novel biomarkers for herpes zoster.J. Proteomics202022510387910.1016/j.jprot.2020.10387932585426
    [Google Scholar]
  152. SunW. ShahrajabianM.H. Therapeutic potential of phenolic compounds in medicinal plants-natural health products for human health.Molecules2023284184510.3390/molecules2804184536838831
    [Google Scholar]
  153. SunW. ShahrajabianM.H. PetropoulosS.A. ShahrajabianN. Developing sustainable agriculture systems in medicinal and aromatic plant production by using chitosan and chitin-based biostimulants.Plants20231213246910.3390/plants1213246937447031
    [Google Scholar]
  154. SunC. LiangH. ZhaoY. LiS. LiX. YuanX. ChengG. ZhangY. LiuM. GuanY. YaoJ. ZhangG. Jingfang Granules improve glucose metabolism disturbance and inflammation in mice with urticaria by up-regulating LKB1/AMPK/SIRT1 axis.J. Ethnopharmacol.2023302Part A11591310.1016/j.jep.2022.115913
    [Google Scholar]
  155. ZerboniL. SenN. OliverS.L. ArvinA.M. Molecular mechanisms of varicella zoster virus pathogenesis.Nat. Rev. Microbiol.201412319721010.1038/nrmicro321524509782
    [Google Scholar]
  156. YinD. Van OorschotD. JiangN. MarijamA. SahaD. WuZ. TangH. Diaz-DecaroJ. WatsonP. XieX. RenY. HeY. FengY. A systematic literature review to assess the burden of herpes zoster disease in China.Expert Rev. Anti Infect. Ther.202119216517910.1080/14787210.2020.179229032997550
    [Google Scholar]
  157. JuhuaP. ShijingH. WeiW. LiuhuaX. JieW. Discussion of the clinical research for integrating traditional Chinese medicine and western medicine in the treatment of HIV/AIDS herpes zoster.Wood Sci. Technol.201113224424710.1016/S1876‑3553(12)60010‑6
    [Google Scholar]
  158. GershonA.A. BreuerJ. CohenJ.I. CohrsR.J. GershonM.D. GildenD. GroseC. HambletonS. KennedyP.G.E. OxmanM.N. SewardJ.F. YamanishiK. Varicella zoster virus infection.Nat. Rev. Dis. Primers2015111501610.1038/nrdp.2015.1627188665
    [Google Scholar]
  159. MadhavK. HirlekarR. Review on Herbal alternatives for the treatment of Herpes zoster infection.J. Res. Tradit. Med.202172364210.5455/jrtm.2021/60351
    [Google Scholar]
  160. FerreiraV. LanglandJ. Treatment of herpes zoster with botanical interventions.Med. Case Rep. Study Protoc.202121e005810.1097/MD9.0000000000000058
    [Google Scholar]
  161. GuptaR. GuptaP. GuptaS. Management of Herpes zoster: A review.J. Sci. Innov. Res.20154316516810.31254/jsir.2015.4310
    [Google Scholar]
  162. WangX. WuL. HouY. DingS. WangS. ZhangY. ZhangG. Efficacy and safety of Chinese herbal medicine longdanxiegan decoction combined with val-acyclovir in herpes zoster: A systematic review and mate-analysis.J. Clin. Images Med. Case Rep.202123115610.52768/2766‑7820/1156
    [Google Scholar]
  163. ShindeP.R. PatilP.S. BhambarR.S. Effective natural drug remedies against Herpes zoster: A review.J. Drug Deliv. Ther.202010611211810.22270/jddt.v1016‑s.4599
    [Google Scholar]
  164. LeiY.J. GaoC. AnR. ShiQ. ChenJ.M. YuanY.K. WangC. HanJ. DongX.P. Development of a multiplex PCR method for detecting and typing human papillomaviruses in verrucae vulgaris. J. Virol. Methods20081471727710.1016/j.jviromet.2007.08.00517868912
    [Google Scholar]
  165. WuL. ChenW. SuJ. LiF. ChenM. ZhuW. ChenX. ZhaoS. Efficacy of the combination of superficial shaving with photodynamic therapy for recalcitrant periungual warts.Photodiagn. Photodyn. Ther.20192734034410.1016/j.pdpdt.2019.06.02131252143
    [Google Scholar]
  166. NomuraT. SumiE. EgawaG. NakajimaS. ToichiE. InoueN. ShibuyaM. OkamotoN. MitsuishiT. UozumiR. TadaH. NakagawaT. KusubaN. OkunoA. ShimizuhiraC. IshikawaM. TanakaS. HagiwaraM. KabashimaK. Safety and efficacy of FIT039 for Verruca vulgaris: A placebo-controlled, phase I//II randomized controlled trial.JID Innovations20211310002610.1016/j.xjidi.2021.10002634909725
    [Google Scholar]
  167. ConnerK. NernK. RudisillJ. O’GradyT. GalloR.L. The antimicrobial peptide LL-37 is expressed by keratinocytes in condyloma acuminatum and verruca vulgaris. J. Am. Acad. Dermatol.200247334735010.1067/mjd.2002.12219012196742
    [Google Scholar]
  168. ShenS. FengJ. SongX. XiangW. Efficacy of photodynamic therapy for warts induced by human papilloma virus infection: A systematic review and meta-analysis.Photodiagn. Photodyn. Ther.20223910291310.1016/j.pdpdt.2022.10291335605923
    [Google Scholar]
  169. MüngerK. BaldwinA. EdwardsK.M. HayakawaH. NguyenC.L. OwensM. GraceM. HuhK. Mechanisms of human papillomavirus-induced oncogenesis.J. Virol.20047821114511146010.1128/JVI.78.21.11451‑11460.200415479788
    [Google Scholar]
  170. ShahrajabianM.H. SunW. Survey on seed biology and pharmacological properties of four important speciesBull Fac Pharm Cairo Univ20196312610.54634/2090‑9101.106731014351
    [Google Scholar]
  171. LehouxM. D’AbramoC.M. ArchambaultJ. Molecular mechanisms of human papillomavirus-induced carcinogenesis.Public Health Genomics2009125-626828010.1159/00021491819684440
    [Google Scholar]
  172. QiX. YaoW. Successful treatment of a patient with subungual warts using paiteling: A case report.Explore (NY)202319611210.1016/j.explore.2022.10.00636307316
    [Google Scholar]
  173. Fernandez-FloresA. Llamas VelascoM. Saeb LimaM. Guarumbo (Cecropia obtusifolia) for warts in Zapotec medicine.Actas Dermosifiliogr.2020111318919110.1016/j.ad.2018.10.01331138415
    [Google Scholar]
  174. FadelM. FadeelD.A. TawfikA. El-KholyA.I. MosaadY.O. Rose Bengal-gold-polypyrrole nanoparticles as a photothermal/photodynamic dual treatment of recalcitrant plantar warts: Animal and clinical study.J. Drug Deliv. Sci. Technol.20226910309510.1016/j.jddst.2022.103095
    [Google Scholar]
  175. CaoZ. HanC. QuB. LiuY. The combination treatment of ozone water, superficial shaving, and photodynamic therapy in recalcitrant plantar warts: A successful case.Photodiagn. Photodyn. Ther.20223910296810.1016/j.pdpdt.2022.10296835716995
    [Google Scholar]
  176. HekmatjahJ. FarshchianM. Grant-KelsJ.M. MehreganD. The status of treatment for plantar warts in 2021: No definitive advancements in decades for a common dermatology disease.Clin. Dermatol.202139468869410.1016/j.clindermatol.2021.05.02434809773
    [Google Scholar]
  177. HuangK. LiY. ZengW. JiangZ. ZhuW. ChenM. DengB. SuJ. ZhaoS. Successful treatment of recalcitrant plantar warts: Pretreatment with superficial shaving is vital before photodynamic therapy.Photodiagn. Photodyn. Ther.20192721621710.1016/j.pdpdt.2019.05.04031163281
    [Google Scholar]
  178. ZhaoY. SridharS. GuoL. LauS.K.P. XuY. WooP.C.Y. Successful treatment of plantar warts using topical Zijinding, a traditional Chinese medicine preparation: A case series.J. Cosmet. Dermatol.202019494695010.1111/jocd.1310231479180
    [Google Scholar]
  179. JiangS.B. LuY.S. ZhangY.H. WuY. WangH.X. GaoX.H. ChenH.D. A retrospective study of a Chinese traditional medicine YIKEER in the treatment of Verruca patients in Liaoning district.Evid. Based Complement. Alternat. Med.201920191810.1155/2019/989614831976004
    [Google Scholar]
  180. ZhaoZ. CaiT. ChenH. ChenL. ChenY. GaoX. GaoX. GengS. GuoY. HaoF. HaoG. HuY. JinH. JinZ. LiC. LiH. LiJ. LiY. LiangY. LiuG. LiuQ. LongH. MaL. ShangY. SongY. SongZ. SuX. SuiH. SunQ. SunY. TangJ. TongX. WangH. WangG. WangL. WangS. XiangL. XiaoT. XieZ. YeL. YuY. ZhangC. ZhangL. ZhangS. ZhengR. ZhiL. ZhouW. ZouY. MaurerM. Expert consensus on the use of omalizumab in chronic urticaria in China.World Allergy Organ. J.2021141110061010.1016/j.waojou.2021.10061034934470
    [Google Scholar]
  181. ZhuL. KimY. YangZ. The application of auriculotherapy to the treatment of chronic spontaneous urticaria: A systematic review and meta-analysis.J. Acupunct. Meridian Stud.201811634335410.1016/j.jams.2018.08.20930195824
    [Google Scholar]
  182. YanM. YeF. ZhangY. CaiX. FuY. YangX. Optimization model research on efficacy in treatment of chronic urticaria by Chinese and Western Medicine based on a genetic algorithm.J. Tradit. Chin. Med.2013331606410.1016/S0254‑6272(13)60101‑623596813
    [Google Scholar]
  183. ChenY. YuM. HuangX. TuP. ShiP. MaurerM. ZhaoZ. Omalizumab treatment and outcomes in Chinese patients with chronic spontaneous urticaria, chronic inducible urticaria, or both.World Allergy Organ. J.202114110050110.1016/j.waojou.2020.10050133510832
    [Google Scholar]
  184. WuY. RenY. LiuL. ZhaoY. WangY. ZhaoR. LuC. Integrating pharmacokinetics and network pharmacology to identify and validate targets of Guben Xiaozhen prescription for the treatment of chronic urticaria.J. Ethnopharmacol.202229811562810.1016/j.jep.2022.11562835970316
    [Google Scholar]
  185. LinY. ChenY. HuS. ChenH. ChenJ. YangS. Identifying core herbal treatments for urticaria using Taiwan’s nationwide prescription database.J. Ethnopharmacol.2013148255656210.1016/j.jep.2013.04.05223684721
    [Google Scholar]
  186. LiC.H. ZhuZ.H. DaiY.H. Diaper dermatitis: A survey of risk factors for children aged 1-24 months in China.J. Int. Med. Res.20124051752176010.1177/03000605120400051423206457
    [Google Scholar]
  187. ChienP.S. TsengY.F. HsuY.C. LaiY.K. WengS.F. Frequency and pattern of Chinese herbal medicine prescriptions for urticaria in Taiwan during 2009: Analysis of the national health insurance database.BMC Complement. Altern. Med.201313120910.1186/1472‑6882‑13‑20923947955
    [Google Scholar]
  188. HungH.Y. SongT. LooS.K.F. ChanK.L. ChingJ.Y.L. SumC.H. LoL.C.W. ChiaS.C.P. HoR.T.M. CheongP.K. SiuT.H.C. LeungK.C. LinZ.X. Efficacy and safety of modified Xiao-Feng Powder in the treatment of chronic urticaria: Protocol of a randomized double-blind placebo-controlled study.Chin. Med.20221718710.1186/s13020‑022‑00642‑335869554
    [Google Scholar]
  189. HebertA.A. A new therapeutic horizon in diaper dermatitis: Novel agents with novel action.Int. J. Womens Dermatol.20217446647010.1016/j.ijwd.2021.02.00334621960
    [Google Scholar]
  190. DunkA.M. BroomM. FourieA. BeeckmanD. Clinical signs and symptoms of diaper dermatitis in newborns, infants, and young children: A scoping review.J. Tissue Viability202231340441510.1016/j.jtv.2022.03.00335562302
    [Google Scholar]
  191. FelterS.P. CarrA.N. ZhuT. KirschT. NiuG. Safety evaluation for ingredients used in baby care products: Consideration of diaper rash.Regul. Toxicol. Pharmacol.20179021422110.1016/j.yrtph.2017.09.01128916467
    [Google Scholar]
  192. ShimizuM. SakaiS. TatekawaY. IshikawaS. MiyamotoM. YachieA. An infant with PELVIS (perineal hemangioma, external genital malformations, lipomyelomeningocele, vesicorenal abnormalities, imperforate anus, and skin tag) syndrome misdiagnosed as diaper rash.J. Pediatr.2014165363410.1016/j.jpeds.2014.05.00724948350
    [Google Scholar]
  193. ShinH.T. Diagnosis and management of diaper dermatitis.Pediatr. Clin. North Am.201461236738210.1016/j.pcl.2013.11.00924636651
    [Google Scholar]
  194. HeidariS. ParizadN. ShiraziF. AlinejadV. Ghanipour BadelbuuS. Comparing the effects of aloe vera ointment with routine treatment on the severity of diaper dermatitis: A randomized controlled double-blinded clinical trial.Disease and Diagnosis20209415816210.34172/ddj.2020.06
    [Google Scholar]
  195. Sharifi-HerisZ. Amiri FarahaniL. Hasanpoor-AzghadiS.B. A review study of diaper rash dermatitis treatments.J. Client-Centered Nurs. Care.20184111210.32598/jccnc.4.1.1
    [Google Scholar]
  196. PanahiY. SharifM.R. SharifA. BeiraghdarF. ZahiriZ. AmirchoopaniG. MarzonyE.T. SahebkarA. A randomized comparative trial on the therapeutic efficacy of topical aloe vera and Calendula officinalis on diaper dermatitis in children.Sci. World J.201220121510.1100/2012/81023422606064
    [Google Scholar]
  197. CarrA.N. DeWittT. CorkM.J. EichenfieldL.F. Fölster-HolstR. HohlD. LaneA.T. PallerA. PickeringL. TaiebA. CuiT.Y. XuZ.G. WangX. BrinkS. NiuY. OgleJ. OdioM. GibbR.D. Diaper dermatitis prevalence and severity: Global perspective on the impact of caregiver behavior.Pediatr. Dermatol.202037113013610.1111/pde.1404731793090
    [Google Scholar]
  198. HanX. ChenZ. YuanJ. WangG. HanX. WuH. ShiH. ChouG. YangL. WuX. Artemisia annua water extract attenuates DNCB-induced atopic dermatitis by restraining Th2 cell mediated inflammatory responses in BALB/c mice.J. Ethnopharmacol.202229111516010.1016/j.jep.2022.11516035245629
    [Google Scholar]
  199. JahanI. IslamM.R. IslamM.R. AliR. RahmanS.M.M. NaharZ. HasnatA. IslamM.S. Altered serum elements, antioxidants, MDA, and immunoglobulins are associated with an increased risk of seborrheic dermatitis.Heliyon202173e0662110.1016/j.heliyon.2021.e0662133855245
    [Google Scholar]
  200. LiangH.F. YangY.H. ChenP.C. KuoH.C. ChangC.H. WangY.H. WuK.M. Prescription patterns of traditional Chinese medicine amongst Taiwanese children: A population-based cohort study.BMC Complement. Altern. Med.201818119110.1186/s12906‑018‑2261‑229929519
    [Google Scholar]
  201. LinY. ChenX.J. HeL. YanX.L. LiQ.R. ZhangX. HeM.H. ChangS. TuB. LongQ.D. ZengZ. Systematic elucidation of the bioactive alkaloids and potential mechanism from Sophora flavescens for the treatment of eczema via network pharmacology.J. Ethnopharmacol.202330111579910.1016/j.jep.2022.11579936216196
    [Google Scholar]
  202. WanH.L. ChenH.Z. ShiX.Q. Study on effect of Traditional Chinese medicine Jianpi Chushi decoction and ointment on chronic eczema.Asian Pac. J. Trop. Med.20169992092310.1016/j.apjtm.2016.07.01927633311
    [Google Scholar]
  203. YuanC. TakagiR. YaoX.Q. XuY. IshidaK. ToyoshimaH. Comparison of the effectiveness of new material diapers versus standard diapers for the prevention of diaper rash in Chinese babies: A double-blinded, randomized, controlled, cross-over study.BioMed Res. Int.201820181610.1155/2018/587418430035123
    [Google Scholar]
  204. ShahrajabianM.H. SunW. Biochar amendment and its impacts on medicinal and aromatic plants in sustainable agriculture.Curr. Green Chem.202411329631110.2174/0122133461286440240123055247
    [Google Scholar]
  205. KhoshkharamM. ShahrajabianM.H. SunW. Changes in germination parameters, growth and development of three cultivars of corn seedlings under various aqueous extracts of mallow.Curr. Org. Synth.202522334235210.2174/0115701794274892231229110318
    [Google Scholar]
  206. ShahrajabianM.H. SunW. Carob (Ceratonia siliqua L.), pharmacological and phytochemical activities of neglected legume of the Mediterranean basin, as functional food.Rev. Recent Clin. Trials202419212714210.2174/011574887127812824010907450638288801
    [Google Scholar]
  207. ShahrajabianM.H. SunW. The significance and importance of dPCR, qPCR, and SYBR Green PCR Kit in the detection of numerous diseases.Curr. Pharm. Des.202430316917910.2174/011381612827656023121809043638243947
    [Google Scholar]
  208. SunW. ShahrajabianM.H. KuangY. WangN. Amino acids biostimulants and protein hydrolysates in agricultural sciences.Plants202413221010.3390/plants1302021038256763
    [Google Scholar]
  209. ShahrajabianM.H. SunW. Characterization of intrinsically disordered proteins in healthy and diseases states by nuclear magnetic resonance.Rev. Recent Clin. Trials202419317618810.2174/0115748871271420240213064251
    [Google Scholar]
  210. ShahrajabianM.H. SunW. The power of the underutilized and neglected medicinal plants and herbs of the Middle East.Rev. Recent Clin. Trials202419315917510.2174/011574887127654424021210561238409705
    [Google Scholar]
  211. ShahrajabianM.H. SunW. Introduction of honeycomb (Nidus vespae) and some of its most important pharmacological benefits.Curr. Nutr. Food Sci.202420898298710.2174/0115734013279576240124072234
    [Google Scholar]
  212. ShahrajabianM.H. SunW. The importance of application of medicinal plants and natural products in poultry health management.Not. Sci. Biol.20241631199410.55779/nsb16311994
    [Google Scholar]
  213. KhoshkharamM. ShahrajabianM.H. SunW. Effect of D-mannitol and gibberellic acid on physiological parameters, early seedling growth characteristics, and some of the most important chemical components of barberry (Berberis vulgaris L.).Nat. Prod. J.20241511010.2174/0122103155311053240822102929
    [Google Scholar]
  214. ShahrajabianM.H. PetropoulosS.A. Editorial for the special issue on plant biostimulants in sustainable horticulture and agriculture: Development, function and application.Plants20241317234210.3390/plants1317234239273826
    [Google Scholar]
  215. ShahrajabianM.H. SunW. Study on rapid, quantitative, and simultaneous detection of drug residues and immunoassay in chickens.Rev. Recent Clin. Trials20241911610.2174/011574887130533124072410413239171469
    [Google Scholar]
  216. ShahrajabianM.H. SunW. Multidimensional uses of bitter melon (Momordica charantia L.) considering the important functions of its chemical components.Curr. Org. Synth.202522451653010.2174/0115701794285586240523101245
    [Google Scholar]
/content/journals/cnf/10.2174/0115734013329822250420091953
Loading
/content/journals/cnf/10.2174/0115734013329822250420091953
Loading

Data & Media loading...

Supplements

PRISMA checklist is available as supplementary material on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test