Skip to content
2000
Volume 21, Issue 4
  • ISSN: 1573-4013
  • E-ISSN: 2212-3881

Abstract

Microplastics (MP) are new pollutants that threaten the ecological environment and, therefore, human and animal health. Given the extensive utilization of plastics across various domains, MPs are commonly detected in the atmosphere, water bodies, terrestrial regions, and living organisms. Important accumulation points of MPs are air, soil, and water ecosystems. This study aims to summarize how animals are exposed to environmental MPs, identify the specific organs where these MPs accumulate, and assess the risks associated with different foods. The urrent research on MP pollution in ecosystems generally focuses on organisms living in water and soil, but unfortunately, there are significant deficiencies in the transmission routes of MPs in the food chain from soil to table. MPs build up in animals across the food chain, and their presence in animal-derived food products intensifies during processing and packaging. The transfer of MPs to food-producing animals has been understudied, particularly with regard to the important role of livestock in converting plant nutrients into proteins required for human consumption. It is understood that more research is needed, especially for contamination in animal foods. Conducting comprehensive risk assessments of MPs throughout the entire food chain is extremely important for food safety.

© 2025 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cnf/10.2174/0115734013321875240913043337
2024-09-27
2025-09-26
Loading full text...

Full text loading...

/deliver/fulltext/cnf/21/4/CNF-21-4-03.html?itemId=/content/journals/cnf/10.2174/0115734013321875240913043337&mimeType=html&fmt=ahah

References

  1. ThompsonR.C. SwanS.H. MooreC.J. vom SaalF.S. Our plastic age.Philos. Trans. R. Soc. Lond. B Biol. Sci.200936415261973197610.1098/rstb.2009.005419528049
    [Google Scholar]
  2. Plastics Europe Plastics—The FactsPlastics - the Facts, 2021.2021Available From: https://plasticseurope.org/wp-content/uploads/2021/12/AF-Plastics-the-facts-2021_250122.pdf
  3. UrliS. Corte PauseF. CrociatiM. BaufeldA. MonaciM. StradaioliG. Impact of microplastics and nanoplastics on livestock health: An emerging risk for reproductive efficiency.Animals (Basel)2023137113210.3390/ani1307113237048387
    [Google Scholar]
  4. GeyerR. JambeckJ.R. LawK.L. Production, use, and fate of all plastics ever made.Sci. Adv.201737e170078210.1126/sciadv.170078228776036
    [Google Scholar]
  5. DongX. LiuX. HouQ. WangZ. From natural environment to animal tissues: A review of microplastics (nanoplastics) translocation and hazards studies.Sci. Total Environ.202385515868610.1016/j.scitotenv.2022.15868636099943
    [Google Scholar]
  6. RochmanC.M. BrooksonC. BikkerJ. DjuricN. EarnA. BucciK. AtheyS. HuntingtonA. McIlwraithH. MunnoK. De FrondH. KolomijecaA. ErdleL. GrbicJ. BayoumiM. BorrelleS.B. WuT. SantoroS. WerbowskiL.M. ZhuX. GilesR.K. HamiltonB.M. ThaysenC. KauraA. KlasiosN. EadL. KimJ. SherlockC. HoA. HungC. Rethinking microplastics as a diverse contaminant suite.Environ. Toxicol. Chem.201938470371110.1002/etc.437130909321
    [Google Scholar]
  7. PatelD. MamtoraD. KamathA. ShuklaA. Rogue one: A plastic story.Mar. Pollut. Bull.202217711350910.1016/j.marpolbul.2022.11350935290835
    [Google Scholar]
  8. GongJ. XieP. Research progress in sources, analytical methods, eco-environmental effects, and control measures of microplastics.Chemosphere202025412679010.1016/j.chemosphere.2020.12679032330760
    [Google Scholar]
  9. Corte PauseF. UrliS. CrociatiM. StradaioliG. BaufeldA. Connecting the dots: Livestock Animals as missing links in the chain of microplastic contamination and human health.Animals (Basel)202414235010.3390/ani1402035038275809
    [Google Scholar]
  10. CoxK.D. CoverntonG.A. DaviesH.L. DowerJ.F. JuanesF. DudasS.E. Human consumption of microplastics.Environ. Sci. Technol.201953127068707410.1021/acs.est.9b0151731184127
    [Google Scholar]
  11. ZhangZ. ZhaoS. ChenL. DuanC. ZhangX. FangL. A review of microplastics in soil: Occurrence, analytical methods, combined contamination and risks.Environ. Pollut.202230611937410.1016/j.envpol.2022.11937435490998
    [Google Scholar]
  12. ShenM. SongB. ZengG. ZhangY. HuangW. WenX. TangW. Are biodegradable plastics a promising solution to solve the global plastic pollution?Environ. Pollut.2020263Pt A11446910.1016/j.envpol.2020.11446932272422
    [Google Scholar]
  13. SussarelluR. SuquetM. ThomasY. LambertC. FabiouxC. PernetM.E.J. Le GoïcN. QuillienV. MingantC. EpelboinY. CorporeauC. GuyomarchJ. RobbensJ. Paul-PontI. SoudantP. HuvetA. Oyster reproduction is affected by exposure to polystyrene microplastics.Proc. Natl. Acad. Sci. USA201611392430243510.1073/pnas.151901911326831072
    [Google Scholar]
  14. FerranteM.C. MonnoloA. Del P.F. Mattace RasoG. MeliR. The pressing issue of micro- and nanoplastic contamination: Profiling the reproductive alterations mediated by oxidative stress.Antioxidants202211219310.3390/antiox1102019335204076
    [Google Scholar]
  15. PiehlS. LeibnerA. LöderM.G.J. DrisR. BognerC. LaforschC. Identification and quantification of macro- and microplastics on an agricultural farmland.Sci. Rep.2018811795010.1038/s41598‑018‑36172‑y30560873
    [Google Scholar]
  16. AkdoganZ. GuvenB. Microplastics in the environment: A critical review of current understanding and identification of future research needs.Environ. Pollut.2019254Pt A11301110.1016/j.envpol.2019.11301131404735
    [Google Scholar]
  17. AdamV. YangT. NowackB. Toward an ecotoxicological risk assessment of microplastics: Comparison of available hazard and exposure data in freshwaters.Environ. Toxicol. Chem.201938243644710.1002/etc.432330488983
    [Google Scholar]
  18. YongC. ValiyaveettilS. TangB. Toxicity of microplastics and nanoplastics in mammalian systems.Int. J. Environ. Res. Public Health2020175150910.3390/ijerph1705150932111046
    [Google Scholar]
  19. YangL. ZhangY. KangS. WangZ. WuC. Microplastics in soil: A review on methods, occurrence, sources, and potential risk.Sci. Total Environ.202178014654610.1016/j.scitotenv.2021.14654633770602
    [Google Scholar]
  20. ZhangJ. RenS. XuW. LiangC. LiJ. ZhangH. LiY. LiuX. JonesD.L. ChadwickD.R. ZhangF. WangK. Effects of plastic residues and microplastics on soil ecosystems: A global meta-analysis.J. Hazard. Mater.202243512906510.1016/j.jhazmat.2022.12906535650746
    [Google Scholar]
  21. WuR.T. CaiY.F. ChenY.X. YangY.W. XingS.C. LiaoX.D. Occurrence of microplastic in livestock and poultry manure in South China.Environ. Pollut.202127711679010.1016/j.envpol.2021.11679033667747
    [Google Scholar]
  22. DissanayakeP.D. KimS. SarkarB. OleszczukP. SangM.K. HaqueM.N. AhnJ.H. BankM.S. OkY.S. Effects of microplastics on the terrestrial environment: A critical review.Environ. Res.202220911273410.1016/j.envres.2022.11273435065936
    [Google Scholar]
  23. LahiveE. CrossR. SaarloosA.I. HortonA.A. SvendsenC. HufenusR. MitranoD.M. Earthworms ingest microplastic fibres and nanoplastics with effects on egestion rate and long-term retention.Sci. Total Environ.2022807Pt 315102210.1016/j.scitotenv.2021.15102234662614
    [Google Scholar]
  24. LuoY. LiL. FengY. LiR. YangJ. PeijnenburgW.J.G.M. TuC. Quantitative tracing of uptake and transport of submicrometre plastics in crop plants using lanthanide chelates as a dual-functional tracer.Nat. Nanotechnol.202217442443110.1038/s41565‑021‑01063‑335058654
    [Google Scholar]
  25. Huerta L.E. ThapaB. YangX. GertsenH. SalánkiT. GeissenV. GarbevaP. Decay of low-density polyethylene by bacteria extracted from earthworm’s guts: A potential for soil restoration.Sci. Total Environ.201862475375710.1016/j.scitotenv.2017.12.14429272844
    [Google Scholar]
  26. UrbinaM.A. CorreaF. AburtoF. FerrioJ.P. Adsorption of polyethylene microbeads and physiological effects on hydroponic maize.Sci. Total Environ.202074114021610.1016/j.scitotenv.2020.14021632886998
    [Google Scholar]
  27. LiL. LuoY. LiR. ZhouQ. PeijnenburgW.J.G.M. YinN. YangJ. TuC. ZhangY. Effective uptake of submicrometre plastics by crop plants via a crack-entry mode.Nat. Sustain.202031192993710.1038/s41893‑020‑0567‑9
    [Google Scholar]
  28. YeeM.S.L. HiiL.W. LooiC.K. LimW.M. WongS.F. KokY.Y. TanB.K. WongC.Y. LeongC.O. Impact of Microplastics and Nanoplastics on Human Health.Nanomaterials (Basel)202111249610.3390/nano1102049633669327
    [Google Scholar]
  29. BhagatJ. NishimuraN. ShimadaY. Toxicological interactions of microplastics/nanoplastics and environmental contaminants: Current knowledge and future perspectives.J. Hazard. Mater.202140512391310.1016/j.jhazmat.2020.12391333127190
    [Google Scholar]
  30. WangW. GeJ. YuX. LiH. Environmental fate and impacts of microplastics in soil ecosystems: Progress and perspective.Sci. Total Environ.202070813484110.1016/j.scitotenv.2019.13484131791759
    [Google Scholar]
  31. TianL. JinjinC. JiR. MaY. YuX. Microplastics in agricultural soils: Sources, effects, and their fate.Curr. Opin. Environ. Sci. Health20222510031110.1016/j.coesh.2021.100311
    [Google Scholar]
  32. ZhangJ. GuoN. DingW. HanB. ZhaoM. WangX. WangJ. CaoB. ZouG. ChenY. Microplastic pollution and the related ecological risks of organic composts from different raw materials.J. Hazard. Mater.202345813191110.1016/j.jhazmat.2023.13191137356176
    [Google Scholar]
  33. BläsingM. AmelungW. Plastics in soil: Analytical methods and possible sources.Sci. Total Environ.201861242243510.1016/j.scitotenv.2017.08.08628863373
    [Google Scholar]
  34. StockV. BöhmertL. LisickiE. BlockR. Cara-CarmonaJ. PackL.K. SelbR. LichtensteinD. VossL. HendersonC.J. ZabinskyE. SiegH. BraeuningA. LampenA. Uptake and effects of orally ingested polystyrene microplastic particles in vitro and in vivo.Arch. Toxicol.20199371817183310.1007/s00204‑019‑02478‑731139862
    [Google Scholar]
  35. Huerta L.E. Mendoza VegaJ. Ku QuejV. ChiJ.A. Sanchez del CidL. ChiC. Escalona SeguraG. GertsenH. SalánkiT. van der PloegM. KoelmansA.A. GeissenV. Field evidence for transfer of plastic debris along a terrestrial food chain.Sci. Rep.2017711407110.1038/s41598‑017‑14588‑229074893
    [Google Scholar]
  36. CampanaleC. MassarelliC. SavinoI. LocaputoV. UricchioV.F. A detailed review study on potential effects of microplastics and additives of concern on human health.Int. J. Environ. Res. Public Health2020174121210.3390/ijerph1704121232069998
    [Google Scholar]
  37. BeriotN. PeekJ. ZornozaR. GeissenV. Huerta L.E. Low density-microplastics detected in sheep faeces and soil: A case study from the intensive vegetable farming in Southeast Spain.Sci. Total Environ.2021755Pt 114265310.1016/j.scitotenv.2020.14265333069476
    [Google Scholar]
  38. Alavian PetroodyS.S. HashemiS.H. van GestelC.A.M. Transport and accumulation of microplastics through wastewater treatment sludge processes.Chemosphere202127813047110.1016/j.chemosphere.2021.13047133839392
    [Google Scholar]
  39. Harley-NyangD. MemonF.A. JonesN. GallowayT. Investigation and analysis of microplastics in sewage sludge and biosolids: A case study from one wastewater treatment works in the UK.Sci. Total Environ.202282315373510.1016/j.scitotenv.2022.15373535149057
    [Google Scholar]
  40. HortonA.A. CrossR.K. ReadD.S. JürgensM.D. BallH.L. SvendsenC. VollertsenJ. JohnsonA.C. Semi-automated analysis of microplastics in complex wastewater samples.Environ. Pollut.2021268Pt A11584110.1016/j.envpol.2020.11584133120336
    [Google Scholar]
  41. LiX. ChenL. MeiQ. DongB. DaiX. DingG. ZengE.Y. Microplastics in sewage sludge from the wastewater treatment plants in China.Water Res.2018142758510.1016/j.watres.2018.05.03429859394
    [Google Scholar]
  42. DuisK. CoorsA. Microplastics in the aquatic and terrestrial environment: Sources (with a specific focus on personal care products), fate and effects.Environ. Sci. Eur.2016281210.1186/s12302‑015‑0069‑y27752437
    [Google Scholar]
  43. RevelM. ChâtelA. MouneyracC. Micro(nano)plastics: A threat to human health?Curr. Opin. Environ. Sci. Health20181172310.1016/j.coesh.2017.10.003
    [Google Scholar]
  44. HortonA.A. DixonS.J. Microplastics: An introduction to environmental transport processes.WIREs. Water201852e126810.1002/wat2.1268
    [Google Scholar]
  45. AkhbarizadehR. DobaradaranS. Amouei T.M. SaeediR. AibaghiR. Faraji G.F. Suspended fine particulate matter (PM2.5), microplastics (MPs), and polycyclic aromatic hydrocarbons (PAHs) in air: Their possible relationships and health implications.Environ. Res.202119211033910.1016/j.envres.2020.11033933068583
    [Google Scholar]
  46. SridharanS. KumarM. SinghL. BolanN.S. SahaM. Microplastics as an emerging source of particulate air pollution: A critical review.J. Hazard. Mater.202141812624510.1016/j.jhazmat.2021.12624534111744
    [Google Scholar]
  47. AllenS. AllenD. PhoenixV.R. Le RouxG. Durántez JiménezP. SimonneauA. BinetS. GalopD. Atmospheric transport and deposition of microplastics in a remote mountain catchment.Nat. Geosci.201912533934410.1038/s41561‑019‑0335‑5
    [Google Scholar]
  48. HirtN. Body-MalapelM. Immunotoxicity and intestinal effects of nano- and microplastics: A review of the literature.Part. Fibre Toxicol.20201715710.1186/s12989‑020‑00387‑733183327
    [Google Scholar]
  49. LiaoZ. JiX. MaY. LvB. HuangW. ZhuX. FangM. WangQ. WangX. DahlgrenR. ShangX. Airborne microplastics in indoor and outdoor environments of a coastal city in Eastern China.J. Hazard. Mater.202141712600710.1016/j.jhazmat.2021.12600733992007
    [Google Scholar]
  50. MehmoodT. HassanM.A. FaheemM. ShakoorA. Why is inhalation the most discriminative route of microplastics exposure?Environ. Sci. Pollut. Res. Int.20222933494794948210.1007/s11356‑022‑20653‑935570254
    [Google Scholar]
  51. PrataJ.C. Dias-PereiraP. Microplastics in Terrestrial Domestic Animals and Human Health: Implications for Food Security and Food Safety and Their Role as Sentinels.Animals (Basel)202313466110.3390/ani1304066136830448
    [Google Scholar]
  52. HuangD. ChenH. ShenM. TaoJ. ChenS. YinL. ZhouW. WangX. XiaoR. LiR. Recent advances on the transport of microplastics/nanoplastics in abiotic and biotic compartments.J. Hazard. Mater.202243812951510.1016/j.jhazmat.2022.12951535816806
    [Google Scholar]
  53. LiuX. YuanW. DiM. LiZ. WangJ. Transfer and fate of microplastics during the conventional activated sludge process in one wastewater treatment plant of China.Chem. Eng. J.201936217618210.1016/j.cej.2019.01.033
    [Google Scholar]
  54. ChenG. FengQ. WangJ. Mini-review of microplastics in the atmosphere and their risks to humans.Sci. Total Environ.202070313550410.1016/j.scitotenv.2019.13550431753503
    [Google Scholar]
  55. WerbowskiL.M. GilbreathA.N. MunnoK. ZhuX. GrbicJ. WuT. SuttonR. SedlakM.D. DeshpandeA.D. RochmanC.M. Urban stormwater runoff: A major pathway for anthropogenic particles, black rubbery fragments, and other types of microplastics to urban receiving waters.ACS ES&T Water2021161420142810.1021/acsestwater.1c00017
    [Google Scholar]
  56. DaluT. BandaT. MutshekwaT. MunyaiL.F. CuthbertR.N. Effects of urbanisation and a wastewater treatment plant on microplastic densities along a subtropical river system.Environ. Sci. Pollut. Res. Int.20212827361023611110.1007/s11356‑021‑13185‑133686602
    [Google Scholar]
  57. YanZ. ChenY. BaoX. ZhangX. LingX. LuG. LiuJ. NieY. Microplastic pollution in an urbanized river affected by water diversion: Combining with active biomonitoring.J. Hazard. Mater.202141712605810.1016/j.jhazmat.2021.12605834015710
    [Google Scholar]
  58. LeslieH.A. van VelzenM.J.M. BrandsmaS.H. VethaakA.D. Garcia-VallejoJ.J. LamoreeM.H. Discovery and quantification of plastic particle pollution in human blood.Environ. Int.202216310719910.1016/j.envint.2022.10719935367073
    [Google Scholar]
  59. ZhuF. ZhuC. WangC. GuC. Occurrence and Ecological Impacts of Microplastics in Soil Systems: A Review.Bull. Environ. Contam. Toxicol.2019102674174910.1007/s00128‑019‑02623‑z31069405
    [Google Scholar]
  60. WangF. WangB. DuanL. ZhangY. ZhouY. SuiQ. XuD. QuH. YuG. Occurrence and distribution of microplastics in domestic, industrial, agricultural and aquacultural wastewater sources: A case study in Changzhou, China.Water Res.202018211595610.1016/j.watres.2020.11595632622124
    [Google Scholar]
  61. LiH. ChangX. ZhangJ. WangY. ZhongR. WangL. WeiJ. WangY. Uptake and distribution of microplastics of different particle sizes in maize (Zea mays) seedling roots.Chemosphere202331313749110.1016/j.chemosphere.2022.13749136493893
    [Google Scholar]
  62. LianJ. WuJ. XiongH. ZebA. YangT. SuX. SuL. LiuW. Impact of polystyrene nanoplastics (PSNPs) on seed germination and seedling growth of wheat (Triticum aestivum L.).J. Hazard. Mater.202038512162010.1016/j.jhazmat.2019.12162031744724
    [Google Scholar]
  63. ZuccarelloP. FerranteM. CristaldiA. CopatC. GrassoA. SangregorioD. FioreM. Oliveri ContiG. Exposure to microplastics (<10 μm) associated to plastic bottles mineral water consumption: The first quantitative study.Water Res.201915736537110.1016/j.watres.2019.03.09130974285
    [Google Scholar]
  64. RilligM.C. LehmannA. de Souza MachadoA.A. YangG. Microplastic effects on plants.New Phytol.201922331066107010.1111/nph.1579430883812
    [Google Scholar]
  65. ThieleC.J. HudsonM.D. RussellA.E. SaluveerM. Sidaoui-HaddadG. Microplastics in fish and fishmeal: An emerging environmental challenge?Sci. Rep.2021111204510.1038/s41598‑021‑81499‑833479308
    [Google Scholar]
  66. WangQ. LiJ. ZhuX. SunC. TengJ. ChenL. ShanE. ZhaoJ. Microplastics in fish meals: An exposure route for aquaculture animals.Sci. Total Environ.2022807Pt 315104910.1016/j.scitotenv.2021.15104934673075
    [Google Scholar]
  67. WalkinshawC. TolhurstT.J. LindequeP.K. ThompsonR. ColeM. Detection and characterisation of microplastics and microfibres in fishmeal and soybean meal.Mar. Pollut. Bull.2022185Pt A11418910.1016/j.marpolbul.2022.11418936257247
    [Google Scholar]
  68. Oliveri ContiG. FerranteM. BanniM. FavaraC. NicolosiI. CristaldiA. FioreM. ZuccarelloP. Micro- and nano-plastics in edible fruit and vegetables. The first diet risks assessment for the general population.Environ. Res.202018710967710.1016/j.envres.2020.10967732454310
    [Google Scholar]
  69. PriyankaM. DeyS. Ruminal impaction due to plastic materials - An increasing threat to ruminants and its impact on human health in developing countries.Vet. World20181191307131510.14202/vetworld.2018.1307‑131530410238
    [Google Scholar]
  70. RamaswamyV. Rai SharmaH. Plastic bags-threat to environment and cattle health: A retrospective study from gondar city of Ethiopia.IIOAB J.20112712
    [Google Scholar]
  71. MeyerG. Puig-LozanoR. FernándezA. Anthropogenic litter in terrestrial flora and fauna: Is the situation as bad as in the ocean? A field study in Southern Germany on five meadows and 150 ruminants in comparison with marine debris.Environ. Pollut.202332312130410.1016/j.envpol.2023.12130436804141
    [Google Scholar]
  72. WangR. HuangY. DongS. WangP. SuX. The occurrence of bisphenol compounds in animal feed plastic packaging and migration into feed.Chemosphere202126512902210.1016/j.chemosphere.2020.12902233288279
    [Google Scholar]
  73. LeonL.I.D. BautistaI.M.R. DezaA.G.M.D. KokJ.F.F. Del MundoE.F. Microplastic Fragments from Poultry Entrails in Wet Markets from South Caloocan, Philippines.Preprints2022
    [Google Scholar]
  74. RyanP.G. Effects of ingested plastic on seabird feeding: Evidence from chickens.Mar. Pollut. Bull.198819312512810.1016/0025‑326X(88)90708‑4
    [Google Scholar]
  75. LehnerR. WederC. Petri-FinkA. Rothen-RutishauserB. Emergence of nanoplastic in the environment and possible impact on human health.Environ. Sci. Technol.20195341748176510.1021/acs.est.8b0551230629421
    [Google Scholar]
  76. KannanK. VimalkumarK. A review of human exposure to microplastics and insights into microplastics as obesogens.Front. Endocrinol. (Lausanne)20211272498910.3389/fendo.2021.72498934484127
    [Google Scholar]
  77. GautamR. JoJ. AcharyaM. MaharjanA. LeeD. K CP.B. KimC. KimK. KimH. HeoY. Evaluation of potential toxicity of polyethylene microplastics on human derived cell lines.Sci. Total Environ.2022838Pt 215608910.1016/j.scitotenv.2022.15608935605862
    [Google Scholar]
  78. Alvarez-RománR. NaikA. KaliaY.N. GuyR.H. FessiH. Skin penetration and distribution of polymeric nanoparticles.J. Control. Release2004991536210.1016/j.jconrel.2004.06.01515342180
    [Google Scholar]
  79. HwangJ. ChoiD. HanS. ChoiJ. HongJ. An assessment of the toxicity of polypropylene microplastics in human derived cells.Sci. Total Environ.201968465766910.1016/j.scitotenv.2019.05.07131158627
    [Google Scholar]
  80. YangY. LiuG. SongW. YeC. LinH. LiZ. LiuW. Plastics in the marine environment are reservoirs for antibiotic and metal resistance genes.Environ. Int.2019123798610.1016/j.envint.2018.11.06130502597
    [Google Scholar]
  81. ZhangJ. WangL. TrasandeL. KannanK. Occurrence of polyethylene terephthalate and polycarbonate microplastics in infant and adult feces.Environ. Sci. Technol. Lett.202181198999410.1021/acs.estlett.1c00559
    [Google Scholar]
  82. JinY. LuL. TuW. LuoT. FuZ. Impacts of polystyrene microplastic on the gut barrier, microbiota and metabolism of mice.Sci. Total Environ.201964930831710.1016/j.scitotenv.2018.08.35330176444
    [Google Scholar]
  83. QiaoJ. ChenR. WangM. BaiR. CuiX. LiuY. WuC. ChenC. Perturbation of gut microbiota plays an important role in micro/nanoplastics-induced gut barrier dysfunction.Nanoscale202113198806881610.1039/D1NR00038A33904557
    [Google Scholar]
  84. WangW. DoA.T.N. KwonJ.H. Ecotoxicological effects of micro- and nanoplastics on terrestrial food web from plants to human beings.Sci. Total Environ.202283415533310.1016/j.scitotenv.2022.15533335452728
    [Google Scholar]
  85. ZhangS. WangL. JiaX. ZhangJ. JiangH. LiW. HuangF. WangH. ZhangB. DingG. WangZ. A comparison between dietary consumption status and healthy dietary pattern among adults aged 55 and older in China.Nutrients20221413277810.3390/nu1413277835807958
    [Google Scholar]
  86. KedzierskiM. LechatB. SireO. Le MaguerG. Le TillyV. BruzaudS. Microplastic contamination of packaged meat: Occurrence and associated risks.Food Packag. Shelf Life20202410048910.1016/j.fpsl.2020.100489
    [Google Scholar]
  87. RagusaA. SvelatoA. SantacroceC. CatalanoP. NotarstefanoV. CarnevaliO. PapaF. RongiolettiM.C.A. BaioccoF. DraghiS. D’AmoreE. RinaldoD. MattaM. GiorginiE. Plasticenta: First evidence of microplastics in human placenta.Environ. Int.202114610627410.1016/j.envint.2020.10627433395930
    [Google Scholar]
  88. BanerjeeA. ShelverW.L. Micro- and Nanoplastic-Mediated Pathophysiological Changes in Rodents, Rabbits, and Chickens: A Review.J. Food Prot.20218491480149510.4315/JFP‑21‑11734347096
    [Google Scholar]
  89. AllouziM.M.A. TangD.Y.Y. ChewK.W. RinklebeJ. BolanN. AllouziS.M.A. ShowP.L. Micro (nano) plastic pollution: The ecological influence on soil-plant system and human health.Sci. Total Environ.202178814781510.1016/j.scitotenv.2021.14781534034191
    [Google Scholar]
  90. FournierS.B. D’ErricoJ.N. AdlerD.S. KollontziS. GoedkenM.J. FabrisL. YurkowE.J. StapletonP.A. Nanopolystyrene translocation and fetal deposition after acute lung exposure during late-stage pregnancy.Part. Fibre Toxicol.20201715510.1186/s12989‑020‑00385‑933099312
    [Google Scholar]
  91. LuoT. ZhangY. WangC. WangX. ZhouJ. ShenM. ZhaoY. FuZ. JinY. Maternal exposure to different sizes of polystyrene microplastics during gestation causes metabolic disorders in their offspring.Environ. Pollut.2019255Pt 111312210.1016/j.envpol.2019.11312231520900
    [Google Scholar]
  92. MarcelinoR.C. CardosoR.M. DominguesE.L.B.C. GonçalvesR.V. LimaG.D.A. NovaesR.D. The emerging risk of microplastics and nanoplastics on the microstructure and function of reproductive organs in mammals: A systematic review of preclinical evidence.Life Sci.202229512040410.1016/j.lfs.2022.12040435176278
    [Google Scholar]
  93. HabibR.Z. PouloseV. AlsaidiR. al KendiR. IftikharS.H. MouradA.H.I. KittanehW.F. ThiemannT. Plastic cutting boards as a source of microplastics in meat.Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess.202239360961910.1080/19440049.2021.201700235084287
    [Google Scholar]
  94. HabibR.Z. KindiR.A. SalemF.A. KittanehW.F. PouloseV. IftikharS.H. MouradA.H.I. ThiemannT. Microplastic contamination of chicken meat and fish through plastic cutting boards.Int. J. Environ. Res. Public Health202219201344210.3390/ijerph19201344236294029
    [Google Scholar]
  95. EFSA Panel on Contaminants in the Food Chain (CONTAM)Presence of microplastics and nanoplastics in food, with particular focus on seafood.EFSA J.201614e04501
    [Google Scholar]
  96. QuartinelloF. KremserK. SchoenH. TeseiD. PloszczanskiL. NaglerM. PodmirsegS.M. InsamH. PiñarG. SterflinglerK. RibitschD. GuebitzG.M. Together is better: The rumen microbial community as biological toolbox for degradation of synthetic polyesters.Front. Bioeng. Biotechnol.2021968445910.3389/fbioe.2021.684459
    [Google Scholar]
  97. Da Costa FilhoP.A. AndreyD. EriksenB. PeixotoR.P. CarreresB.M. AmbühlM.E. DescarregaJ.B. DubascouxS. ZbindenP. PanchaudA. PoitevinE. Detection and characterization of small-sized microplastics (≥ 5 µm) in milk products.Sci. Rep.20211112404610.1038/s41598‑021‑03458‑734911996
    [Google Scholar]
  98. Kutralam-MuniasamyG. Pérez-GuevaraF. Elizalde-MartínezI. ShrutiV.C. Branded milks – Are they immune from microplastics contamination?Sci. Total Environ.202071413682310.1016/j.scitotenv.2020.13682331991276
    [Google Scholar]
  99. Diaz-BasantesM.F. ConesaJ.A. FullanaA. Microplastics in honey, beer, milk and refreshments in ecuador as emerging contaminants.Sustainability (Basel)20201214551410.3390/su12145514
    [Google Scholar]
  100. LiuQ. ChenZ. ChenY. YangF. YaoW. XieY. Microplastics contamination in eggs: Detection, occurrence and status.Food Chem.202239713377110.1016/j.foodchem.2022.13377135930965
    [Google Scholar]
  101. LiuS. LiuX. GuoJ. YangR. WangH. SunY. ChenB. DongR. The association between microplastics and microbiota in placentas and meconium: The first evidence in humans.Environ. Sci. Technol.20235746177741778510.1021/acs.est.2c0470636269573
    [Google Scholar]
  102. LiuZ. ZhuanQ. ZhangL. MengL. FuX. HouY. Polystyrene microplastics induced female reproductive toxicity in mice.J. Hazard. Mater.2022424Pt C12762910.1016/j.jhazmat.2021.12762934740508
    [Google Scholar]
  103. SusantiR. YuniastutiA. FibrianaF. The Evidence of microplastic contamination in central javanese local ducks from intensive animal husbandry.Water Air Soil Pollut.2021232517810.1007/s11270‑021‑05142‑y
    [Google Scholar]
  104. LiebezeitG. LiebezeitE. Non-pollen particulates in honey and sugar.Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess.201330122136214010.1080/19440049.2013.84302524160778
    [Google Scholar]
  105. LiebezeitG. LiebezeitE. Origin of synthetic particles in honeys.Pol. J. Food Nutr. Sci.201565214314710.1515/pjfns‑2015‑0025
    [Google Scholar]
  106. LiH. YangZ. JiangF. LiL. LiY. ZhangM. QiZ. MaR. ZhangY. FangJ. ChenX. GengY. CaoZ. PanG. YanL. SunW. Detection of microplastics in domestic and fetal pigs’ lung tissue in natural environment: A preliminary study.Environ. Res.2023216Pt 211462310.1016/j.envres.2022.11462336273596
    [Google Scholar]
  107. BasaranB. ÖzçifçiZ. AkcayH.T. AytanÜ. Microplastics in branded milk: Dietary exposure and risk assessment.J. Food Compos. Anal.202312310561110.1016/j.jfca.2023.105611
    [Google Scholar]
  108. FierensT. Van HolderbekeM. WillemsH. De HenauwS. SioenI. Transfer of eight phthalates through the milk chain — A case study.Environ. Int.2013511710.1016/j.envint.2012.10.00223138015
    [Google Scholar]
  109. SharmanM. ReadW.A. CastleL. GilbertJ. Levels of di‐(2‐ethylhexyl)phthalate and total phthalate esters in milk, cream, butter and cheese.Food Addit. Contam.199411337538510.1080/026520394093742367926171
    [Google Scholar]
  110. SantonicolaS. FerranteM.C. MurruN. GalloP. MercoglianoR. Hot topic: Bisphenol A in cow milk and dietary exposure at the farm level.J. Dairy Sci.201910221007101310.3168/jds.2018‑1533830594366
    [Google Scholar]
  111. Kadac-CzapskaK. KnezE. GrembeckaM. Food and human safety: The impact of microplastics.Crit. Rev. Food Sci. Nutr.202464113502352110.1080/10408398.2022.213221236250552
    [Google Scholar]
  112. CorrêaT.R. GaylardeC.C. Baptista NetoJ.A. DelgadoJ.F. LimaL.S. CunhaD.L. da FonsecaE.M. The impact of microplastics on global food production: A brief overview of this complex sector.Microplastics20232437138810.3390/microplastics2040028
    [Google Scholar]
  113. CverenkárováK. ValachovičováM. MackuľakT. ŽemličkaL. BírošováL. Microplastics in the food chain.Life (Basel)20211112134910.3390/life1112134934947879
    [Google Scholar]
  114. Jasso-SalcedoA.B. Díaz-CruzC.A. Rivera-VallejoC.C. Jiménez-RegaladoE.J. Aguirre-LoredoR.Y. Human consumption of microplastics via food type and habits: Recent review.Water Air Soil Pollut.2024235213910.1007/s11270‑024‑06920‑0
    [Google Scholar]
/content/journals/cnf/10.2174/0115734013321875240913043337
Loading
/content/journals/cnf/10.2174/0115734013321875240913043337
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): atmosphere; COVID-19; food chain; livestock; Microplastics; nutrients
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test