Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4013
  • E-ISSN: 2212-3881

Abstract

Alzheimer's Disease (AD) is a neurological condition that worsens over time and has a gradual start. It has a significant impact on the well-being of human beings. Peptides are substances produced from plants that have been revealed to inhibit the progression of Alzheimer's disease disorders, making them a promising strategy for the prevention of Alzheimer's disease. Nevertheless, because of the enormously convoluted pathophysiology of Alzheimer's Disease (AD) and the recognition that the majority of research on the action of plant-derived peptides is solitary instead of sufficiently comprehensive, the development and implementation of Plant-derived Alzheimer-prevention Peptides (PADPs) have been constrained. The molecular pathways of PADPs, AD-prevention activity, and some perspectives on current advanced technologies have been discussed in this review. Additionally, the review provides a summary of the current techniques available for obtaining PADPs, as well as and protocols for evaluating the activity of PADPs in preventing Alzheimer's disease. Additionally, the fundamental concepts for the manufacturing and utilization of PADPs have been developed in this study.

Loading

Article metrics loading...

/content/journals/cnf/10.2174/0115734013314858240419052907
2024-04-29
2025-09-12
Loading full text...

Full text loading...

References

  1. BayerT.A. WirthsO. Intracellular accumulation of amyloid-beta – A predictor for synaptic dysfunction and neuron loss in Alzheimer’s disease.Front. Aging Neurosci.201022810.3389/fnagi.2010.0000820552046
    [Google Scholar]
  2. StavskyA. StolerO. KosticM. KatoshevskyT. AssaliE.A. SavicI. AmitaiY. ProkischH. LeizS. Daumer-HaasC. FleidervishI. PerocchiF. GitlerD. SeklerI. Aberrant activity of mitochondrial NCLX is linked to impaired synaptic transmission and is associated with mental retardation.Commun. Biol.20214166610.1038/s42003‑021‑02114‑034079053
    [Google Scholar]
  3. KomatsuM. KurokawaH. WaguriS. TaguchiK. KobayashiA. IchimuraY. SouY.S. UenoI. SakamotoA. TongK.I. KimM. NishitoY. IemuraS. NatsumeT. UenoT. KominamiE. MotohashiH. TanakaK. YamamotoM. The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1.Nat. Cell Biol.201012321322310.1038/ncb202120173742
    [Google Scholar]
  4. DebnathJ. GammohN. RyanK.M. Autophagy and autophagy-related pathways in cancer.Nat. Rev. Mol. Cell Biol.202324856057510.1038/s41580‑023‑00585‑z36864290
    [Google Scholar]
  5. BoxerA.L. QureshiI. AhlijanianM. GrundmanM. GolbeL.I. LitvanI. HonigL.S. TuiteP. McFarlandN.R. O’SuilleabhainP. XieT. TirucheraiG.S. BechtoldC. BordelonY. GeldmacherD.S. GrossmanM. IsaacsonS. ZesiewiczT. OlssonT. MuralidharanK.K. GrahamD.L. O’GormanJ. HaeberleinS.B. DamT. Safety of the tau-directed monoclonal antibody BIIB092 in progressive supranuclear palsy: A randomised, placebo-controlled, multiple ascending dose phase 1b trial.Lancet Neurol.201918654955810.1016/S1474‑4422(19)30139‑531122495
    [Google Scholar]
  6. LogarušićM. SlivacI. RadoševićK. BagovićM. RedovnikovićI.R. SrčekV.G. Hempseed protein hydrolysates’ effects on the proliferation and induced oxidative stress in normal and cancer cell lines.Mol. Biol. Rep.20194666079608510.1007/s11033‑019‑05043‑831493283
    [Google Scholar]
  7. LongJ.M. HoltzmanD.M. Alzheimer disease: An update on pathobiology and treatment strategies.Cell2019179231233910.1016/j.cell.2019.09.00131564456
    [Google Scholar]
  8. WangS. WaterhouseS.D. WaterhouseN.G.I. ZhengL. SuG. ZhaoM. Effects of food-derived bioactive peptides on cognitive deficits and memory decline in neurodegenerative diseases: A review.Trends Food Sci. Technol.202111671273210.1016/j.tifs.2021.04.056
    [Google Scholar]
  9. ChaiT.T. LawY.C. WongF.C. KimS.K. Enzyme-assisted discovery of antioxidant peptides from edible marine invertebrates: A review.Mar. Drugs20171524210.3390/md1502004228212329
    [Google Scholar]
  10. ChaiT.T. AngS.Y. GohK. LeeY.H. NgooJ.M. TehL.K. WongF.C. Trypsin-hydrolyzed corn silk proteins: Antioxidant activities, in vitro gastrointestinal and thermal stability, and hepatoprotective effects.eFood20201215616410.2991/efood.k.200323.001
    [Google Scholar]
  11. SicairosS.E.S. NorisM.A.K. VitalL.D.A. CarrilloM.J. RodríguezM.A. Anti-inflammatory and antioxidant effects of peptides released from germinated amaranth during in vitro simulated gastrointestinal digestion.Food Chem.202134312839410.1016/j.foodchem.2020.12839433097329
    [Google Scholar]
  12. DabbourM. XiangJ. MintahB. HeR. JiangH. MaH. Localized enzymolysis and sonochemically modified sunflower protein: Physical, functional and structure attributes.Ultrason. Sonochem.20206310495710.1016/j.ultsonch.2019.10495731945572
    [Google Scholar]
  13. LvS. TahaA. HuH. LuQ. PanS. Effects of ultrasonic-assisted extraction on the physicochemical properties of different walnut proteins.Molecules20192423426010.3390/molecules2423426031766733
    [Google Scholar]
  14. GollyM.K. MaH. YuqingD. WuP. DabbourM. SarpongF. FarooqM. Enzymolysis of walnut ( Juglans regia L.) meal protein: Ultrasonication-assisted alkaline pretreatment impact on kinetics and thermodynamics.J. Food Biochem.2019438e1294810.1111/jfbc.1294831368548
    [Google Scholar]
  15. ZhuangM. ZhaoM. LinL. DongY. ChenH. FengM. WaterhouseS.D. SuG. Macroporous resin purification of peptides with umami taste from soy sauce.Food Chem.201619033834410.1016/j.foodchem.2015.05.10526212979
    [Google Scholar]
  16. LiX. GuoM. ChiJ. MaJ. Bioactive peptides from walnut residue protein.Molecules2020256128510.3390/molecules2506128532178315
    [Google Scholar]
  17. WangM. AmakyeW.K. GuoL. GongC. ZhaoY. YaoM. RenJ. Walnut-derived peptide PW5 ameliorates cognitive impairments and alters gut microbiota in APP/PS1 transgenic mice.Mol. Nutr. Food Res.20196318190032610.1002/mnfr.20190032631237989
    [Google Scholar]
  18. WangS. ZhengL. ZhaoT. ZhangQ. LiuY. SunB. SuG. ZhaoM. Inhibitory effects of walnut (Juglans regia) peptides on neuroinflammation and oxidative stress in lipopolysaccharide-induced cognitive impairment mice.J. Agric. Food Chem.20206882381239210.1021/acs.jafc.9b0767032037817
    [Google Scholar]
  19. SamaeiS.P. GhorbaniM. TagliazucchiD. MartiniS. GottiR. ThemelisT. TesiniF. GianottiA. ToschiG.T. BabiniE. Functional, nutritional, antioxidant, sensory properties and comparative peptidomic profile of faba bean (Vicia faba, L.) seed protein hydrolysates and fortified apple juice.Food Chem.202033012712010.1016/j.foodchem.2020.12712032526646
    [Google Scholar]
  20. ShengJ. YangX. ChenJ. PengT. YinX. LiuW. LiangM. WanJ. YangX. Antioxidative effects and mechanism study of bioactive peptides from defatted walnut (Juglans regia L.) meal hydrolysate.J. Agric. Food Chem.201967123305331210.1021/acs.jafc.8b0572230817142
    [Google Scholar]
  21. ŻakowskiW. Animal use in neurobiological research.Neuroscience202043311010.1016/j.neuroscience.2020.02.04932156550
    [Google Scholar]
  22. StoutRFJr VerkhratskyA ParpuraV Caenorhabditis elegans glia modulate neuronal activity and behavior.Front. Cell. Neurosci.20141486710.3389/fncel.2014.00067
    [Google Scholar]
  23. GötzJ. BodeaL.G. GoedertM. Rodent models for Alzheimer disease.Nat. Rev. Neurosci.2018191058359810.1038/s41583‑018‑0054‑830194347
    [Google Scholar]
  24. Sanchez-VaroR. Mejias-OrtegaM. ValenzuelaF.J.J. DiazN.C. PalomoC.L. GomezV.L. MejiasS.E. EstradaT.L. LeonG.J.A. GonzalezM.I. VizueteM. VitoricaJ. VargasB.D. GutierrezA. Transgenic mouse models of Alzheimer’s disease: An integrative analysis.Int. J. Mol. Sci.20222310540410.3390/ijms2310540435628216
    [Google Scholar]
  25. DawsonT.M. GoldeT.E. TourenneL.C. Animal models of neurodegenerative diseases.Nat. Neurosci.201821101370137910.1038/s41593‑018‑0236‑830250265
    [Google Scholar]
  26. ImtiazB. TuppurainenM. TiihonenM. KivipeltoM. SoininenH. HartikainenS. TolppanenA.M. Oophorectomy, hysterectomy, and risk of Alzheimer’s disease: A nationwide case-control study.J. Alzheimers Dis.201442257558110.3233/JAD‑14033624898656
    [Google Scholar]
  27. YangL. DingW. DongY. ChenC. ZengY. JiangZ. GanS. YouZ. ZhaoY. ZhangY. RenX. WangS. DaiJ. ChenZ. ZhuS. ChenL. ShenS. MaoJ. XieZ. Electroacupuncture attenuates surgical pain-induced delirium-like behavior in mice via remodeling gut microbiota and dendritic spine.Front. Immunol.20221395558110.3389/fimmu.2022.95558136003380
    [Google Scholar]
  28. HarrisonF.E. HosseiniA.H. McDonaldM.P. Endogenous anxiety and stress responses in water maze and Barnes maze spatial memory tasks.Behav. Brain Res.2009198124725110.1016/j.bbr.2008.10.01518996418
    [Google Scholar]
  29. ChenH. ZhaoM. LinL. WangJ. Sun-WaterhouseD. DongY. ZhuangM. SuG. Identification of antioxidative peptides from defatted walnut meal hydrolysate with potential for improving learning and memory.Food Res. Int.20157821622310.1016/j.foodres.2015.10.00828433285
    [Google Scholar]
  30. LiW. ZhaoT. ZhangJ. XuJ. WaterhouseS.D. ZhaoM. SuG. Effect of walnut protein hydrolysate on scopolamine-induced learning and memory deficits in mice.J. Food Sci. Technol.201754103102311010.1007/s13197‑017‑2746‑x28974795
    [Google Scholar]
  31. WangS. SuG. ZhangQ. ZhaoT. LiuY. ZhengL. ZhaoM. Walnut (Juglans regia) peptides reverse sleep deprivation-induced memory impairment in rat via alleviating oxidative stress.J. Agric. Food Chem.20186640106171062710.1021/acs.jafc.8b0388430226056
    [Google Scholar]
  32. RenD. ZhaoF. LiuC. WangJ. GuoY. LiuJ. MinW. Antioxidant hydrolyzed peptides from Manchurian walnut (Juglans mandshurica Maxim.) attenuate scopolamine-induced memory impairment in mice.J. Sci. Food Agric.201898135142515210.1002/jsfa.906029652442
    [Google Scholar]
  33. KatayamaS. ImaiR. SugiyamaH. NakamuraS. Oral administration of soy peptides suppresses cognitive decline by induction of neurotrophic factors in SAMP8 mice.J. Agric. Food Chem.201462163563356910.1021/jf405416s24678753
    [Google Scholar]
  34. JuD.T. KA.K. KuoW.W. HoT.J. ChangR.L. LinW.T. DayC.H. ViswanadhaV.V.P. LiaoP.H. HuangC.Y. Bioactive peptide VHVV upregulates the long-term memory-related biomarkers in adult spontaneously hypertensive rats.Int. J. Mol. Sci.20192012306910.3390/ijms2012306931234585
    [Google Scholar]
  35. YangS. KawamuraY. YoshikawaM. Effect of rubiscolin, a δ opioid peptide derived from Rubisco, on memory consolidation.Peptides200324232532810.1016/S0196‑9781(03)00044‑512668220
    [Google Scholar]
  36. TakahashiM. FukunagaH. KanetoH. FukudomeS. YoshikawaM. Behavioral and pharmacological studies on gluten exorphin A5, a newly isolated bioactive food protein fragment, in mice.Jpn. J. Pharmacol.200084325926510.1254/jjp.84.25911138726
    [Google Scholar]
  37. CorpuzH.M. FujiiH. NakamuraS. KatayamaS. Fermented rice peptides attenuate scopolamine-induced memory impairment in mice by regulating neurotrophic signaling pathways in the hippocampus.Brain Res.2019172014632210.1016/j.brainres.2019.14632231278934
    [Google Scholar]
  38. DingQ. WuR.A. YinL. ZhangW. HeR. ZhangT. JiangH. LuoL. MaH. DaiC. Antioxidation and memory protection effects of solid-state-fermented rapeseed meal peptides on D-galactose-induced memory impairment in aging-mice.J. Food Process Eng.2019425e1314510.1111/jfpe.13145
    [Google Scholar]
  39. DileepK.V. IharaK. TsumagariM.C. NiinoK.M. YonemochiM. HanadaK. ShirouzuM. ZhangK.Y.J. Crystal structure of human acetylcholinesterase in complex with tacrine: Implications for drug discovery.Int. J. Biol. Macromol.202221017218110.1016/j.ijbiomac.2022.05.00935526766
    [Google Scholar]
  40. LaneC.A. HardyJ. SchottJ.M. Alzheimer’s disease.Eur. J. Neurol.2018251597010.1111/ene.1343928872215
    [Google Scholar]
  41. WaliA. MijitiY. YanhuaG. YiliA. AisaH.A. KawuliA. Isolation and identification of a novel antioxidant peptide from chickpea (Cicer arietinum L.) sprout protein hydrolysates.Int. J. Pept. Res. Ther.202127121922710.1007/s10989‑020‑10070‑2
    [Google Scholar]
  42. ŞenolF.S. OrhanI. CelepF. KahramanA. DoğanM. YilmazG. ŞenerB. Survey of 55 turkish Salvia taxa for their acetylcholinesterase inhibitory and antioxidant activities.Food Chem.20101201344310.1016/j.foodchem.2009.09.066
    [Google Scholar]
  43. MalomoS.A. AlukoR.E. Kinetics of acetylcholinesterase inhibition by hemp seed protein-derived peptides.J. Food Biochem.2019437e1289710.1111/jfbc.1289731353736
    [Google Scholar]
  44. Zentİ. GöksuA.G. ÇakırB. Gülserenİ. Linking collective in vitro to individual in silico peptide bioactivity through mass spectrometry (LC-Q-TOF/MS) based sequence identification: The case of black cumin protein hydrolysates.J. Food Meas. Charact.202115166467410.1007/s11694‑020‑00666‑z
    [Google Scholar]
  45. LupuA. GradinaruL.M. GradinaruV.R. BerceaM. Diversity of bioinspired hydrogels: From structure to applications.Gels20239537610.3390/gels905037637232968
    [Google Scholar]
  46. DrozdowskaD. MaliszewskiD. WróbelA. RatkiewiczA. SienkiewiczM. New benzamides as multi-targeted compounds: A study on synthesis, AChE and BACE1 inhibitory activity and molecular docking.Int. J. Mol. Sci.202324191490110.3390/ijms24191490137834347
    [Google Scholar]
  47. TawalbehD. U’dattA.M.H. Wan AhmadW.A.N. AhmadF. SarbonN.M. Recent advances in in vitro and in vivo studies of antioxidant, ace-inhibitory, and anti-inflammatory peptides from legume protein hydrolysates.Molecules2023286242310.3390/molecules2806242336985395
    [Google Scholar]
  48. BandaD.M. PereiraJ.H. LiuA.K. OrrD.J. HammelM. HeC. ParryM.A.J. Carmo-SilvaE. AdamsP.D. BanfieldJ.F. ShihP.M. Novel bacterial clade reveals origin of form I Rubisco.Nat. Plants2020691158116610.1038/s41477‑020‑00762‑432868887
    [Google Scholar]
  49. ZhuX. CaiL. LiuJ. ZhuW. CuiC. OuyangD. YeJ. Effect of seabuckthorn seed protein and its arginine-enriched peptides on combating memory impairment in mice.Int. J. Biol. Macromol.202323212340910.1016/j.ijbiomac.2023.12340936706884
    [Google Scholar]
  50. PorterJ.L. RusliR.A. OllisD.L. Directed evolution of enzymes for industrial biocatalysis.ChemBioChem201617319720310.1002/cbic.20150028026661585
    [Google Scholar]
  51. ZhengF. XueL. HouS. LiuJ. ZhanM. YangW. ZhanC.G. A highly efficient cocaine-detoxifying enzyme obtained by computational design.Nat. Commun.201451345710.1038/ncomms445724643289
    [Google Scholar]
  52. TuszynskiM.H. YangJ.H. BarbaD. UH.S. BakayR.A.E. PayM.M. MasliahE. ConnerJ.M. KobalkaP. RoyS. NagaharaA.H. Nerve growth factor gene therapy: Activation of neuronal responses in Alzheimer disease.JAMA Neurol.201572101139114710.1001/jamaneurol.2015.180726302439
    [Google Scholar]
  53. PatnodeC.D. PerdueL.A. RossomR.C. RushkinM.C. RedmondN. ThomasR.G. LinJ.S. Screening for cognitive impairment in older adults: updated evidence reports and systematic review for the US Preventive Services Task Force.JAMA2020323876478510.1001/jama.2019.2225832096857
    [Google Scholar]
  54. HanJ. BesserL.M. XiongC. KukullW.A. MorrisJ.C. Cholinesterase inhibitors may not benefit mild cognitive impairment and mild Alzheimer’s disease dementia.Alzheimer Dis. Assoc. Disord.2019332879410.1097/WAD.000000000000029130633043
    [Google Scholar]
  55. MoghadamM. SalamiM. MohammadianM. DjomehE.Z. JahanbaniR. MovahediM.A.A. Physicochemical and bio-functional properties of walnut proteins as affected by trypsin-mediated hydrolysis.Food Biosci.20203610061110.1016/j.fbio.2020.100611
    [Google Scholar]
  56. FangWS SunD YangS GuoN β-Secretase (BACE1) inhibitors from natural products.Natural products targeting clinically relevant enzymesWiley2017293134
    [Google Scholar]
  57. LinL. LiC. LiT. ZhengJ. ShuY. ZhangJ. ShenY. RenD. Plant-derived peptides for the improvement of Alzheimer’s disease: Production, functions, and mechanisms.Food Front.20234267769910.1002/fft2.210
    [Google Scholar]
  58. LeeD.H. LeeD.H. LeeJ.S. Characterization of a new antidementia β-secretase inhibitory peptide from Rubus coreanus.Food Sci. Biotechnol.2008173489494
    [Google Scholar]
  59. XuH.Y. FengX.H. ZhaoP.F. DamirinA. MaC.M. Procyanidin A2 penetrates L-02 cells and protects against tert-butyl hydroperoxide-induced oxidative stress by activating Nrf2 through JNK and p38 phosphorylation.J. Funct. Foods20196210356210.1016/j.jff.2019.103562
    [Google Scholar]
  60. GuoT. ZhangD. ZengY. HuangT.Y. XuH. ZhaoY. Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer’s disease.Mol. Neurodegener.20201514010.1186/s13024‑020‑00391‑732677986
    [Google Scholar]
  61. YangH.S. ZhangC. CarlyleB.C. ZhenS.Y. TrombettaB.A. SchultzA.P. PruzinJ.J. FitzpatrickC.D. YauW.Y.W. KirnD.R. RentzD.M. ArnoldS.E. JohnsonK.A. SperlingR.A. ChhatwalJ.P. TanziR.E. Plasma IL-12/IFN-γ axis predicts cognitive trajectories in cognitively unimpaired older adults.Alzheimers Dement.202218464565310.1002/alz.1239934160128
    [Google Scholar]
  62. TianR. FengJ. HuangG. TianB. ZhangY. JiangL. SuiX. Ultrasound driven conformational and physicochemical changes of soy protein hydrolysates.Ultrason. Sonochem.20206810520210.1016/j.ultsonch.2020.10520232593148
    [Google Scholar]
  63. WuS. WuQ. WangJ. LiY. ChenB. ZhuZ. HuangR. ChenM. HuangA. XieY. JiaoC. DingY. Novel selenium peptides obtained from selenium-enriched Cordyceps militaris alleviate neuroinflammation and gut microbiota dysbacteriosis in LPS-injured mice.J. Agric. Food Chem.202270103194320610.1021/acs.jafc.1c0839335238567
    [Google Scholar]
  64. JashA. UbeyitogullariA. RizviS.S.H. Liposomes for oral delivery of protein and peptide-based therapeutics: Challenges, formulation strategies, and advances.J. Mater. Chem. B Mater. Biol. Med.20219244773479210.1039/D1TB00126D34027542
    [Google Scholar]
  65. XuT. CockI.E. A review of the sedative, anti-anxiety and immunosti-mulant properties of Withania somnifera (L.) Dunal (Ashwagandha).Pharmacogn. Commun.2023131152310.5530/pc.2023.1.4
    [Google Scholar]
  66. LvR. DongY. BaoZ. ZhangS. LinS. SunN. Advances in the activity evaluation and cellular regulation pathways of food-derived antioxidant peptides.Trends Food Sci. Technol.202212217118610.1016/j.tifs.2022.02.026
    [Google Scholar]
  67. ShabbirU. RubabM. TyagiA. OhD.H. Curcumin and its derivatives as theranostic agents in Alzheimer’s disease: The implication of nanotechnology.Int. J. Mol. Sci.202022119610.3390/ijms2201019633375513
    [Google Scholar]
  68. SharmaR. SinglaR.K. BanerjeeS. SinhaB. ShenB. SharmaR. Role of shankhpushpi (Convolvulus pluricaulis) in neurological disorders: An umbrella review covering evidence from ethnopharmacology to clinical studies.Neurosci. Biobehav. Rev.202214010479510.1016/j.neubiorev.2022.10479535878793
    [Google Scholar]
  69. HosseiniM. BoskabadyM.H. KhazdairM.R. Neuroprotective effects of Coriandrum sativum and its constituent, linalool: A review.Avicenna J. Phytomed.202111543645034745916
    [Google Scholar]
  70. OlorunfemiF.G. AdewoluA.M. Medicinal plants used in management and treatment of alzheimer’s disease in Africa: An insight into therapeutic avenues and possible development as future phytopharmaceuticals.J. Nat. Sci. Res.20201010.
    [Google Scholar]
  71. DabhekarS.V. ChandurkarP.A. KaleM.B. WankhedeN.L. TaksandeB.G. UmekarM.J. UpaganlawarA.B. Herbal medicine in the treatment of alzheimer’s disease and dementia: Phytoconstituent & their possible pharmacological activities.Depress Anxiet. Open Access.202251002
    [Google Scholar]
  72. JagtapS.R. PolS.L. BhosaleS.S. KadamV.J. Memory enhancing activity of ginger (Zingiber officinale), its treatments in dementia and alzheimer’s disease.Int. J. Res. Appl. Sci. Biotechnol.2022937384
    [Google Scholar]
  73. GeorgeN. AbuKhaderM. BalushiA.K. SabahiA.B. KhanS.A. An insight into the neuroprotective effects and molecular targets of pomegranate ( Punica granatum ) against Alzheimer’s disease.Nutr. Neurosci.2023261097599610.1080/1028415X.2022.212109236125072
    [Google Scholar]
  74. RajabianA. HosseiniA. HosseiniM. SadeghniaH.R. A review of the potential efficacy of Saffron (Crocus sativus L.) in cognitive dysfunction and seizures.Prev. Nutr. Food Sci.201924436337210.3746/pnf.2019.24.4.36331915630
    [Google Scholar]
  75. ErtasA. YigitkanS. OrhanI.E. A focused review on cognitive improvement by the genus Salvia L. (Sage)—From ethnopharmacology to clinical evidence.Pharmaceuticals202316217110.3390/ph1602017137259321
    [Google Scholar]
  76. MukneA. DangatS. ShirodkarP. SawateK. Herbs for autoimmune diseasesRole of Herbal Medicines. Management of Lifestyle DiseasesSpringer202427361388
    [Google Scholar]
  77. AkramM. NawazA. Effects of medicinal plants on Alzheimer’s disease and memory deficits.Neural Regen. Res.201712466067010.4103/1673‑5374.20510828553349
    [Google Scholar]
  78. MashayekhA. PhamD.L. YousemD.M. DizonM. BarkerP.B. LinD.D.M. Effects of Ginkgo biloba on cerebral blood flow assessed by quantitative MR perfusion imaging: A pilot study.Neuroradiology201153318519110.1007/s00234‑010‑0790‑621061003
    [Google Scholar]
  79. MirandaM. MoriciJ.F. ZanoniM.B. BekinschteinP. Brain-derived neurotrophic factor: A key molecule for memory in the healthy and the pathological brain.Front. Cell. Neurosci.20191336310.3389/fncel.2019.0036331440144
    [Google Scholar]
  80. YoonJ.J. JeongJ.W. ChoiE.O. KimM.J. Hwang-BoH. KimH.J. HongS.H. ParkC. LeeD.H. ChoiY.H. Protective effects of Scutellaria baicalensis Georgi against hydrogen peroxide-induced DNA damage and apoptosis in HaCaT human skin keratinocytes.EXCLI J.20171642643828694748
    [Google Scholar]
  81. YuY. ShenQ. LaiY. ParkS.Y. OuX. LinD. JinM. ZhangW. Anti-inflammatory effects of curcumin in microglial cells.Front. Pharmacol.2018938610.3389/fphar.2018.0038629731715
    [Google Scholar]
  82. TabeshpourJ. MehriS. Shaebani BehbahaniF. HosseinzadehH. Protective effects of Vitis vinifera (grapes) and one of its biologically active constituents, resveratrol, against natural and chemical toxicities: A comprehensive review.Phytother. Res.201832112164219010.1002/ptr.616830088293
    [Google Scholar]
  83. KennedyD.O. PaceS. HaskellC. OkelloE.J. MilneA. ScholeyA.B. Effects of cholinesterase inhibiting sage (Salvia officinalis) on mood, anxiety and performance on a psychological stressor battery.Neuropsychopharmacology200631484585210.1038/sj.npp.130090716205785
    [Google Scholar]
  84. López-CruzL. SalamoneJ.D. CorreaM. Caffeine and selective adenosine receptor antagonists as new therapeutic tools for the motivational symptoms of depression.Front. Pharmacol.2018952610.3389/fphar.2018.0052629910727
    [Google Scholar]
  85. BazyarH. HosseiniS.A. SaradarS. MombainiD. AllivandM. LabibzadehM. AlipourM. Effects of epigallocatechin-3-gallate of Camellia sinensis leaves on blood pressure, lipid profile, atherogenic index of plasma and some inflammatory and antioxidant markers in type 2 diabetes mellitus patients: A clinical trial.J. Complement. Integr. Med.202118240541110.1515/jcim‑2020‑009034187117
    [Google Scholar]
  86. HafizZ.Z. AminM.A.M. Johari JamesR.M. TehL.K. SallehM.Z. AdenanM.I. Inhibitory effects of raw-extract Centella Asiatica (RECA) on acetylcholinesterase, inflammations, and oxidative stress activities via in vitro and in vivo.Molecules202025489210.3390/molecules2504089232079355
    [Google Scholar]
  87. HalperinJ.M. HealeyD.M. The influences of environmental enrichment, cognitive enhancement, and physical exercise on brain development: Can we alter the developmental trajectory of ADHD?Neurosci. Biobehav. Rev.201135362163410.1016/j.neubiorev.2010.07.00620691725
    [Google Scholar]
  88. YuT. GuoJ. ZhuS. ZhangX. ZhuZ.Z. ChengS. CongX. Protective effects of selenium-enriched peptides from Cardamine violifolia on d-galactose-induced brain aging by alleviating oxidative stress, neuroinflammation, and neuron apoptosis.J. Funct. Foods20207510427710.1016/j.jff.2020.104277
    [Google Scholar]
/content/journals/cnf/10.2174/0115734013314858240419052907
Loading
/content/journals/cnf/10.2174/0115734013314858240419052907
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test