Skip to content
2000
image of Tuna (Thunnus sp.) Bone Fishmeal as an Alternative Calcium Source for Brownies

Abstract

Introduction

This study aimed to explore the use of tuna ( sp.) bone fishmeal to boost the nutritional value of brownies, with a particular focus on the benefits of calcium for pregnant women.

Incorporating tuna bone fishmeal into brownie recipes offered the potential to enhance both the sensory and nutritional qualities of this traditional product. The research investigated the organoleptic quality, proximate composition, and calcium content of brownies with added tuna bone fishmeal.

Methods

This study employed an experimental design involving three treatments: treatment A (tuna bone fishmeal 30 g: wheat flour 70 g), treatment B (tuna bone fishmeal 40 g: wheat flour 60 g), and treatment C (tuna bone fishmeal 50 g: wheat flour 50 g). Treatment C was selected for detailed analysis, and a hedonic test was conducted.

Results

Treatment C, consisting of 50 g of tuna bone fishmeal and 50 g of wheat flour, was favored based on hedonic test results. Chemical analysis showed a water content of 11.48%, ash content of 5.21%, protein content of 12.73%, fat content of 8.28%, and calcium content of 32.25 mg/g. However, water and fat content did not meet Indonesia's national standard (SNI) for semi-moist cakes, including brownies.

Conclusion

Incorporating tuna bone fishmeal into brownies enhanced their calcium content, offering potential nutritional benefits, particularly for pregnant women. Sensory evaluations were positive, though further adjustments may be needed to meet SNI standards for semi-moist cakes.

Loading

Article metrics loading...

/content/journals/cnf/10.2174/0115734013304867250628184503
2025-07-08
2025-09-20
Loading full text...

Full text loading...

References

  1. Harinarayan C.V. Akhila H. Shanthisree E. Modern India and dietary calcium deficiency—half a century nutrition data—retrospect–introspect and the road ahead. Front. Endocrinol. 2021 12 583654 10.3389/fendo.2021.583654 33889131
    [Google Scholar]
  2. Shlisky J. Mandlik R. Askari S. Abrams S. Belizan J.M. Bourassa M.W. Cormick G. Driller-Colangelo A. Gomes F. Khadilkar A. Owino V. Pettifor J.M. Rana Z.H. Roth D.E. Weaver C. Calcium deficiency worldwide: Prevalence of inadequate intakes and associated health outcomes. Ann. N. Y. Acad. Sci. 2022 1512 1 10 28 10.1111/nyas.14758 35247225
    [Google Scholar]
  3. Pérez A. Ruz M. García P. Jiménez P. Valencia P. Ramírez C. Pinto M. Nuñez S.M. Park J.W. Almonacid S. Nutritional properties of fish bones: Potential applications in the food industry. Food Rev. Int. 2024 40 1 79 91 10.1080/87559129.2022.2153136
    [Google Scholar]
  4. Fernandes G. Abhyankar V. M O’Dell J. Calcium sulfate as a scaffold for bone tissue engineering: A descriptive review. J. Dent. Oral Disord. Ther. 2021 9 1 1 22 10.15226/jdodt.2021.001124
    [Google Scholar]
  5. Chauhan R.C. Calcium as a boon or bane for athlete: A review. Asian J. Res. Mark. 2022 11 1 1 8 10.5958/2277‑6621.2022.00003.2
    [Google Scholar]
  6. Jomova K. Makova M. Alomar S.Y. Alwasel S.H. Nepovimova E. Kuca K. Rhodes C.J. Valko M. Essential metals in health and disease. Chem. Biol. Interact. 2022 367 110173 10.1016/j.cbi.2022.110173 36152810
    [Google Scholar]
  7. Ali A.A.H. Overview of the vital roles of macro minerals in the human body. J. Trace Elem. Miner. 2023 4 100076 10.1016/j.jtemin.2023.100076
    [Google Scholar]
  8. Likhar A. Patil M.S. Importance of maternal nutrition in the first 1,000 days of life and its effects on child development: A narrative review. Cureus 2022 14 10 e30083 10.7759/cureus.30083 36381799
    [Google Scholar]
  9. Riyadi A. Ningsih L. Rahmadi A. The influence of calcium and iron supplementation in pregnant women to affect newborn body length in Bengkulu. Media Gizi Indonesia 2023 18 1SP 38 45 10.20473/mgi.v18i1SP.38‑45
    [Google Scholar]
  10. Ryan B.A. Kovacs C.S. The role of vitamin D physiology in regulating calcium and bone metabolism in mother and child: pregnancy, lactation, postweaning, fetus, and neonate. Vitamin D. Feldman D. Pike J.W. Cambridge Academic Press 2024 693 759
    [Google Scholar]
  11. Lakshmaiah V.V. Nutraceuticals in pregnancy. Nutraceuticals for the treatment and prevention of sexual disorders. New York Apple Academic Press 2025 163 201
    [Google Scholar]
  12. Kovacs C.S. Physiology of calcium, phosphorus, and bone metabolism during pregnancy, lactation, and postweaning. Maternal-Fetal and Neonatal Endocrinology. Cambridge Academic Press 2020 61 73 10.1016/B978‑0‑12‑814823‑5.00005‑2
    [Google Scholar]
  13. Brown L.L. Cohen B.E. Edwards E. Gustin C.E. Noreen Z. Physiological need for calcium, iron, and folic acid for women of various subpopulations during pregnancy and beyond. J. Womens Health 2021 30 2 207 211 10.1089/jwh.2020.8873 33164624
    [Google Scholar]
  14. Ahmed A. Saleem M.A. Saeed F. Afzaal M. Imran A. Akram S. Hussain M. Khan A. Al Jbawi E. A comprehensive review on the impact of calcium and vitamin D insufficiency and allied metabolic disorders in females. Food Sci. Nutr. 2023 11 9 5004 5027 10.1002/fsn3.3519 37701195
    [Google Scholar]
  15. Gioxari A. Papandreou P. Daskalou E. Kaliora A.C. Skouroliakou M. Association of serum calcium levels of preterm neonates at birth with calcium intake from foods and supplements by bedridden women during pregnancy. Healthcare 2024 12 6 693 10.3390/healthcare12060693 38540656
    [Google Scholar]
  16. Kyozuka H. Murata T. Fukuda T. Yamaguchi A. Kanno A. Yasuda S. Sato A. Ogata Y. Kuse M. Hosoya M. Yasumura S. Hashimoto K. Nishigori H. Fujimori K. Kamijima M. Yamazaki S. Ohya Y. Kishi R. Yaegashi N. Hashimoto K. Mori C. Ito S. Yamagata Z. Inadera H. Nakayama T. Iso H. Shima M. Kurozawa Y. Suganuma N. Kusuhara K. Katoh T. Japan Environment and Children’s Study (JECS) Group Association between pre-pregnancy calcium intake and hypertensive disorders during the first pregnancy: The Japan environment and children’s study. BMC Pregnancy Childbirth 2020 20 1 424 10.1186/s12884‑020‑03108‑2 32723367
    [Google Scholar]
  17. Ajong A.B. Kenfack B. Ali I.M. Yakum M.N. Ukaogo P.O. Mangala F.N. Aljerf L. Telefo P.B. Calcium supplementation in pregnancy: An analysis of potential determinants in an under-resourced setting. PLoS One 2023 18 10 e0292303 10.1371/journal.pone.0292303 37796953
    [Google Scholar]
  18. Munni U.S. Islam K. Association between dietary calcium and pregnancy induced hypertension. Bioresearch Communications 2024 10 2 1612 1618 10.3329/brc.v10i2.74589
    [Google Scholar]
  19. Zhu Q. Yu Q. Liu M. Wei Y. Effectiveness of calcium supplementation in the prevention of gestational hypertension: A systematic review and meta-analysis of randomised controlled trials. Pregnancy Hypertens. 2024 38 101174 10.1016/j.preghy.2024.101174 39608269
    [Google Scholar]
  20. Dewi L.K. Supriadi S. Aminah S. Analysis of calcium (Ca) levels in milkfish (Chanos chanos) bone using atomic absorption spectrophotometry (AAS). Jurnal Akademika Kimia 2021 10 1 15 19 10.22487/j24775185.2021.v10.i1.pp15‑19
    [Google Scholar]
  21. Rosidi W.N.T.M. Arshad N.M. Mohtar N.F. Characterization of Sardinella fimbriata and Clarias gariepinus bones. Biodiversitas 2021 22 4
    [Google Scholar]
  22. Wang X. Natural bioactive compounds from fish. Natural Bioactive Compounds Academic Press 2021 393 408 10.1016/B978‑0‑12‑820655‑3.00020‑3
    [Google Scholar]
  23. He J. Guo H. Zhang M. Wang M. Sun L. Zhuang Y. Purification and characterization of a novel calcium-binding heptapeptide from the hydrolysate of tilapia bone with its osteogenic activity. Foods 2022 11 3 468 10.3390/foods11030468 35159617
    [Google Scholar]
  24. Salindeho N. Mokolensang J.F. Manu L. Taslim N.A. Nurkolis F. Gunawan W.B. Yusuf M. Mayulu N. Tsopmo A. Fish scale rich in functional compounds and peptides: A potential nutraceutical to overcome undernutrition. Front. Nutr. 2022 9 1072370 10.3389/fnut.2022.1072370 36570154
    [Google Scholar]
  25. Nawaz A. Li E. Irshad S. Xiong Z. Xiong H. Shahbaz H.M. Siddique F. Valorization of fisheries by-products: Challenges and technical concerns to food industry. Trends Food Sci. Technol. 2020 99 34 43 10.1016/j.tifs.2020.02.022
    [Google Scholar]
  26. Ren X. Wang J. Yu J. Song B. Feng H. Shen M. Zhang H. Zou J. Zeng G. Tang L. Wang J. Waste valorization: Transforming the fishbone biowaste into biochar as an efficient persulfate catalyst for degradation of organic pollutant. J. Clean. Prod. 2021 291 125225 10.1016/j.jclepro.2020.125225
    [Google Scholar]
  27. Abdel-Moemin A.R. Abdel-Rahman M.K. Environmental protection with sustainable products from fish bone waste. Environ. Qual. Manage. 2022 32 1 425 440 10.1002/tqem.21878
    [Google Scholar]
  28. Egbedi B. Osibona A. Fish by-products consumption and discard pattern in Nigeria. J. Agric. Mar. Sci. 2022 27 2 28 40 10.53541/jams.vol27iss2pp28‑40
    [Google Scholar]
  29. Corrêa T.H.A. Holanda J.N.F. Fish bone as a source of raw material for synthesis of calcium phosphate. Mater. Res. 2019 22 Suppl. 1 e20190486 10.1590/1980‑5373‑mr‑2019‑0486
    [Google Scholar]
  30. Carella F. Seck M. Esposti L.D. Diadiou H. Maienza A. Baronti S. Vignaroli P. Vaccari F.P. Iafisco M. Adamiano A. Thermal conversion of fish bones into fertilizers and biostimulants for plant growth – A low tech valorization process for the development of circular economy in least developed countries. J. Environ. Chem. Eng. 2021 9 1 104815 10.1016/j.jece.2020.104815
    [Google Scholar]
  31. Junianto Brainerd E. Maghfira R. Suyono M.L.A. Rizki A.F. Pratama R.L. Barkah S.M. Utilization of fish bone waste for food. Asian J. Fish. Aquat. Res. 2022 20 2 46 56 10.9734/ajfar/2022/v20i2493
    [Google Scholar]
  32. Bahri S. Optimizing the utilization of decapterus sp bone meal (DBM) in the formulation of nutritious stick cake snacks. Int. J. Res. Anal. Rev. 2024 11 3 251 10.1729/Journal.41218
    [Google Scholar]
  33. Putra N.E. Zhou J. Zadpoor A.A. Sustainable sources of raw materials for additive manufacturing of bone‐substituting biomaterials. Adv. Healthc. Mater. 2024 13 1 2301837 10.1002/adhm.202301837 37535435
    [Google Scholar]
  34. Maktoof A.A. Elherarlla R.J. Ethaib S. Identifying the nutritional composition of fish waste, bones, scales, and fins. IOP Conf. Series Mater. Sci. Eng. 2020 871 1 012013 10.1088/1757‑899X/871/1/012013
    [Google Scholar]
  35. Alfio V.G. Manzo C. Micillo R. From fish waste to value: An overview of the sustainable recovery of omega-3 for food supplements. Molecules 2021 26 4 1002 10.3390/molecules26041002 33668684
    [Google Scholar]
  36. Jannathulla R. Rajaram V. Kalanjiam R. Ambasankar K. Muralidhar M. Dayal J.S. Fishmeal availability in the scenarios of climate change: Inevitability of fishmeal replacement in aquafeeds and approaches for the utilization of plant protein sources. Aquacult. Res. 2019 50 12 3493 3506 10.1111/are.14324
    [Google Scholar]
  37. Hamid N.K.A. Sustainable aquafeed: Alternative ingredients produced locally as nutrient complementary in minimizing the use of fishmeal. 2nd International Conference on Veterinary, Animal, and Environmental Sciences (ICVAES 2020) Atlantis Press B.V, 21 April 2021, pp. 7-10. 10.2991/absr.k.210420.002
    [Google Scholar]
  38. Pelyuntha W. Yafa A. Charoenwong B. Vongkamjan K. Effectiveness of the organic acid-based antimicrobial agent to prevent bacterial contamination in fish meal. Animals 2022 12 23 3367 10.3390/ani12233367 36496886
    [Google Scholar]
  39. Peñarubia O. Toppe J. Ahern M. Ward A. Griffin M. How value addition by utilization of tilapia processing by‐products can improve human nutrition and livelihood. Rev. Aquacult. 2023 15 S1 32 40 10.1111/raq.12737
    [Google Scholar]
  40. Rosfitasari E. Tahir M.M. Study of making steamed brownies premix flour made from mung beans flour (Vigna radiata) and pumpkin flour (Cucurbita moschata). BIO Web Conf. 2024 96 01026 10.1051/bioconf/20249601026
    [Google Scholar]
  41. Roshini D. Agarwal K. Suganya K. Development and nutritional evaluation of brownies incorporated with pumpkin seeds flour. Ann. Food Sci. Technol. 2020 21 4
    [Google Scholar]
  42. Uruakpa F.O. Fleischer A.M. Sensory and nutritional attributes of black bean brownies. Am. J. Food Sci. Nutr. 2016 3 3 27 36
    [Google Scholar]
  43. Ligarnasari I.P. Anam C. Sanjaya A.P. Physical, chemical and sensory properties of brownies substituted with sweet potato flour (Ipomoea batatas L.) with addition of black cumin oil (Nigella sativa L.). IOP Conf. Ser.: Earth Environ. Sci. 2018 102 012084 10.1088/1755‑1315/102/1/012084
    [Google Scholar]
  44. Purwonegoro P.I. Sulistiyati T.D. Substitution of Eucheuma cottonii seaweed flour against acceptability and hardness of steamed brownies. Int. J. Sci. Res. Publ. 2019 9 6 p9018 10.29322/IJSRP.9.06.2019.p9018
    [Google Scholar]
  45. Sumartini S. Harahap K.S. Mujiyanti A. Brownies from mangrove fruit flour: The use of variation of flours as an alternative to high food nutrition. Indones. Food Nutr. Prog. 2021 17 1 16 22 10.22146/ifnp.55188
    [Google Scholar]
  46. Hongpan N. Chainarong K. Kalawong S. Study of partial substitution levels of wheat flour with purple sweet potato puree on qualities of brownies. Burapha Sci. J. 2021 26 3 1745 1761
    [Google Scholar]
  47. Farias P.M. Marcelino G. Santana L.F. de Almeida E.B. Guimarães R.C.A. Pott A. Hiane P.A. Freitas K.C. Minerals in pregnancy and their impact on child growth and development. Molecules 2020 25 23 5630 10.3390/molecules25235630 33265961
    [Google Scholar]
  48. Maulida N. Using of yellowfin bone fishmeal (Thunnus albacares) as a supplement in making crackers. Thesis Bogor: Bogor Agricultural Institute. 2005 http://repository.ipb.ac.id/handle/123456789/14084
    [Google Scholar]
  49. Nasional B.S. Water and wastewater - Part 13: Calcium (Ca) testing using titrimetric method. 1992 Available from: http://sispk.bsn.go.id/SNI/DetailSNI/6818
  50. Horwitz W. Determination of moisture, ash, protein, and fat, Official Method of Analysis of the Association of Analytical Chemists. 18th ed Washington, DC AOAC 2005 https://www.researchgate.net/publication/292783651_AOAC_2005
    [Google Scholar]
  51. Badan Standar Nasional (BSN) Chemical test method-section 4: Determination of protein content by the total nitrogen method in fishery products. 2006 Available from: http://sispk.bsn.go.id/SNI/DetailSNI/7114
  52. Badan Standar Nasional (BSN) Method of chemical test-part 3: Determination of total fat content in fishery product. 2006 Available from: http://sispk.bsn.go.id/SNI/DetailSNI/7113
  53. Toker O.S. Palabiyik I. Pirouzian H.R. Aktar T. Konar N. Chocolate aroma: Factors, importance and analysis. Trends Food Sci. Technol. 2020 99 580 592 10.1016/j.tifs.2020.03.035
    [Google Scholar]
  54. Liu S. Sun H. Ma G. Zhang T. Wang L. Pei H. Li X. Gao L. Insights into flavor and key influencing factors of Maillard reaction products: A recent update. Front. Nutr. 2022 9 973677 10.3389/fnut.2022.973677 36172529
    [Google Scholar]
  55. Shakoor A. Zhang C. Xie J. Yang X. Maillard reaction chemistry in formation of critical intermediates and flavour compounds and their antioxidant properties. Food Chem. 2022 393 133416 10.1016/j.foodchem.2022.133416 35696950
    [Google Scholar]
  56. Yang Y. Feng L. Dong X. J. Ma Y. K. Yan W. Y. Shi X. Y. Sun B. G. Volatile organic compounds generated from the maillard reaction between l-ascorbic acid and glycine in hot compressed water ACS Food Science & Technology 2025 10.1021/acsfoodscitech.4c00934
    [Google Scholar]
  57. Tangke U. Daeng R.A. Katiandagho B. Organoleptic quality of tuna porridge canned with fortified tuna bone meal. IOP Conf. Ser. Earth Environ. Sci. 2021 750 1 012047 10.1088/1755‑1315/750/1/012047
    [Google Scholar]
  58. Benjakul S. Pomtong S. Chedosama A. Saetang J. Sookchoo P. Nilsuwan K. Chemical compositions and characteristics of biocalcium from pre-cooked tuna bone as influenced by sodium chloride pretreatment and defatting by asian seabass lipase. Foods 2024 13 8 1261 10.3390/foods13081261 38672933
    [Google Scholar]
  59. Xiao N. Xu H. Guo Q. Shi W. Effects of flavourzyme addition on protein degradation and flavor formation in grass carp during fermentation. J. Food Biochem. 2022 46 12 e14405 10.1111/jfbc.14405 36121197
    [Google Scholar]
  60. de Oliveira F.C. Coimbra J.S.R. de Oliveira E.B. Zuñiga A.D.G. Rojas E.E.G. Food protein-polysaccharide conjugates obtained via the Maillard reaction: A review. Crit. Rev. Food Sci. Nutr. 2016 56 7 1108 1125 10.1080/10408398.2012.755669 24824044
    [Google Scholar]
  61. Manteu S.H. Yusuf N. Mile L. Formulation of longgi flour-based brownies substituted with tilapia flour. NIKe Journal 2019 7 3 10.37905/.v7i3.5029
    [Google Scholar]
  62. Yu H. Zhong Q. Liu Y. Guo Y. Xie Y. Zhou W. Yao W. Recent advances of ultrasound-assisted Maillard reaction. Ultrason. Sonochem. 2020 64 104844 10.1016/j.ultsonch.2019.104844 31953006
    [Google Scholar]
  63. Winarno F.G. Flavor bagi industri pangan (Flavor for the food industry). 1st edn M-Brio Press Bogor, Indonesia 2002
    [Google Scholar]
  64. Garvey E.C. O’Sullivan M.G. Kerry J.P. Kilcawley K.N. Factors influencing the sensory perception of reformulated baked confectionary products. Crit. Rev. Food Sci. Nutr. 2020 60 7 1160 1188 10.1080/10408398.2018.1562419 30668147
    [Google Scholar]
  65. Lease H. Hendrie G.A. Poelman A.A.M. Delahunty C. Cox D.N. A sensory-diet database: A tool to characterise the sensory qualities of diets. Food Qual. Prefer. 2016 49 20 32 10.1016/j.foodqual.2015.11.010
    [Google Scholar]
  66. Afrianti M. Total bacteria, Ph, and moisture content of broiler chicken meat after soaking with senbuat leaf extract (Melastoma malabatchrium L.) during the storage period. J. Food Nutr. 2013 4 7 10.26714/jpg.4.1.2013.%25p
    [Google Scholar]
  67. Kutlu N. Pandiselvam R. Saka I. Kamiloglu A. Sahni P. Kothakota A. Impact of different microwave treatments on food texture. J. Texture Stud. 2022 53 6 709 736 10.1111/jtxs.12635 34580867
    [Google Scholar]
  68. Lubis D.R.K. Nurminah M. Nainggolan R.J. Physicochemical and sensory characteristics of brownies from composite flour (modified breadfruit, purple sweet potato, saga seeds, and mocaf). IOP Conf. Ser. Earth Environ. Sci. 2021 713 1 012037 10.1088/1755‑1315/713/1/012037
    [Google Scholar]
  69. Jafarzadeh S. NafchiM. A. Salehabadi A. Oladzad-abbasabadi N. Jafari S.M. Application of bio-nanocomposite films and edible coatings for extending the shelf life of fresh fruits and vegetables. Adv. Colloid Interface Sci. 2021 291 102405 10.1016/j.cis.2021.102405 33819726
    [Google Scholar]
  70. Kumar L. Gaikwad K.K. Advanced food packaging systems for space exploration missions. Life Sci. Space Res. 2023 37 7 14 10.1016/j.lssr.2023.01.005 37087181
    [Google Scholar]
  71. Harris G.K. Marshall M.R. Ash analysis. Food Science Text Series. Springer Cham 2017 287 97 10.1007/978‑3‑319‑45776‑5_16
    [Google Scholar]
  72. Odzijewicz J.I. Wołejko E. Wydro U. Wasil M. Jabłońska-Trypuć A. Utilization of ashes from biomass combustion. Energies 2022 15 24 9653 10.3390/en15249653
    [Google Scholar]
  73. Anggorodi H.R. Nutrition of Various Poultry Livestock. Jakarta Gramedia Pustaka Utama 1995
    [Google Scholar]
  74. Syazili A. Ahmad K. Umakaapa I. Using tuna fish bone waste as mineral sources in feed formulation of tilapia (Oreochromis niloticus). IOP Conf. Ser. Earth Environ. Sci. 2021 890 1 012026 10.1088/1755‑1315/890/1/012026
    [Google Scholar]
  75. Thalib A. Istiqomah T. Ristyanadi B. Qomariyati N. Consumer acceptance test of milkfish taste (chanos chanos forsskal) from several farming locations in Indonesia. Grouper 2019 10 2 62 70 10.30736/grouper.v10i2.58
    [Google Scholar]
/content/journals/cnf/10.2174/0115734013304867250628184503
Loading
/content/journals/cnf/10.2174/0115734013304867250628184503
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test