Skip to content
2000
image of Holothuria arenicola Extract-Loaded Polycaprolactone Nanocapsules Attenuate Bile Duct Ligation-Induced Acute Liver Injury

Abstract

Introduction

Cholestatic liver diseases are characterized by jaundice and cholestasis with various consequences that can lead to end-stage liver disease. The present study aims to assess the protective effect of the extract (HaE)-loaded polycaprolactone (PCL) nanocapsule in a model of bile duct ligation (BDL) in male albino rats.

Methods

Thirty male albino rats were divided into two groups: bile duct ligated (BDL) (24 rats) and sham-operated control (6 rats/group). BDL was then divided into 4 subgroups: model untreated, HaE-treated (200 mg/kg, orally), PCL (100 mg/kg, orally), and HaE-PCL (100 mg/kg, orally). Each treatment is conducted for 14 days after BDL surgery.

Results

The HaE-PCL nanocapsule exhibited a diameter of 196 nm, a zeta potential of 19.7, and a polydispersity index of 0.7. Treatment with HaE-PCL markedly diminished levels of alanine aminotransferase (23.52 ± 0.83), aspartate aminotransferase (53.62 ± 1.24), alkaline phosphatase (2055.31 ± 17.19), gamma-glutamyl transferase (3.15 ± 0.64), globulins (7.24 ± 0.10), total protein (3.33 ± 0.15), bilirubin (3.46 ± 0.46), creatinine (0.65 ± 0.02), urea (13.36 ± 0.28), uric acid (1.13 ± 0.07), malondialdehyde (liver 1.06 ± 0.09, kidney 1.18 ± 0.08), and nitric oxide (liver 180.5 ± 9.42, kidney 456.02 ± 19.6), while simultaneously increasing levels of glutathione reduced (liver 2.07 ± 0.17, kidney 2.07 ± 0.17) and catalase (liver 354.82 ± 11.4, kidney 227.76 ± 3.15). Histopathological analysis of HaE-PCL-treated rats demonstrated substantial enhancements in liver and kidney morphology, along with a marked reduction in collagen deposition. Furthermore, the immunohistochemistry study demonstrated a significant reduction in TNF-α expression in rats administered HaE-PCL.

Discussion

These findings demonstrated that HaE-PCL effectively protects the liver and kidney from cholestasis-induced damage by improving biochemical characteristics and inhibiting oxidative stress and inflammation.

Conclusion

HaE-PCL exhibits anticholestatic action due to its antioxidant, anti-inflammatory, and antifibrotic properties.

Loading

Article metrics loading...

/content/journals/cnanom/10.2174/0124681873401484250924125945
2025-10-16
2025-12-06
Loading full text...

Full text loading...

References

  1. Mawardi M. Alalwan A. Fallatah H. Cholestatic liver disease. Saudi J. Gastroenterol. 2021 27 S1 S26 10.4103/sjg.sjg_112_21
    [Google Scholar]
  2. Shah R. John S. Cholestatic Jaundice. In:StatPearls. StatPearls Publishing 2024
    [Google Scholar]
  3. Fernández-Martínez E. Cholestasis, Contraceptives, and Free Radicals. In:Liver Pathophysiology. Muriel P. Boston Academic Press 2017 239 258 10.1016/B978‑0‑12‑804274‑8.00018‑7
    [Google Scholar]
  4. Hohenester S. Kanitz V. Kremer A.E. Glycochenodeoxycholate promotes liver fibrosis in mice with hepatocellular cholestasis. Cells 2020 9 2 281 10.3390/cells9020281
    [Google Scholar]
  5. Cabrera-Rubio R. Patterson A.M. Cotter P.D. Beraza N. Cholestasis induced by bile duct ligation promotes changes in the intestinal microbiome in mice. Sci. Rep. 2019 9 1 12324 10.1038/s41598‑019‑48784‑z 31444478
    [Google Scholar]
  6. Van Campenhout S. Van Vlierberghe H. Devisscher L. Common bile duct ligation as model for secondary biliary cirrhosis. In:Experimental Cholestasis Research. Vinken M. New York, NY Springer New York 2019 237 247 10.1007/978‑1‑4939‑9420‑5_15
    [Google Scholar]
  7. Zhang Z. Zhong X. Shen H. Biliary NIK promotes ductular reaction and liver injury and fibrosis in mice. Nat. Commun. 2022 13 1 5111 10.1038/s41467‑022‑32575‑8 36042192
    [Google Scholar]
  8. Moslemi Z. Bahrami M. Hosseini E. Portulaca oleracea methanolic extract attenuate bile duct ligation-induced acute liver injury through hepatoprotective and anti-inflammatory effects. Heliyon 2021 7 7 e07604 10.1016/j.heliyon.2021.e07604 34355097
    [Google Scholar]
  9. Nucera S. Bulotta R.M. Ruga S. Natural products for the treatment of non-alcoholic fatty liver disease: A comprehensive review. Sci. Pharm. 2023 91 4 53 10.3390/scipharm91040053
    [Google Scholar]
  10. Moustafa M.A. Mohamed A.S. Dakrory A.I. Abdelaziz M.H. Lepidium Sativum extract alleviates reproductive and developmental toxicity in polycystic ovary syndrome induced by letrozole and high-fat diet in rats. Reprod. Sci. 2025 32 4 1338 1361 10.1007/s43032‑025‑01820‑y 40048056
    [Google Scholar]
  11. Nevien S.A. Ahmed A.A.B. Ayman S.M. Sohair R.F. Kawkab A.A. May M.E. Antianemic activity of Allolobophora caliginosa Extract against phenylhydrazine-induced anemia in rats. Curr. Bioact. Compd. 2024 20 5 17 30
    [Google Scholar]
  12. Amel O. Basma S. Ahmed D. Montaser A-H. Ayman M. Protective effect of Heteroxenia fuscescens Extract against sodium arsenite-induced infertility in male rats. Curr. Bioact. Compd. 2024 20 2 64 74
    [Google Scholar]
  13. Simental-Mendía L.E. Gamboa-Gómez C.I. Guerrero-Romero F. Simental-Mendía M. Sánchez-García A. Rodríguez-Ramírez M. Beneficial effects of plant-derived natural products on non-alcoholic fatty liver disease. Adv. Exp. Med. Biol. 2021 1308 257 272 10.1007/978‑3‑030‑64872‑5_18 33861449
    [Google Scholar]
  14. Ali S.B. Mohamed A.S. Abdelfattah M.A. Potential protective efficacy of biogenic silver nanoparticles synthesised from earthworm extract in a septic mice model. BMC Biotechnol. 2024 24 1 79 10.1186/s12896‑024‑00901‑1 39394109
    [Google Scholar]
  15. Abd El Aziz Y.E. Soliman A.M. Fahmy S.R. Mohamed A.S. Clove aqueous extract alleviates acute kidney injury induced by folic acid in rats. Curr. Chem. Biol. 2024 18 2 104 112 10.2174/0122127968337186240926063010
    [Google Scholar]
  16. Arafa N.H. Shehata M.R. Mohamed A.S. Protective role of ovothiol-a against muscle and kidney injuries in obese rats. Curr. Chem. Biol. 2024 18 1 30 45 10.2174/0122127968306623240830071012
    [Google Scholar]
  17. Nada Hussien A. Mohamed Refaat S. Ayman Saber M. Ovothiol-A mitigates high-fat diet-induced non-alcoholic fatty liver disease in rats. Curr. Bioact. Compd. 2024 20 8 12 21
    [Google Scholar]
  18. Hossain A. Antioxidant potential of sea cucumbers and their beneficial effects on human health. Curr Bioactive Compound. 2022 20 8 521
    [Google Scholar]
  19. Xu C. Zhang R. Wen Z. Bioactive compounds and biological functions of sea cucumbers as potential functional foods. J. Funct. Foods 2018 49 73 84 10.1016/j.jff.2018.08.009
    [Google Scholar]
  20. Abdelghany A. El-Desouky M.A. Shemis M. Synthesis and characterization of amoxicillin-loaded polymeric nanocapsules as a drug delivery system targeting Helicobacter pylori. Arab J. Gastroenterol. 2021 22 4 278 284 10.1016/j.ajg.2021.06.002 34509390
    [Google Scholar]
  21. Hassan M.A.T. Soliman A.M. Mohamed A.S. The therapeutic potency of silver/chitosan, silver/saponin and chitosan/saponin nanocomposites on ethanol-induced gastric ulcers in wistar rats. Recent Adv. Inflamm. Allergy Drug Discov. 2024 18 2 115 128 10.2174/0127722708283559240405075921 38629380
    [Google Scholar]
  22. Jain E. Tripathi A.D. Agarwal A. Anticancerous compounds in fruits, their extraction, and relevance to food. In: Singh RB, Watanabe S, Isaza AA, Eds.Functional Foods and Nutraceuticals in Metabolic and Non-Communicable Diseases. Singh R.B. Watanabe S. Isaza A.A. Academic Press 2022 517 532 10.1016/B978‑0‑12‑819815‑5.00022‑7
    [Google Scholar]
  23. Archer E. Torretti M. Madbouly S. Biodegradable polycaprolactone (PCL) based polymer and composites. J Physical Sci Review 2023 8 11 4391 4414
    [Google Scholar]
  24. Lyu J.S. Lee J.S. Han J. Development of a biodegradable polycaprolactone film incorporated with an antimicrobial agent via an extrusion process. Sci. Rep. 2019 9 1 20236 10.1038/s41598‑019‑56757‑5 31882928
    [Google Scholar]
  25. Zhang X. Zhang C. Zhang W. Feasibility of poly (ε -caprolactone-co-DL-lactide) as a biodegradable material for in situ forming implants: evaluation of drug release and in vivo degradation. Drug Dev. Ind. Pharm. 2015 41 2 342 352 10.3109/03639045.2013.866140 24320881
    [Google Scholar]
  26. Klabukov I. Balyasin M. Krasilnikova O. Angiogenic modification of microfibrous polycaprolactone by pCMV-VEGF165 plasmid promotes local vascular growth after implantation in rats. Int. J. Mol. Sci. 2023 24 2 1399 10.3390/ijms24021399 36674913
    [Google Scholar]
  27. Duffy P. McMahon S. Wang X. Synthetic bioresorbable poly-α-hydroxyesters as peripheral nerve guidance conduits; a review of material properties, design strategies and their efficacy to date. Biomater. Sci. 2019 7 12 4912 4943 10.1039/C9BM00246D 31576820
    [Google Scholar]
  28. Kayan G.Ö. Kayan A. Polycaprolactone Composites/Blends and their applications especially in water treatment. J. Compos. Sci. 2023 7 6 104 10.3390/jcs7060104
    [Google Scholar]
  29. Sarhadizadeh N. Afkhami M. Ehsanpour M. Evaluation bioactivity of a sea cucumber, Stichopus hermanni from Persian Gulf. Eur. J. Exp. Biol. 2014 4 1 254 258
    [Google Scholar]
  30. Zhang T. Wang H. Ye Y. Zhang X. Wu B. Micellar emulsions composed of mPEG-PCL/MCT as novel nanocarriers for systemic delivery of genistein: A comparative study with micelles. Int. J. Nanomedicine 2015 10 6175 6184 26491290
    [Google Scholar]
  31. Chinedu E. Arome D. Ameh F. A new method for determining acute toxicity in animal models. Toxicol. Int. 2013 20 3 224 226 10.4103/0971‑6580.121674 24403732
    [Google Scholar]
  32. Mariotti V Strazzabosco M Fabris L Calvisi DF Animal models of biliary injury and altered bile acid metabolism. Biochim Biophys Acta Mol Basis Dis 2018 1864 (4) 1254 1261 (4, Part B) 10.1016/j.bbadis.2017.06.027 28709963
    [Google Scholar]
  33. Li J. Dawson P.A. Animal models to study bile acid metabolism. Biochim. Biophys. Acta Mol. Basis Dis. 2019 1865 5 895 911 10.1016/j.bbadis.2018.05.011 29782919
    [Google Scholar]
  34. Qutb S.A. Soliman A.M. Fahmy S.R. Mohamed A.S. Efficacy of eugenol loaded chitosan nanoparticles on sepsis induced liver injury in rats. Recent Adv. Inflamm. Allergy Drug Discov. 2024 18 1 39 50 10.2174/0127769631285551231127062829
    [Google Scholar]
  35. Sarah Ali Q. Amel Mahmoud S. Sohair Ramadan F. Ayman Saber M. Renoprotective Effects of eugenol-loaded chitosan nanoparticles on septic rats. Drug Deliv. Lett. 2025 15 1 14
    [Google Scholar]
  36. Khalaf M.L. Soliman A.M. Fahmy S.R. Mohamed A.S. Anti-thrombotic mechanisms of echinochrome a on arterial thrombosis in rats: In-silico, in-vitro and in-vivo studies. Cardiovasc. Hematol. Agents Med. Chem. 2024 22 2 156 168 10.2174/0118715257263735231214105223
    [Google Scholar]
  37. Mohamed A.T.A.E. Ragheb M.A. Shehata M.R. Mohamed A.S. In vivo cardioprotective effect of zinc oxide nanoparticles against doxorubicin-induced myocardial infarction by enhancing the antioxidant system and nitric oxide production. J. Trace Elem. Med. Biol. 2024 86 127516 10.1016/j.jtemb.2024.127516 39226872
    [Google Scholar]
  38. Pan P.H. Wang Y.Y. Lin S.Y. Plumbagin ameliorates bile duct ligation-induced cholestatic liver injury in rats. Biomed. Pharmacother. 2022 151 113133 10.1016/j.biopha.2022.113133 35594710
    [Google Scholar]
  39. Pavlidis E.T. Pavlidis T.E. Pathophysiological consequences of obstructive jaundice and perioperative management. Hepatobiliary Pancreat. Dis. Int. 2018 17 1 17 21 10.1016/j.hbpd.2018.01.008 29428098
    [Google Scholar]
  40. Zeng R-X. Xu J-P. Zhang Y-Z. Associations of total protein, albumin, and globulin with insulin resistance: An NHANES study. Front. Endocrinol. (Lausanne) 2024 15 1393137 10.3389/fendo.2024.1393137
    [Google Scholar]
  41. Li K. Chen Y. Zhang Z. Preoperative pan-immuno-inflammatory values and albumin-to-globulin ratio predict the prognosis of stage I–III colorectal cancer. Sci. Rep. 2025 15 1 11517 10.1038/s41598‑025‑96592‑5 40181140
    [Google Scholar]
  42. Li J. Li Z. Hao S. Inversed albumin-to-globulin ratio and underlying liver disease severity as a prognostic factor for survival in hepatocellular carcinoma patients undergoing transarterial chemoembolization. Diagn. Interv. Radiol. 2023 29 3 520 528 10.5152/dir.2022.211166 36992824
    [Google Scholar]
  43. Bataller R. Brenner D.A. Liver fibrosis. J. Clin. Invest. 2005 115 2 209 218 10.1172/JCI24282 15690074
    [Google Scholar]
  44. Cargill T. Culver E.L. The role of B cells and B cell therapies in immune-mediated liver diseases. Front. Immunol. 2021 12 661196 10.3389/fimmu.2021.661196
    [Google Scholar]
  45. Chen J. Zhang S. The role of inflammation in cholestatic liver injury. J. Inflamm. Res. 2023 16 4527 4540 10.2147/JIR.S430730 37854312
    [Google Scholar]
  46. Tinti F. Umbro I. D’Alessandro M. Cholemic nephropathy as cause of acute and chronic kidney disease. Update on an under-diagnosed disease. Life 2021 11 11 1200 10.3390/life11111200 34833076
    [Google Scholar]
  47. Ommati M.M. Attari H. Siavashpour A. Mitigation of cholestasis-associated hepatic and renal injury by edaravone treatment: Evaluation of its effects on oxidative stress and mitochondrial function. Liver Res. 2021 5 3 181 193 10.1016/j.livres.2020.10.003 39957848
    [Google Scholar]
  48. Pinter K. Rosenkranz A. Cholemic nephropathy: Role in Acute kidney injury in cholestasis and cirrhosis. Adv. Kidney Dis. Health 2024 31 2 111 126 10.1053/j.akdh.2023.07.001 38649215
    [Google Scholar]
  49. Heidari R. The footprints of mitochondrial impairment and cellular energy crisis in the pathogenesis of xenobiotics-induced nephrotoxicity, serum electrolytes imbalance, and Fanconi’s syndrome: A comprehensive review. Toxicology 2019 423 1 31 10.1016/j.tox.2019.05.002 31095988
    [Google Scholar]
  50. Hajam Y.A. Rani R. Ganie S.Y. Oxidative stress in human pathology and aging: Molecular Mechanisms and perspectives. Cells 2022 11 3 552 10.3390/cells11030552 35159361
    [Google Scholar]
  51. Fath-All A.A. Atia T. Mohamed A.S. Efficacy of yeast-mediated SeNPs on gastric ulcer healing and gut microbiota dysbiosis in male albino rats. Tissue Cell 2025 96 102953 10.1016/j.tice.2025.102953 40334393
    [Google Scholar]
  52. Mohamed A.F. Mohamed A.S. Abdel-Khalek A.A. Badran S.R. Synergistic impact of temperature rises and ferric oxide nanoparticles on biochemical and oxidative stress biomarkers in Oreochromis niloticus: relevant environmental risk assessment under predicted global warming. Environ. Monit. Assess. 2025 197 4 409 10.1007/s10661‑025‑13789‑x 40095155
    [Google Scholar]
  53. Abdelaziz M H ElRakabawi M S Soliman A M Mohamed A S Freshwater bivalve Coelatura aegyptiaca as a sensitive bioindica-tor for zinc oxide/chitosan nanocomposites toxicity. Curr Chemical Biol 2025 2025 10.2174/0122127968350685250325165915
    [Google Scholar]
  54. Jamshidzadeh A. Heidari R. Latifpour Z. Carnosine ameliorates liver fibrosis and hyperammonemia in cirrhotic rats. Clin. Res. Hepatol. Gastroenterol. 2017 41 4 424 434 10.1016/j.clinre.2016.12.010 28283328
    [Google Scholar]
  55. Punzo A. Silla A. Fogacci F. Perillo M. Cicero A.F.G. Caliceti C. Bile acids and bilirubin role in oxidative stress and inflammation in cardiovascular diseases. Diseases 2024 12 5 103 10.3390/diseases12050103 38785758
    [Google Scholar]
  56. Weaver L. Hamoud A. Stec D.E. Hinds T.D. Biliverdin reductase and bilirubin in hepatic disease. Am. J. Physiol. Gastrointest. Liver Physiol. 2018 314 6 G668 G676 10.1152/ajpgi.00026.2018 29494209
    [Google Scholar]
  57. Rawat V. Bortolussi G. Gazzin S. Tiribelli C. Muro A.F. Bilirubin‐induced oxidative stress leads to DNA damage in the cerebellum of hyperbilirubinemic neonatal mice and activates DNA double‐strand break repair pathways in human cells. Oxid. Med. Cell. Longev. 2018 2018 1 1801243 10.1155/2018/1801243 30598724
    [Google Scholar]
  58. Kotb MA Abdelmawgood IA WalyEldeen AA,eta al Chrysin-loaded PLGA nanoparticles alleviate the implantation of endometriotic lesions via attenuation of peritoneal inflammation and downregulating NF-κB activation-driven expression of angiogenic factors. J. Drug Deliv. Sci. Technol. 2025 109 106984 10.1016/j.jddst.2025.106984
    [Google Scholar]
  59. Taguchi S. Azushima K. Yamaji T. Effects of tumor necrosis factor-α inhibition on kidney fibrosis and inflammation in a mouse model of aristolochic acid nephropathy. Sci. Rep. 2021 11 1 23587 10.1038/s41598‑021‑02864‑1 34880315
    [Google Scholar]
  60. Tiegs G. Horst A.K. TNF in the liver: Targeting a central player in inflammation. Semin. Immunopathol. 2022 44 4 445 459 10.1007/s00281‑022‑00910‑2 35122118
    [Google Scholar]
  61. Cheung AC Lorenzo Pisarello MJ LaRusso NF Pathobiology of biliary epithelia. Biochim Biophys Acta Mol Basis Dis 2018 1864 (4) 1220 1231 (4, Part B). 10.1016/j.bbadis.2017.06.024 28716705
    [Google Scholar]
  62. Wan Q. Zhou J. Wu Y. TNF-α-mediated podocyte injury via the apoptotic death receptor pathway in a mouse model of IgA nephropathy. Ren. Fail. 2022 44 1 1217 1227 10.1080/0886022X.2022.2079527 35837694
    [Google Scholar]
  63. Svinka J. Pflügler S. Mair M. Epidermal growth factor signaling protects from cholestatic liver injury and fibrosis. J. Mol. Med. (Berl.) 2017 95 1 109 117 10.1007/s00109‑016‑1462‑8 27568040
    [Google Scholar]
  64. Zimny S. Koob D. Li J. Hydrophobic bile salts induce pro-fibrogenic proliferation of hepatic stellate cells through PI3K p110 alpha signaling. Cells 2022 11 15 2344 10.3390/cells11152344 35954188
    [Google Scholar]
  65. Zhou C.J. Guo Y. Mini review on collagens in normal skin and pathological scars: Vurrent understanding and future perspective. Front. Med. (Lausanne) 2024 11 1449597 10.3389/fmed.2024.1449597 39091289
    [Google Scholar]
  66. Huang R. Fu P. Ma L. Kidney fibrosis: From mechanisms to therapeutic medicines. Signal Transduct. Target. Ther. 2023 8 1 129 10.1038/s41392‑023‑01379‑7 36932062
    [Google Scholar]
  67. Kurakula M. Rao G.S.N.K. Yadav K.S. Fabrication and characterization of polycaprolactone-based green materials for drug delivery. n: Ahmed S, Ed. Applications of Advanced Green Materials. Ahmed S. Woodhead Publishing 2021 395 423 10.1016/B978‑0‑12‑820484‑9.00016‑7
    [Google Scholar]
  68. Bhadran A. Shah T. Babanyinah G.K. Recent advances in polycaprolactones for anticancer drug delivery. Pharmaceutics 2023 15 7 1977 10.3390/pharmaceutics15071977 37514163
    [Google Scholar]
  69. Mashjoor S. Yousefzadi M. Holothurians antifungal and antibacterial activity to human pathogens in the Persian Gulf. J. Mycol. Med. 2017 27 1 46 56 10.1016/j.mycmed.2016.08.008 27641487
    [Google Scholar]
  70. Pangestuti R. Arifin Z. Medicinal and health benefit effects of functional sea cucumbers. J. Tradit. Complement. Med. 2018 8 3 341 351 10.1016/j.jtcme.2017.06.007 29992105
    [Google Scholar]
  71. Nobsathian S. Tuchinda P. Sobhon P. An antioxidant activity of the whole body of Holothuria scabra. Chem. Biol. Technol. Agric. 2017 4 1 4 10.1186/s40538‑017‑0087‑7
    [Google Scholar]
  72. Fahmy S.R. Anti-fibrotic effect of Holothuria arenicola extract against bile duct ligation in rats. BMC Complement. Altern. Med. 2015 15 1 14 10.1186/s12906‑015‑0533‑7 25652675
    [Google Scholar]
  73. Fahmy S.R. Holothuria arenicola as promising material for therapeutic drugs. SOJ Pharm. Pharm. Sci. 2018 5 2 1 6 10.15226/2374‑6866/5/2/00177
    [Google Scholar]
  74. Wang T. Zheng L. Liu X. Zhao M. Sea cucumber (Holothuria nobilis) hydrolysates improve diabetic nephropathy via suppression of oxidative stress in high-fat diet/streptozotocin-induced diabetic rats. J. Funct. Foods 2023 106 105589 10.1016/j.jff.2023.105589
    [Google Scholar]
  75. Bahrami Y. Zhang W. Franco M.M. Distribution of saponins in the sea cucumber Holothuria lessoni: the body wall versus the viscera, and their biological activities. Mar. Drugs 2018 16 11 423 10.3390/md16110423
    [Google Scholar]
  76. Zhang L Shi J Shen Q Astragalus saponins protect against extrahepatic and intrahepatic cholestatic liver fibrosis models by activation of farnesoid X receptor J Ethnopharmacol 2024 318 (Pt A) 116833 10.1016/j.jep.2023.116833 37400008
    [Google Scholar]
  77. Lee H. Jeong H. Lee C.M. Antifibrotic effects of sakuraso-saponin in primary cultured pterygium fibroblasts in comparison with mitomycin C. Invest. Ophthalmol. Vis. Sci. 2019 60 14 4784 4791 10.1167/iovs.19‑27153 31743935
    [Google Scholar]
  78. Li H Wang Y Chen T Panax notoginseng saponin alleviates pulmonary fibrosis in rats by modulating the renin-angiotensin sys-tem J Ethnopharmacol 2024 2024 318 (Pt B) 116979 10.1016/j.jep.2023.116979 37532070
    [Google Scholar]
  79. Han L. Dong L. Yu H. Deceleration of liver regeneration by knockdown of augmenter of liver regeneration gene is associated with impairment of mitochondrial DNA synthesis in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 2015 309 2 G112 G122 10.1152/ajpgi.00435.2014 25977511
    [Google Scholar]
/content/journals/cnanom/10.2174/0124681873401484250924125945
Loading
/content/journals/cnanom/10.2174/0124681873401484250924125945
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test