Skip to content
2000
image of Revolutionizing Conjunctivitis Treatment: Nanotechnology Advances and Innovative Drug Delivery Strategies

Abstract

This comprehensive review outlines the challenges and advancements in the treatment of conjunctivitis, emphasizing the limitations of conventional therapies and the promise of nanotechnology-based solutions. Conjunctivitis, one of the common external eye diseases, is a tissue inflammation that affects people of all ages. Redness, irritation, tearing, and increased secretions are the primary symptoms of conjunctivitis. This review highlights the eye's complex anatomy and physiological barriers, ., corneal, pre-corneal, and blood-corneal barriers, which significantly limit drug penetration and bioavailability within ocular tissues. Antibacterial and anti-inflammatory drugs are prescribed to treat conjunctivitis. Conventional eye drops, the primary treatment, are convenient but their effectiveness is limited, delivering less than 5% of the drug to the intended site due to tear drainage, enzymatic degradation and short residence time. Nanotechnology-based drug delivery like nanoemulsions, liposomes, nanosuspensions, polymeric nanoparticles, niosomes and nanofibers provide drug stability, prolong ocular residence time, reduce side effects and improve drug permeability across ocular barriers, yet each faces distinct challenges that hinder their broader application. For instance, liposomes and niosomes are prone to stability issues, hydrogels lack mechanical strength, nanofibers struggle with constant drug release, and microemulsions are challenging to scale up. Nanomicelles, however, show significant potential in ocular therapy. These systems, with particle sizes ranging from 10 to 100 nm, are easily scalable, exhibit high encapsulation efficiency, and effectively enhance the solubility and stability of hydrophobic drugs. Their small size and distinct properties enable targeted delivery to both anterior and posterior eye tissues, minimizing systemic side effects, improving cell bioavailability, and facilitating focused drug deposition in affected tissues. Thus, nanotechnology offers a transformative approach to overcoming the limitations of traditional ocular drug delivery systems. Among these, nanomicelles stand out due to their unique therapeutic potential. However, addressing the challenges of scalability, stability, and long-term efficacy remains crucial for the widespread application of these technologies.

Loading

Article metrics loading...

/content/journals/cnanom/10.2174/0124681873385384250901061829
2025-09-03
2025-12-06
Loading full text...

Full text loading...

References

  1. Akhtar M.S. Mandal S.K. Malik A. Choudhary A. Agarwal S. Sarkar S. Dey S. Nano micelle: Novel approach for targeted ocular drug delivery system. Egypt J Chem 2022 0 0 0 10.21608/ejchem.2022.119133.5359
    [Google Scholar]
  2. Hosoya K. Lee V.H.L. Kim K.J. Roles of the conjunctiva in ocular drug delivery: A review of conjunctival transport mechanisms and their regulation. Eur J Pharm Biopharm 2005 60 2 227 240 10.1016/j.ejpb.2004.12.007 15939235
    [Google Scholar]
  3. Ahmed S. Amin M.M. Sayed S. Ocular drug delivery: A comprehensive review. AAPS PharmSciTech 2023 24 2 66 10.1208/s12249‑023‑02516‑9 36788150
    [Google Scholar]
  4. Al-Ani A. Jeber J. Elewi A. Development of a nanostructured double-layer coated tablet based on polyethylene glycol/gelatin as a platform for hydrophobic molecules delivery. Egypt J Chem 2021 0 0 0 10.21608/ejchem.2021.52019.3066
    [Google Scholar]
  5. Jain G.K. Warsi M.H. Nirmal J. Garg V. Pathan S.A. Ahmad F.J. Khar R.K. Therapeutic stratagems for vascular degenerative disorders of the posterior eye. Drug Discov Today 2012 17 13-14 748 759 10.1016/j.drudis.2012.03.006 22504325
    [Google Scholar]
  6. Dalal D.M. Mishra S. Can we always rely on Borish delayed test for latent hypermetropia? Indian J Ophthalmol Case Rep 2023 3 3 642 643 10.4103/IJO.IJO_66_23
    [Google Scholar]
  7. Snell R.S. Lemp M.A. Clinical anatomy of the eye Hoboken, New Jersey John Wiley & Sons 2013
    [Google Scholar]
  8. Allingham R.R. Shields textbook of glaucoma Hoboken, New Jersey Lippincott Williams & Wilkins 2012
    [Google Scholar]
  9. Forrester J.V. The eye: Basic sciences in practice Amsterdam, Netherlands Elsevier Health Sciences 2015
    [Google Scholar]
  10. Liu Z. Pflugfelder S.C. Corneal thickness is reduced in dry eye. Cornea 1999 18 4 403 407 10.1097/00003226‑199907000‑00002 10422850
    [Google Scholar]
  11. Gipson I.K. Age-related changes and diseases of the ocular surface and cornea. Invest Ophthalmol Vis Sci 2013 54 14 ORSF48–ORSF53 10.1167/iovs.13‑12840
    [Google Scholar]
  12. Wilson M.R. Satapathy S. Jeong S. Fini M.E. Clusterin, other extracellular chaperones, and eye disease. Prog Retin Eye Res 2022 89 101032 10.1016/j.preteyeres.2021.101032 34896599
    [Google Scholar]
  13. Bonanno J.A. Molecular mechanisms underlying the corneal endothelial pump. Exp Eye Res 2012 95 1 2 7 10.1016/j.exer.2011.06.004 21693119
    [Google Scholar]
  14. Provis J.M. Dubis A.M. Maddess T. Carroll J. Adaptation of the central retina for high acuity vision: Cones, the fovea and the avascular zone. Prog Retin Eye Res 2013 35 63 81 10.1016/j.preteyeres.2013.01.005 23500068
    [Google Scholar]
  15. Taylor A.W. Ocular immune privilege and transplantation. Front Immunol 2016 7 37 10.3389/fimmu.2016.00037 26904026
    [Google Scholar]
  16. Sakamoto T. Sebag J. Vitreous: In Health and Disease Cham Springer-Verlag New York 2019
    [Google Scholar]
  17. Gaballa S.A. El Garhy O.H. Abdelkader H. Cubosomes: Composition, preparation, and drug delivery applications. J Appl Biopharm Pharmacokinet Sci 2020 3 1 1 9 10.21608/jabps.2019.16887.1057
    [Google Scholar]
  18. Herrero-Vanrell R. Vicario de la Torre M. Andrés-Guerrero V. Barbosa-Alfaro D. Molina-Martínez I.T. Bravo-Osuna I. Nano and microtechnologies for ophthalmic administration, an overview. J Drug Deliv Sci Technol 2013 23 2 75 102 10.1016/S1773‑2247(13)50016‑5
    [Google Scholar]
  19. Antonetti D.A. Silva P.S. Stitt A.W. Current understanding of the molecular and cellular pathology of diabetic retinopathy. Nat Rev Endocrinol 2021 17 4 195 206 10.1038/s41574‑020‑00451‑4 33469209
    [Google Scholar]
  20. Campbell M. Hanrahan F. Gobbo O.L. Kelly M.E. Kiang A.S. Humphries M.M. Nguyen A.T.H. Ozaki E. Keaney J. Blau C.W. Kerskens C.M. Cahalan S.D. Callanan J.J. Wallace E. Grant G.A. Doherty C.P. Humphries P. Targeted suppression of claudin-5 decreases cerebral oedema and improves cognitive outcome following traumatic brain injury. Nat Commun 2012 3 1 849 10.1038/ncomms1852 22617289
    [Google Scholar]
  21. Kolb H. Simple anatomy of the retina by helga kolb. Available from:https://webvision.med.utah.edu/book/part-i-foundations/simple-anatomy-of-the-retina/ 2011
  22. Taylor A.W. Ng T.F. Negative regulators that mediate ocular immune privilege. J Leukoc Biol 2018 103 6 1179 1187 10.1002/JLB.3MIR0817‑337R 29431864
    [Google Scholar]
  23. Sebag J. Vitreous: In health and disease Cham Springer 2014 10.1007/978‑1‑4939‑1086‑1
    [Google Scholar]
  24. Kymionis G.D. Kankariya V.P. Plaka A.D. Reinstein D.Z. Femtosecond laser technology in corneal refractive surgery: A review. J Refract Surg 2012 28 12 912 920 10.3928/1081597X‑20121116‑01 23231742
    [Google Scholar]
  25. Cunha-Vaz J. The blood-retinal barriers Cham Springer Science & Business Media 2013 32
    [Google Scholar]
  26. Dartt D.A. Neural regulation of lacrimal gland secretory processes: Relevance in dry eye diseases. Prog Retin Eye Res 2009 28 3 155 177 10.1016/j.preteyeres.2009.04.003 19376264
    [Google Scholar]
  27. Azari A.A. Barney N.P. Conjunctivitis. JAMA 2013 310 16 1721 1729 10.1001/jama.2013.280318 24150468
    [Google Scholar]
  28. Singh N. Mazumder R. Monika M. Sakshi S. Khan F. Kumar B. Development in therapeutic strategies for allergic conjunctivitis. Trends Immun 2023 7 1 2025 10.24294/ti.v7.i1.2025
    [Google Scholar]
  29. Lee T. Kuo I.C. Survey of state conjunctivitis policies for school-age students. J AAPOS 2022 26 3 115.e1 115.e5 10.1016/j.jaapos.2022.02.002
    [Google Scholar]
  30. de Laet C. Dionisi-Vici C. Leonard J.V. McKiernan P. Mitchell G. Monti L. de Baulny H.O. Pintos-Morell G. Spiekerkötter U. Recommendations for the management of tyrosinaemia type 1. Orphanet J Rare Dis 2013 8 1 8 10.1186/1750‑1172‑8‑8 23311542
    [Google Scholar]
  31. Sati A. Sangwan V.S. Basu S. Porphyria: Varied ocular manifestations and management. BMJ Case Rep 2013 2013 bcr2013009496 10.1136/bcr‑2013‑009496 23704443
    [Google Scholar]
  32. El Sanharawi M. Kowalczuk L. Touchard E. Omri S. de Kozak Y. Behar-Cohen F. Protein delivery for retinal diseases: From basic considerations to clinical applications. Prog Retin Eye Res 2010 29 6 443 465 10.1016/j.preteyeres.2010.04.001 20398784
    [Google Scholar]
  33. Palmares J. Delgado L. Cidade M. Quadrado M.J. Filipe H.P. Allergic conjunctivitis: A national cross-sectional study of clinical characteristics and quality of life. Eur J Ophthalmol 2010 20 2 257 264 10.1177/112067211002000201 20037906
    [Google Scholar]
  34. Hutnik C. Cheema Bacterial conjunctivitis. Clin Ophthalmol 2010 4 1451 1457 10.2147/OPTH.S10162 21188158
    [Google Scholar]
  35. Rapuano C.J. Prepared by the american academy of ophthalmology cornea/external disease panel. 2008
  36. Patel N. Venkateswaran N. Wang Z. Galor A. Ocular involvement in atopic disease. Curr Opin Ophthalmol 2018 29 6 576 581 10.1097/ICU.0000000000000532 30222657
    [Google Scholar]
  37. Bielory L. An algorithm for the management of allergic conjunctivitis. Allergy and asthma proceedings Providence, Rhode Island OceanSide Publications, Inc. 2013 10.2500/aap.2013.34.3695
    [Google Scholar]
  38. La Rosa M. Lionetti E. Reibaldi M. Russo A. Longo A. Leonardi S. Tomarchio S. Avitabile T. Reibaldi A. Allergic conjunctivitis: A comprehensive review of the literature. Ital J Pediatr 2013 39 1 18 10.1186/1824‑7288‑39‑18 23497516
    [Google Scholar]
  39. Høvding G. Acute bacterial conjunctivitis. Acta Ophthalmol 2008 86 1 5 17 10.1111/j.1600‑0420.2007.01006.x 17970823
    [Google Scholar]
  40. Kanski J.J. Bowling B. Clinical ophthalmology: A systematic approach Elsevier Health Sciences 2011
    [Google Scholar]
  41. Kumar N.M. Mah F.S. Albert D. Miller J. Azar D. Bacterial, chlamydial, and mycobacterial infections. Albert and Jakobiec's Principles and Practice of Ophthalmology Cham Springer 2021 10.1007/978‑3‑319‑90495‑5_210‑1
    [Google Scholar]
  42. Andalibi S. Haidara M. Bor N. Levin M. An update on neonatal and pediatric conjunctivitis. Curr Ophthalmol Rep 2015 3 3 158 169 10.1007/s40135‑015‑0080‑x
    [Google Scholar]
  43. Lavista Ferres J.M. Meirick T. Lomazow W. Lee C.S. Lee A.Y. Lee M.D. Association of public health measures during the COVID-19 pandemic with the incidence of infectious conjunctivitis. JAMA Ophthalmol 2022 140 1 43 49 10.1001/jamaophthalmol.2021.4852 34792555
    [Google Scholar]
  44. Yeu E. Hauswirth S. A review of the differential diagnosis of acute infectious conjunctivitis: Implications for treatment and management. Clin Ophthalmol 2020 14 805 813 10.2147/OPTH.S236571 32210533
    [Google Scholar]
  45. Sheikh A. Hurwitz B. Topical antibiotics for acute bacterial conjunctivitis: Cochrane systematic review and meta-analysis update. Br J Gen Pract 2005 55 521 962 964 16378567
    [Google Scholar]
  46. Asbell P.A. Sanfilippo C.M. Sahm D.F. DeCory H.H. Trends in antibiotic resistance among ocular microorganisms in the United States from 2009 to 2018. JAMA Ophthalmol 2020 138 5 439 450 10.1001/jamaophthalmol.2020.0155 32271355
    [Google Scholar]
  47. Vernhardsdottir R.R. Magno M.S. Hynnekleiv L. Lagali N. Dartt D.A. Vehof J. Jackson C.J. Utheim T.P. Antibiotic treatment for dry eye disease related to meibomian gland dysfunction and blepharitis – A review. Ocul Surf 2022 26 211 221 10.1016/j.jtos.2022.08.010 36210626
    [Google Scholar]
  48. Li J. Yin X. Zhao Y. Yang X. Wang J. Yuan T. Zheng J. Tang Q. Wei W. Fluoroquinolones-related psychiatric adverse events: A real‑world retrospective and pharmacovigilance database analysis. Expert Opin Drug Saf 2024 1 14 10.1080/14740338.2024.2387313 39082071
    [Google Scholar]
  49. Chang M.H. Fung H.B. Besifloxacin: A topical fluoroquinolone for the treatment of bacterial conjunctivitis. Clin Ther 2010 32 3 454 471 10.1016/j.clinthera.2010.03.013 20399984
    [Google Scholar]
  50. Majalekar P.P. Shirote P.J. Fluoroquinolones: Blessings or curses. Curr Drug Targets 2020 21 13 1354 1370 10.2174/1389450121666200621193355 32564750
    [Google Scholar]
  51. Bertino J.S. Zhang J.Z. Besifloxacin, a new ophthalmic fluoroquinolone for the treatment of bacterial conjunctivitis. Expert Opin Pharmacother 2009 10 15 2545 2554 10.1517/14656560903213413 19743941
    [Google Scholar]
  52. Keating G.M. Levofloxacin 0.5% ophthalmic solution: A review of its use in the treatment of external ocular infections and in intraocular surgery. Drugs 2009 69 9 1267 1286 10.2165/00003495‑200969090‑00009 19537841
    [Google Scholar]
  53. Kagkelaris K.A. Makri O.E. Georgakopoulos C.D. Panayiotakopoulos G.D. An eye for azithromycin: Review of the literature. Ther Adv Ophthalmol 2018 10 2515841418783622 10.1177/2515841418783622 30083656
    [Google Scholar]
  54. Chan V.F. Yong A.C. Azuara-Blanco A. Gordon I. Safi S. Lingham G. Evans J. Keel S. A systematic review of clinical practice guidelines for infectious and non-infectious conjunctivitis. Ophthalmic Epidemiol 2022 29 5 473 482 10.1080/09286586.2021.1971262 34459321
    [Google Scholar]
  55. Rosenblatt J.E. Stewart P.R. Combined activity of sulfamethoxazole, trimethoprim, and polymyxin B against gram-negative bacilli. Antimicrob Agents Chemother 1974 6 1 84 92 10.1128/AAC.6.1.84 15828175
    [Google Scholar]
  56. Lee A.E. Niruttan K. Rawson T.M. Moore L.S.P. Antibacterial resistance in ophthalmic infections: A multi-centre analysis across UK care settings. BMC Infect Dis 2019 19 1 768 10.1186/s12879‑019‑4418‑0 31481023
    [Google Scholar]
  57. Epling J. Bacterial conjunctivitis. BMJ Clin Evid 2012 1 5
    [Google Scholar]
  58. Bale B.I. Elebesunu E.E. Manikavasagar P. Agwuna F.O. Ogunkola I.O. Sow A.U. Lucero-Prisno D.E. Antibiotic resistance in ocular bacterial infections: An integrative review of ophthalmic chloramphenicol. Trop Med Health 2023 51 1 15 10.1186/s41182‑023‑00496‑x 36895063
    [Google Scholar]
  59. Goodfellow J.J. Hughes S. Smith J. Jones R. Moore L.S.P. Rayment M. Novel use of oral chloramphenicol for treatment-resistant Mycoplasma genitalium. Sex Transm Infect 2023 99 3 208 210 36717253
    [Google Scholar]
  60. Rietveld R.P. ter Riet G. Bindels P.J. Bink D. Sloos J.H. van Weert H.C. The treatment of acute infectious conjunctivitis with fusidic acid: A randomised controlled trial. Br J Gen Pract 2005 55 521 924 930 16378561
    [Google Scholar]
  61. Omolo C.A. Kalhapure R.S. Agrawal N. Rambharose S. Mocktar C. Govender T. Formulation and molecular dynamics simulations of a fusidic acid nanosuspension for simultaneously enhancing solubility and antibacterial activity. Mol Pharm 2018 15 8 3512 3526 10.1021/acs.molpharmaceut.8b00505 29953816
    [Google Scholar]
  62. Robert P.Y. Adenis J.P. Comparative review of topical ophthalmic antibacterial preparations. Drugs 2001 61 2 175 185 10.2165/00003495‑200161020‑00003 11270936
    [Google Scholar]
  63. Federici T.J. The non-antibiotic properties of tetracyclines: Clinical potential in ophthalmic disease. Pharmacol Res 2011 64 6 614 623 10.1016/j.phrs.2011.06.013 21843641
    [Google Scholar]
  64. Abdassah M. Kusuma S.A.F. Comparison of thimerosal effectiveness in the formulation of eye drops containing neomycin sulfate and chloramphenicol. Inter J Appl Pharm 2019 11 1 130 135 10.22159/ijap.2019v11i1.30012
    [Google Scholar]
  65. Waisbren B.A. Spink W.W. A clinical appraisal of neomycin. Ann Intern Med 1950 33 5 1099 1119 10.7326/0003‑4819‑33‑5‑1099 14783292
    [Google Scholar]
  66. Chao J. Yumei Z. Zhiqun W. Yang Z. Xuguang S. Multidrug-resistant bacteria induce recurrent keratoconjunctivitis in a patient with common variable immunodeficiency: Case report and literature review. Cornea 2013 32 Suppl. 1 S39 S42 10.1097/ICO.0b013e3182a2c7e6 24104932
    [Google Scholar]
  67. Balado A.C. 3PC-031 Current state of the anti-infective ophthalmic compounding formulation in pharmacy services: A national survey. Europ J Hospit Pharm 2020 27 Suppl 1 10.1136/ejhpharm‑2020‑eahpconf.78
    [Google Scholar]
  68. Li X. Fang J. Xin M. Li Q. Wang J. Yang H. Wu X. Rebaudioside A/TPGS mixed nanomicelles as promising nanocarriers for nimodipine ocular delivery. Drug Deliv Transl Res 2021 11 3 1119 1132 10.1007/s13346‑020‑00834‑0 32783152
    [Google Scholar]
  69. Cooper R.C. Yang H. Hydrogel-based ocular drug delivery systems: Emerging fabrication strategies, applications, and bench-to-bedside manufacturing considerations. J Control Release 2019 306 29 39 10.1016/j.jconrel.2019.05.034 31128143
    [Google Scholar]
  70. Kirchhof S. Goepferich A.M. Brandl F.P. Hydrogels in ophthalmic applications. Eur J Pharm Biopharm 2015 95 Pt B 227 238 10.1016/j.ejpb.2015.05.016 26032290
    [Google Scholar]
  71. Xu X. Weng Y. Xu L. Chen H. Sustained release of avastin® from polysaccharides cross-linked hydrogels for ocular drug delivery. Int J Biol Macromol 2013 60 272 276 10.1016/j.ijbiomac.2013.05.034 23748006
    [Google Scholar]
  72. Pan M. Ren Z. Ma X. Chen L. Lv G. Liu X. Li S. Li X. Wang J. A biomimetic peptide–drug supramolecular hydrogel as eyedrops enables controlled release of ophthalmic drugs. Acta Biomater 2023 167 195 204 10.1016/j.actbio.2023.06.036 37392932
    [Google Scholar]
  73. Chakole C.M. Sahoo P.K. Pandey J. Chauhan M.K. A green chemistry approach towards synthesizing hydrogel for sustained ocular delivery of brinzolamide: In vitro and ex vivo evaluation. J Indian Chem Soc 2022 99 2 100323 10.1016/j.jics.2021.100323
    [Google Scholar]
  74. Apaolaza P.S. Delgado D. Pozo-Rodríguez A. Gascón A.R. Solinís M.Á. A novel gene therapy vector based on hyaluronic acid and solid lipid nanoparticles for ocular diseases. Int J Pharm 2014 465 1-2 413 426 10.1016/j.ijpharm.2014.02.038 24576595
    [Google Scholar]
  75. Romeo A. Musumeci T. Carbone C. Bonaccorso A. Corvo S. Lupo G. Anfuso C.D. Puglisi G. Pignatello R. Ferulic acid-loaded polymeric nanoparticles for potential ocular delivery. Pharmaceutics 2021 13 5 687 10.3390/pharmaceutics13050687 34064572
    [Google Scholar]
  76. Kaviarasi B. Rajana N. Pooja Y.S. Rajalakshmi A.N. Singh S.B. Mehra N.K. Investigating the effectiveness of Difluprednate-Loaded core-shell lipid-polymeric hybrid nanoparticles for ocular delivery. Int J Pharm 2023 640 123006 10.1016/j.ijpharm.2023.123006 37137420
    [Google Scholar]
  77. Kantaria T. Kantaria T. Heiduschka P. Eter N. Tugushi D. Katsarava R. Dexamethasone-loaded pseudo-protein nanoparticles for ocular drug delivery: Evaluation of drug encapsulation efficiency and drug release. J Nanotechnol 2023 2023 1 1 8 10.1155/2023/8827248
    [Google Scholar]
  78. Balguri S.P. Adelli G.R. Janga K.Y. Bhagav P. Majumdar S. Ocular disposition of ciprofloxacin from topical, PEGylated nanostructured lipid carriers: Effect of molecular weight and density of poly (ethylene) glycol. Int J Pharm 2017 529 1-2 32 43 10.1016/j.ijpharm.2017.06.042 28634139
    [Google Scholar]
  79. Lakhani P. Patil A. Wu K.W. Sweeney C. Tripathi S. Avula B. Taskar P. Khan S. Majumdar S. Optimization, stabilization, and characterization of amphotericin B loaded nanostructured lipid carriers for ocular drug delivery. Int J Pharm 2019 572 118771 10.1016/j.ijpharm.2019.118771 31669555
    [Google Scholar]
  80. Abla K.K. Hijazi S.M. Mehanna M.M. Augmented efficiency of azithromycin for MRSA ocular infections management: Limonene-based nanostructured lipid carriers in-situ approach. J Drug Deliv Sci Technol 2023 87 104764 10.1016/j.jddst.2023.104764
    [Google Scholar]
  81. González-Fernández F.M. Delledonne A. Nicoli S. Gasco P. Padula C. Santi P. Sissa C. Pescina S. Nanostructured lipid carriers for enhanced transscleral delivery of dexamethasone acetate: Development, ex vivo characterization and multiphoton microscopy studies. Pharmaceutics 2023 15 2 407 10.3390/pharmaceutics15020407 36839729
    [Google Scholar]
  82. Debbarma A. Roy P.K. Barbhuiya S.B. Das J. Laldinchhana Lalhlenmawia H. Bioactive compound and nanotechnology: A novel delivery perspective for diabetic retinopathy. Curr Bioact Compd 2021 17 8 010621189484 10.2174/1573407216999201224145751
    [Google Scholar]
  83. Dave V. Sharma R. Gupta C. Sur S. Folic acid modified gold nanoparticle for targeted delivery of Sorafenib tosylate towards the treatment of diabetic retinopathy. Colloids Surf B Biointerfaces 2020 194 111151 10.1016/j.colsurfb.2020.111151 32540764
    [Google Scholar]
  84. Ge X. Wei M. He S. Yuan W.E. Advances of non-ionic surfactant vesicles (niosomes) and their application in drug delivery. Pharmaceutics 2019 11 2 55 10.3390/pharmaceutics11020055 30700021
    [Google Scholar]
  85. Lajunen T. Nurmi R. Kontturi L. Viitala L. Yliperttula M. Murtomäki L. Urtti A. Light activated liposomes: Functionality and prospects in ocular drug delivery. J Control Release 2016 244 Pt B 157 166 10.1016/j.jconrel.2016.08.024 27565215
    [Google Scholar]
  86. Sankar C. Formulation and characterization of liposomes containing clindamycin and green tea for anti acne. Res J Pharm Technol 2019 12 12 5977 5984 10.5958/0974‑360X.2019.01038.2
    [Google Scholar]
  87. Dong Y. Dong P. Huang D. Mei L. Xia Y. Wang Z. Pan X. Li G. Wu C. Fabrication and characterization of silk fibroin-coated liposomes for ocular drug delivery. Eur J Pharm Biopharm 2015 91 82 90 10.1016/j.ejpb.2015.01.018 25643990
    [Google Scholar]
  88. Landucci E. Mazzantini C. Calvani M. Pellegrini-Giampietro D.E. Bergonzi M.C. Evaluation of conventional and hyaluronic acid-coated thymoquinone liposomes in an in vitro model of dry eye. Pharmaceutics 2023 15 2 578 10.3390/pharmaceutics15020578 36839901
    [Google Scholar]
  89. Osman N. Mohammed M. Omolo C.A. Ibrahim U.H. Gafar M.A. Rambharose S. Devnarain N. Kiruri L.W. Nwabuife J. Govender T. Hyaluronidase inhibitor surface-modified niosomes: An efficient strategy for antibacterial and anti-biofilm drug delivery. Materialia 2023 30 101826 10.1016/j.mtla.2023.101826
    [Google Scholar]
  90. Li C.C. Abrahamson M. Kapoor Y. Chauhan A. Timolol transport from microemulsions trapped in HEMA gels. J Colloid Interface Sci 2007 315 1 297 306 10.1016/j.jcis.2007.06.054 17673246
    [Google Scholar]
  91. Üstündag-Okur N. Gökçe E.H. Eğrilmez S. Özer Ö. Ertan G. Novel ofloxacin-loaded microemulsion formulations for ocular delivery. J Ocul Pharmacol Ther 2014 30 4 319 332 10.1089/jop.2013.0114 24367973
    [Google Scholar]
  92. Zhang Y. Yang J. Ji Y. Liang Z. Wang Y. Zhang J. Development of osthole-loaded microemulsions as a prospective ocular delivery system for the treatment of corneal neovascularization: In vitro and in vivo assessments. Pharmaceuticals 2023 16 10 1342 10.3390/ph16101342 37895813
    [Google Scholar]
  93. Pedro S.N. Gomes A.T.P.C. Vilela C. Vitorino C. Fernandes R. Almeida A. Amaral M.H. Freire M.G. Silvestre A.J.D. Freire C.S.R. Thermo‐responsive microemulsions containing deep eutectic‐based antibiotic formulations for improved treatment of resistant bacterial ocular infections. Adv Ther 2023 6 5 2200235 10.1002/adtp.202200235
    [Google Scholar]
  94. Sung M.S. Moon M.J. Thomas R.G. Kim S.Y. Lee J.S. Jeong Y.Y. Park I.K. Park S.W. Intravitreal injection of liposomes loaded with a histone deacetylase inhibitor promotes retinal ganglion cell survival in a mouse model of optic nerve crush. Int J Mol Sci 2020 21 23 9297 10.3390/ijms21239297 33291226
    [Google Scholar]
  95. Chen S. Hanning S. Falconer J. Locke M. Wen J. Recent advances in non-ionic surfactant vesicles (niosomes): Fabrication, characterization, pharmaceutical and cosmetic applications. Eur J Pharm Biopharm 2019 144 18 39 10.1016/j.ejpb.2019.08.015 31446046
    [Google Scholar]
  96. Kumar P. Verma N. An overview on niosomes: As an auspesious drug delivery system on the bases of application. Res J Phar Tech 2021 14 5 2896 2902
    [Google Scholar]
  97. Kattar A. Quelle-Regaldie A. Sánchez L. Concheiro A. Alvarez-Lorenzo C. Formulation and characterization of epalrestat-loaded polysorbate 60 cationic niosomes for ocular delivery. Pharmaceutics 2023 15 4 1247 10.3390/pharmaceutics15041247 37111732
    [Google Scholar]
  98. Shah J. Nair A.B. Jacob S. Patel R.K. Shah H. Shehata T.M. Morsy M.A. Nanoemulsion based vehicle for effective ocular delivery of moxifloxacin using experimental design and pharmacokinetic study in rabbits. Pharmaceutics 2019 11 5 230 10.3390/pharmaceutics11050230 31083593
    [Google Scholar]
  99. Salimi A. Preparation and evaluation of celecoxib nanoemulsion for ocular drug delivery. Asian J Pharm 2017 11 03 543 550
    [Google Scholar]
  100. Rimple Newton M.J. Impact of ocular compatible lipoids and castor oil in fabrication of brimonidine tartrate nanoemulsions by 33 full factorial design. Recent Pat Inflamm Allergy Drug Discov 2018 12 2 169 183 10.2174/1872213X12666180730115225 30058499
    [Google Scholar]
  101. Cheung C.Y. Sabanayagam C. Law A.K. Kumari N. Ting D.S. Tan G. Mitchell P. Cheng C.Y. Wong T.Y. Retinal vascular geometry and 6 year incidence and progression of diabetic retinopathy. Diabetologia 2017 60 9 1770 1781 10.1007/s00125‑017‑4333‑0 28623387
    [Google Scholar]
  102. Mahboobian M.M. Seyfoddin A. Aboofazeli R. Foroutan S.M. Rupenthal I.D. Brinzolamide–loaded nanoemulsions: ex vivo transcorneal permeation, cell viability and ocular irritation tests. Pharm Dev Technol 2019 24 5 600 606 10.1080/10837450.2018.1547748 30472913
    [Google Scholar]
  103. Wang Q. Wu Z. Wang F. Zhang H. Gan L. Tacrolimus-loaded cationic nanoemulsion in-situ gel system: In-vitro characterization and performance in a dry-eye rabbit model. J Pharm Sci 2023 112 11 2790 2798 10.1016/j.xphs.2023.05.001 37453530
    [Google Scholar]
  104. Deepak A. Goyal A.K. Rath G. Nanofiber in transmucosal drug delivery. J Drug Deliv Sci Technol 2018 43 379 387 10.1016/j.jddst.2017.11.008
    [Google Scholar]
  105. Taghe S. Mirzaeei S. Ahmadi A. Preparation and evaluation of nanofibrous and film-structured ciprofloxacin hydrochloride inserts for sustained ocular delivery: Pharmacokinetic study in rabbit’s eye. Life 2023 13 4 913 10.3390/life13040913 37109442
    [Google Scholar]
  106. Akbari E. Imani R. Shokrollahi P. Heidari keshel S. Corneal sustained delivery of hyaluronic acid from nanofiber-containing ring-implanted contact lens. J Biomater Appl 2023 37 6 992 1006 10.1177/08853282221146390 36564919
    [Google Scholar]
  107. Liu P. Chen G. Zhang J. A review of liposomes as a drug delivery system: Current status of approved products, regulatory environments, and future perspectives. Molecules 2022 27 4 1372 10.3390/molecules27041372 35209162
    [Google Scholar]
  108. Liu Q. Ye X. Wu H. Zhang X. A multiphysics model of magnetic hydrogel under a moving magnet for targeted drug delivery. Int J Mech Sci 2022 215 106963 10.1016/j.ijmecsci.2021.106963
    [Google Scholar]
  109. Patel P. Garala K. Singh S. Prajapati B.G. Chittasupho C. Lipid-based nanoparticles in delivering bioactive compounds for improving therapeutic efficacy. Pharmaceuticals 2024 17 3 329 10.3390/ph17030329 38543115
    [Google Scholar]
  110. Rani S. Rana R. Saraogi G.K. Kumar V. Gupta U. Self-emulsifying oral lipid drug delivery systems: Advances and challenges. AAPS PharmSciTech 2019 20 3 129 10.1208/s12249‑019‑1335‑x 30815765
    [Google Scholar]
  111. Choi S.J. McClements D.J. Nanoemulsions as delivery systems for lipophilic nutraceuticals: Strategies for improving their formulation, stability, functionality and bioavailability. Food Sci Biotechnol 2020 29 2 149 168 10.1007/s10068‑019‑00731‑4 32064124
    [Google Scholar]
  112. Singh B. Kim K. Park M.H. On-demand drug delivery systems using nanofibers. Nanomaterials 2021 11 12 3411 10.3390/nano11123411 34947758
    [Google Scholar]
  113. Long F. Guo Y. Zhang Z. Wang J. Ren Y. Cheng Y. Xu G. Recent progress of droplet microfluidic emulsification based synthesis of functional microparticles. Glob Chall 2023 7 9 2300063 10.1002/gch2.202300063 37745820
    [Google Scholar]
  114. Ashwanikumar N. Kumar N.A. Nair S.A. Kumar G.S.V. Dual drug delivery of 5-fluorouracil (5-FU) and methotrexate (MTX) through random copolymeric nanomicelles of PLGA and polyethylenimine demonstrating enhanced cell uptake and cytotoxicity. Colloids Surf B Biointerfaces 2014 122 520 528 10.1016/j.colsurfb.2014.07.024 25108479
    [Google Scholar]
  115. Bai X. Smith Z. Wang Y. Butterworth S. Tirella A. Sustained drug release from smart nanoparticles in cancer therapy: A comprehensive review. Micromachines 2022 13 10 1623 10.3390/mi13101623 36295976
    [Google Scholar]
  116. Li L. Zeng Y. Chen M. Liu G. Application of nanomicelles in enhancing bioavailability and biological efficacy of bioactive nutrients. Polymers 2022 14 16 3278 10.3390/polym14163278 36015535
    [Google Scholar]
  117. Allan J. Belz S. Hoeveler A. Hugas M. Okuda H. Patri A. Rauscher H. Silva P. Slikker W. Sokull-Kluettgen B. Tong W. Anklam E. Regulatory landscape of nanotechnology and nanoplastics from a global perspective. Regul Toxicol Pharmacol 2021 122 104885 10.1016/j.yrtph.2021.104885 33617940
    [Google Scholar]
  118. Zhao Q. Yue X. Miaomiao L. Yanming W. Wu G. Nano-injectable pH/NIR-responsive hydrogel for chemo-photothermal synergistic drug delivery. J Biomater Appl 2023 38 5 614 628 10.1177/08853282231209653 37918422
    [Google Scholar]
  119. Namiot E.D. Sokolov A.V. Chubarev V.N. Tarasov V.V. Schiöth H.B. Nanoparticles in clinical trials: Analysis of clinical trials, FDA approvals and use for COVID-19 vaccines. Int J Mol Sci 2023 24 1 787 10.3390/ijms24010787 36614230
    [Google Scholar]
  120. Guo C. Zhang Y. Yang Z. Li M. Li F. Cui F. Liu T. Shi W. Wu X. Nanomicelle formulation for topical delivery of cyclosporine A into the cornea: In vitro mechanism and in vivo permeation evaluation. Sci Rep 2015 5 1 12968 10.1038/srep12968
    [Google Scholar]
  121. Ponnusamy C. Sugumaran A. Krishnaswami V. Palanichamy R. Velayutham R. Natesan S. Development and evaluation of polyvinylpyrrolidone K90 and poloxamer 407 self-assembled nanomicelles: Enhanced topical ocular delivery of artemisinin. Polymers 2021 13 18 3038 10.3390/polym13183038 34577939
    [Google Scholar]
  122. Rafałowicz J Wagner L Rafałowicz B Lesions located on the tongue after SARS-CoV-2 infection: A retrospective study. Dent Med Probl 2025 62 4 619 26 10.17219/dmp/179008
    [Google Scholar]
  123. Liu L.C. Chen Y.H. Lu D.W. Overview of recent advances in nano-based ocular drug delivery. Int J Mol Sci 2023 24 20 15352 10.3390/ijms242015352 37895032
    [Google Scholar]
  124. Fazal T. Murtaza B.N. Shah M. Iqbal S. Rehman M. Jaber F. Dera A.A. Awwad N.S. Ibrahium H.A. Recent developments in natural biopolymer based drug delivery systems. RSC Advances 2023 13 33 23087 23121 10.1039/D3RA03369D 37529365
    [Google Scholar]
  125. Trivedi R. Kompella U.B. Nanomicellar formulations for sustained drug delivery: Strategies and underlying principles. Nanomedicine (Lond) 2010 5 3 485 505 10.2217/nnm.10.10 20394539
    [Google Scholar]
  126. Grimaudo M.A. Pescina S. Padula C. Santi P. Concheiro A. Alvarez-Lorenzo C. Nicoli S. Topical application of polymeric nanomicelles in ophthalmology: A review on research efforts for the noninvasive delivery of ocular therapeutics. Expert Opin Drug Deliv 2019 16 4 397 413 10.1080/17425247.2019.1597848 30889977
    [Google Scholar]
  127. Hamed R. Abu Kwiak A.D. Al-Adhami Y. Hammad A.M. Obaidat R. Abusara O.H. Huwaij R.A. Microemulsions as lipid nanosystems loaded into thermoresponsive in situ microgels for local ocular delivery of prednisolone. Pharmaceutics 2022 14 9 1975 10.3390/pharmaceutics14091975 36145726
    [Google Scholar]
  128. Kwon G.S. Okano T. Polymeric micelles as new drug carriers. Adv Drug Deliv Rev 1996 21 2 107 116 10.1016/S0169‑409X(96)00401‑2
    [Google Scholar]
  129. Kamaly N. Xiao Z. Valencia P.M. Radovic-Moreno A.F. Farokhzad O.C. Targeted polymeric therapeutic nanoparticles: Design, development and clinical translation. Chem Soc Rev 2012 41 7 2971 3010 10.1039/c2cs15344k 22388185
    [Google Scholar]
  130. Fang J. Nakamura H. Maeda H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev 2011 63 3 136 151 10.1016/j.addr.2010.04.009 20441782
    [Google Scholar]
  131. Majumder N. G Das N. Das S.K. Polymeric micelles for anticancer drug delivery. Ther Deliv 2020 11 10 613 635 10.4155/tde‑2020‑0008 32933425
    [Google Scholar]
  132. Maeda H. Macromolecular therapeutics in cancer treatment: The EPR effect and beyond. J Control Release 2012 164 2 138 144 10.1016/j.jconrel.2012.04.038 22595146
    [Google Scholar]
  133. Wang D. Tong G. Dong R. Zhou Y. Shen J. Zhu X. Self-assembly of supramolecularly engineered polymers and their biomedical applications. Chem Commun (Camb) 2014 50 81 11994 12017 10.1039/C4CC03155E 25019489
    [Google Scholar]
  134. Alshetaili A.S. Gefitinib loaded PLGA and chitosan coated PLGA nanoparticles with magnified cytotoxicity against A549 lung cancer cell lines. Saudi J Biol Sci 2021 28 9 5065 5073 10.1016/j.sjbs.2021.05.025 34466084
    [Google Scholar]
  135. Charrueau C. Zandanel C. Drug delivery by polymer nanoparticles: The challenge of controlled release and evaluation. Polymer Nanoparticles for Nanomedicines Cham Springer 2016 10.1007/978‑3‑319‑41421‑8_14
    [Google Scholar]
  136. Torchilin V.P. Micellar nanocarriers: Pharmaceutical perspectives. Pharm Res 2006 24 1 1 16 10.1007/s11095‑006‑9132‑0 17109211
    [Google Scholar]
  137. Webber M.J. Langer R. Drug delivery by supramolecular design. Chem Soc Rev 2017 46 21 6600 6620 10.1039/C7CS00391A 28828455
    [Google Scholar]
  138. Kazunori K. Glenn S K. Masayuki Y. Teruo O. Yasuhisa S. Block copolymer micelles as vehicles for drug delivery. J Control Release 1993 24 1-3 119 132 10.1016/0168‑3659(93)90172‑2
    [Google Scholar]
  139. Doane T.L. Burda C. The unique role of nanoparticles in nanomedicine: Imaging, drug delivery and therapy. Chem Soc Rev 2012 41 7 2885 2911 10.1039/c2cs15260f 22286540
    [Google Scholar]
  140. Ruel-Gariépy E. Chenite A. Chaput C. Guirguis S. Leroux J.C. Characterization of thermosensitive chitosan gels for the sustained delivery of drugs. Int J Pharm 2000 203 1-2 89 98 10.1016/S0378‑5173(00)00428‑2 10967431
    [Google Scholar]
  141. Estelrich J. Busquets M.A. Iron oxide nanoparticles in photothermal therapy. Molecules 2018 23 7 1567 10.3390/molecules23071567 29958427
    [Google Scholar]
  142. Lim E.K. Yang J. Dinney C.P.N. Suh J.S. Huh Y.M. Haam S. Self-assembled fluorescent magnetic nanoprobes for multimode-biomedical imaging. Biomaterials 2010 31 35 9310 9319 10.1016/j.biomaterials.2010.07.081 20851463
    [Google Scholar]
  143. Lee D.E. Koo H. Sun I.C. Ryu J.H. Kim K. Kwon I.C. Multifunctional nanoparticles for multimodal imaging and theragnosis. Chem Soc Rev 2012 41 7 2656 2672 10.1039/C2CS15261D 22189429
    [Google Scholar]
  144. Xing Y. Rao J. Quantum dot bioconjugates for in vitro diagnostics & in vivo imaging. Cancer Biomark 2008 4 6 307 319 10.3233/CBM‑2008‑4603 19126959
    [Google Scholar]
  145. Mashinchian O. Johari-Ahar M. Ghaemi B. Rashidi M. Barar J. Omidi Y. Impacts of quantum dots in molecular detection and bioimaging of cancer. Bioimpacts 2017 4 3 149 166 10.15171/bi.2014.008 25337468
    [Google Scholar]
  146. Cai W. Gao H. Chu C. Wang X. Wang J. Zhang P. Lin G. Li W. Liu G. Chen X. Engineering phototheranostic nanoscale metal–organic frameworks for multimodal imaging-guided cancer therapy. ACS Appl Mater Interfaces 2017 9 3 2040 2051 10.1021/acsami.6b11579 28032505
    [Google Scholar]
  147. Deshmukh R. Sethi P. Singh B. Shiekmydeen J. Salave S. Patel R.J. Ali N. Rashid S. Elossaily G.M. Kumar A. Recent Review on Biological Barriers and Host–Material Interfaces in Precision Drug Delivery: Advancement in Biomaterial Engineering for Better Treatment Therapies. Pharmaceutics 2024 16 8 1076 10.3390/pharmaceutics16081076 39204421
    [Google Scholar]
  148. Meng T. Kulkarni V. Simmers R. Brar V. Xu Q. Therapeutic implications of nanomedicine for ocular drug delivery. Drug Discov Today 2019 24 8 1524 1538 10.1016/j.drudis.2019.05.006 31102733
    [Google Scholar]
  149. Vaneev A. Tikhomirova V. Chesnokova N. Popova E. Beznos O. Kost O. Klyachko N. Nanotechnology for topical drug delivery to the anterior segment of the eye. Int J Mol Sci 2021 22 22 12368 10.3390/ijms222212368 34830247
    [Google Scholar]
  150. Weng Y.H. Ma X.W. Che J. Li C. Liu J. Chen S.Z. Wang Y.Q. Gan Y.L. Chen H. Hu Z.B. Nan K.H. Liang X.J. Nanomicelle‐assisted targeted ocular delivery with enhanced antiinflammatory efficacy in vivo. Adv Sci (Weinh) 2018 5 1 1700455 10.1002/advs.201700455 29375972
    [Google Scholar]
  151. Vadlapudi A.D. Mitra A.K. Nanomicelles: An emerging platform for drug delivery to the eye 2013 1 3
    [Google Scholar]
  152. Vaishya R.D. Khurana V. Patel S. Mitra A.K. Controlled ocular drug delivery with nanomicelles. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2014 6 5 422 437 10.1002/wnan.1272 24888969
    [Google Scholar]
  153. Oerlemans C. Bult W. Bos M. Storm G. Nijsen J.F.W. Hennink W.E. Polymeric micelles in anticancer therapy: Targeting, imaging and triggered release. Pharm Res 2010 27 12 2569 2589 10.1007/s11095‑010‑0233‑4 20725771
    [Google Scholar]
  154. Patel A. Cholkar K. Agrahari V. Mitra A.K. Ocular drug delivery systems: An overview. World J Pharmacol 2013 2 2 47 64 10.5497/wjp.v2.i2.47 25590022
    [Google Scholar]
  155. Reimondez-Troitiño S. Csaba N. Alonso M.J. de la Fuente M. Nanotherapies for the treatment of ocular diseases. Eur J Pharm Biopharm 2015 95 Pt B 279 293 10.1016/j.ejpb.2015.02.019 25725262
    [Google Scholar]
  156. Pooja D. Lipid-based nanomedicines: Current clinical status and future perspectives Lipid Nanocarriers for Drug Targeting 2018 509 528 10.1016/B978‑0‑12‑813687‑4.00013‑X
    [Google Scholar]
  157. Khiev D. Mohamed Z.A. Vichare R. Paulson R. Bhatia S. Mohapatra S. Lobo G.P. Valapala M. Kerur N. Passaglia C.L. Mohapatra S.S. Biswal M.R. Emerging nano-formulations and nanomedicines applications for ocular drug delivery. Nanomaterials 2021 11 1 173 10.3390/nano11010173 33445545
    [Google Scholar]
  158. Grumezescu A.M. Design of nanostructures for versatile therapeutic applications William Andrew 2018
    [Google Scholar]
  159. Nijhara R. Balakrishnan K. Bringing nanomedicines to market: Regulatory challenges, opportunities, and uncertainties. Nanomedicine 2006 2 2 127 136 10.1016/j.nano.2006.04.005 17292125
    [Google Scholar]
  160. Ventola C.L. The nanomedicine revolution: Part 2: Current and future clinical applications. 2012 37 10 582 591 23115468
    [Google Scholar]
  161. Tănase M.A. Raducan A. Oancea P. Diţu L.M. Stan M. Petcu C. Scomoroşcenco C. Ninciuleanu C.M. Nistor C.L. Cinteza L.O. Mixed pluronic—Cremophor polymeric micelles as nanocarriers for poorly soluble antibiotics—The influence on the antibacterial activity. Pharmaceutics 2021 13 4 435 10.3390/pharmaceutics13040435 33804932
    [Google Scholar]
  162. Bose A. Roy Burman D. Sikdar B. Patra P. Nanomicelles: Types, properties and applications in drug delivery. IET Nanobiotechnol 2021 15 1 19 27 10.1049/nbt2.12018 34694727
    [Google Scholar]
  163. Hatamipour M. Sahebkar A. Alavizadeh S.H. Dorri M. Jaafari M.R. Novel nanomicelle formulation to enhance bioavailability and stability of curcuminoids. Iran J Basic Med Sci 2019 22 3 282 289 31156789
    [Google Scholar]
  164. de Castro K.C. Coco J.C. dos Santos É.M. Ataide J.A. Martinez R.M. do Nascimento M.H.M. Prata J. da Fonte P.R.M.L. Severino P. Mazzola P.G. Baby A.R. Souto E.B. de Araujo D.R. Lopes A.M. Pluronic® triblock copolymer-based nanoformulations for cancer therapy: A 10-year overview. J Control Release 2023 353 802 822 10.1016/j.jconrel.2022.12.017 36521691
    [Google Scholar]
  165. Li J. Yu F. Chen Y. Oupický D. Polymeric drugs: Advances in the development of pharmacologically active polymers. J Control Release 2015 219 369 382 10.1016/j.jconrel.2015.09.043 26410809
    [Google Scholar]
  166. Huang C. Zhou Y. Jin Y. Zhou X. Tang Z. Guo X. Zhou S. Preparation and characterization of temperature-responsive and magnetic nanomicelles. J Mater Chem 2011 21 15 5660 5670 10.1039/c0jm04264a
    [Google Scholar]
  167. Batrakova E.V. Kabanov A.V. Pluronic block copolymers: Evolution of drug delivery concept from inert nanocarriers to biological response modifiers. J Control Release 2008 130 2 98 106 10.1016/j.jconrel.2008.04.013 18534704
    [Google Scholar]
  168. Kumari S. Goyal A. Sönmez Gürer E. Algın Yapar E. Garg M. Sood M. Sindhu R.K. Bioactive loaded novel nano-formulations for targeted drug delivery and their therapeutic potential. Pharmaceutics 2022 14 5 1091 10.3390/pharmaceutics14051091 35631677
    [Google Scholar]
  169. Liu R. Luo C. Pang Z. Zhang J. Ruan S. Wu M. Wang L. Sun T. Li N. Han L. Shi J. Huang Y. Guo W. Peng S. Zhou W. Gao H. Advances of nanoparticles as drug delivery systems for disease diagnosis and treatment. Chin Chem Lett 2023 34 2 107518 10.1016/j.cclet.2022.05.032
    [Google Scholar]
  170. Wang C. Gao X. Chen Z. Chen Y. Chen H. Preparation, characterization and application of polysaccharide-based metallic nanoparticles: A review. Polymers 2017 9 12 689 10.3390/polym9120689 30965987
    [Google Scholar]
  171. Veselov V.V. Nosyrev A.E. Jicsinszky L. Alyautdin R.N. Cravotto G. Targeted delivery methods for anticancer drugs. Cancers 2022 14 3 622 10.3390/cancers14030622 35158888
    [Google Scholar]
  172. Singh M.R. Advances and avenues in the development of novel carriers for bioactives and biological agents Academic Press 2020
    [Google Scholar]
  173. Aditya T. Allain J.P. Jaramillo C. Restrepo A.M. Surface modification of bacterial cellulose for biomedical applications. Int J Mol Sci 2022 23 2 610 10.3390/ijms23020610 35054792
    [Google Scholar]
  174. Plota A. Masek A. Lifetime prediction methods for degradable polymeric materials—A short review. Materials 2020 13 20 4507 10.3390/ma13204507 33053659
    [Google Scholar]
  175. Mahapatra D.K. Insights into Progressive Perspectives of Solid Lipid Nanoparticles in Brain Targeting. Nanoarchitectonics for Brain Drug Delivery Boca Raton, Florida CRC Press 2022 321 356 10.1201/9781032661964‑14
    [Google Scholar]
  176. Rehman M. Tahir N. Sohail M.F. Qadri M.U. Duarte S.O.D. Brandão P. Esteves T. Javed I. Fonte P. Lipid-based nanoformulations for drug delivery: An ongoing perspective. Pharmaceutics 2024 16 11 1376 10.3390/pharmaceutics16111376 39598500
    [Google Scholar]
  177. Wang P. Wang Y. Li P. Chen C. Ma S. Zhao L. He H. Yin T. Zhang Y. Tang X. Gou J. Oral delivery of polyester nanoparticles for brain-targeting: Challenges and opportunities. Chin Chem Lett 2023 34 4 107691 10.1016/j.cclet.2022.07.034
    [Google Scholar]
  178. Kudgus R.A. Walden C.A. McGovern R.M. Reid J.M. Robertson J.D. Mukherjee P. Tuning pharmacokinetics and biodistribution of a targeted drug delivery system through incorporation of a passive targeting component. Sci Rep 2014 4 1 5669 10.1038/srep05669 25011609
    [Google Scholar]
  179. Food F. Drug Administration-Guidance for industry considering whether an FDA-regulated product involves the application of nanotechnology. Biotechnol Law Rep 2014 30 613 616
    [Google Scholar]
  180. Ventola C.L. The nanomedicine revolution: Part 1: Emerging concepts. P&T 2012 37 9 512 525 23066345
    [Google Scholar]
  181. Zhang W. Prausnitz M.R. Edwards A. Model of transient drug diffusion across cornea. J Control Release 2004 99 2 241 258 10.1016/j.jconrel.2004.07.001 15380634
    [Google Scholar]
  182. Use CMPH. Reflection paper on nanotechnology-based medicinal products for human use. Available from:https://www.ema.europa.eu/en/documents/report/nanotechnology-based-medicinal-products-human-use-eu-horizon-scanning-report_en.pdf 2006
    [Google Scholar]
/content/journals/cnanom/10.2174/0124681873385384250901061829
Loading
/content/journals/cnanom/10.2174/0124681873385384250901061829
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: nanotechnology ; permeability ; ocular ; Conjunctivitis ; bioavailability ; nanomicelles
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test