Skip to content
2000
image of Green Synthesis of Copper Oxide Nanoparticles by Hydroethanolic Extract of Rubus ellipticus: Antimicrobial and Antidiabetic Activities

Abstract

Background

The biosynthesis of nanoparticles of copper oxide nanoparticles using plant extracts and phytochemicals has garnered significant interest due to their potential medical applications. This study focuses on synthesizing CuONPs using leaf extract (CuONPs-Re) as an efficient reducing agent.

Methods

The CuONPs-Re were characterized using various techniques:

UV-Visible Spectroscopy

Observed a peak value at 310 nm because of inherent band gap absorption.

FT-IR Spectroscopy

Confirmed the existence of functional groups associated with terpenoids, flavonoids, phenols, and tannins. : Indicated that the CuONPs-Re is spherically shaped with a typical size of 30-50 nm. : The antibacterial efficacy of CuONPs-Re was tested against , , and agar well diffusion method. Previous studies have shown the potential of green synthesized CuONPs as hypoglycaemic and hypolipidemic agents. In this study, different doses of CuONPs-Re in carboxymethylcellulose (CMC) were orally administered for 15 days to alloxan-induced albino Wistar rats. The biochemical considerations, histopathology analyses, and comparisons among diabetic control, normal, standard (Glibenclamide), and treated animals were evaluated.

Results

A significant decrease in the levels of blood glucose (from 293 to 91.5 mg/dl) was observed in treated experimental rats. Improvements were also observed in their lipid profiles and pancreatic healing, as compared to the respective standard drugs.

Conclusion

This study demonstrates that CuONPs-Re has promising potential in the control of Type-1 diabetes mellitus, aligning with the traditional medicinal use of leaves for diabetic relief. The findings suggest that CuONPs-Re could serve as an effective alternative to conventional diabetic treatments.

Loading

Article metrics loading...

/content/journals/cnanom/10.2174/0124681873341406241213183516
2025-01-27
2025-09-04
Loading full text...

Full text loading...

References

  1. Rosei F. Nanostructured surfaces: Challenges and frontiers in nanotechnology. J. Phys. Condens. Matter 2004 16 17 S1373 S1436 10.1088/0953‑8984/16/17/001
    [Google Scholar]
  2. Bhattacharya D. Gupta R.K. Nanotechnology and potential of microorganisms. Crit. Rev. Biotechnol. 2005 25 4 199 204 10.1080/07388550500361994 16419617
    [Google Scholar]
  3. Cheon J. Kang N.J. Lee S.M. Lee J.H. Yoon J.H. Oh S.J. Shape evolution of single-crystalline iron oxide nanocrystals. J. Am. Chem. Soc. 2004 126 7 1950 1951 10.1021/ja038722o 14971924
    [Google Scholar]
  4. Park J. Joo J. Kwon S.G. Jang Y. Hyeon T. Synthesis of monodisperse spherical nanocrystals. Angew. Chem. Int. Ed. 2007 46 25 4630 4660 10.1002/anie.200603148 17525914
    [Google Scholar]
  5. Jana N.R. Wang Z.L. Sau T.K. Pal T. Seed-mediated growth method to prepare cubic copper nanoparticles. Curr. Sci. 2000 79 1367 1370
    [Google Scholar]
  6. Schladt T.D. Graf T. Tremel W. Synthesis and characterization of monodisperse manganese oxide nanoparticles-evaluation of the nucleation and growth mechanism. Chem. Mater. 2009 21 14 3183 3190 10.1021/cm900663t
    [Google Scholar]
  7. Raveendran P. Fu J. Wallen S.L. Green synthesis of metal nanoparticles using plants. Green Chem. 2003 13 2638 2650 10.1039/C1GC15386B
    [Google Scholar]
  8. Duman F. Ocsoy I. Kup F.O. Chamomile flower extract-directed CuO nanoparticle formation for its antioxidant and DNA cleavage properties. Mater. Sci. Eng. C 2016 60 333 338 10.1016/j.msec.2015.11.052 26706538
    [Google Scholar]
  9. Banerjee P. Satapathy M. Mukhopahayay A. Das P. Leaf extract mediated green synthesis of silver nanoparticles from widely available Indian plants: Synthesis, characterization, antimicrobial property and toxicity analysis. Bioresour. Bioprocess. 2014 1 1 3 10.1186/s40643‑014‑0003‑y
    [Google Scholar]
  10. Nartop P. Use of biosynthetic silver nanoparticles in the surface sterilization of Pyracantha coccinea stem explants. Pamukkale University Journal of Engineering Sciences 2017 23 6 759 761 10.5505/pajes.2016.04809
    [Google Scholar]
  11. Majeed A. Ullah W. Anwar A.W. Shuaib A. Ilyas U. Khalid P. Mustafa G. Junaid M. Faheem B. Ali S. Cost-effective biosynthesis of silver nanoparticles using different organs of plants and their antimicrobial applications: A review. Mater. Technol. 2018 33 5 313 320 10.1080/10667857.2015.1108065
    [Google Scholar]
  12. Khan A.U. Yuan Q. Khan Z.U.H. Ahmad A. Khan F.U. Tahir K. Shakeel M. Ullah S. An eco-benign synthesis of AgNPs using aqueous extract of Longan fruit peel: Antiproliferative response against human breast cancer cell line MCF-7, antioxidant and photocatalytic deprivation of methylene blue. J. Photochem. Photobiol. B 2018 183 367 373 10.1016/j.jphotobiol.2018.05.007 29763759
    [Google Scholar]
  13. Prakash V. Kumari A. Kaur H. Kumar M. Gupta S. Bala R. Green synthesis, characterization and antimicrobial activities of Copper nanoparticles from the rhizomes extract of Picrorhiza kurroa. Pharm. Nanotechnol. 2021 9 4 298 306 10.2174/2211738509666210910142027 34514996
    [Google Scholar]
  14. Prakash V. Kaur H. Kumari A. Kumar M. Bala R. Gupta S. Phytochemicals and biological studies on Cycas revoluta Thunb.: A review. Advances in Traditional Medicine 2021 a 21 3 389 404 10.1007/s13596‑020‑00520‑z
    [Google Scholar]
  15. Aswathy Aromal S. Philip D. Green synthesis of gold nanoparticles using Trigonella foenum-graecum and its size-dependent catalytic activity. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2012 97 1 5 10.1016/j.saa.2012.05.083 22743607
    [Google Scholar]
  16. Narayanan K.B. Sakthivel N. Biological synthesis of metal nanoparticles by microbes. Adv. Colloid Interface Sci. 2010 156 1-2 1 13 10.1016/j.cis.2010.02.001 20181326
    [Google Scholar]
  17. Prakash V. Kaur H. Kumari A. Kumar M. Gupta S. Bala R. Green synthesis, characterization and antimicrobial activity of silver nanoparticles from the extract of Lagerstroemia speciosa. Orient. J. Chem. 2021 b 37 3 648 655 10.13005/ojc/370318
    [Google Scholar]
  18. Rajan R. Chandran K. Harper S.L. Yun S-I. Kalaichelvan P.T. Plant extract synthesized silver nanoparticles: An ongoing source of novel biocompatible materials. Ind. Crops Prod. 2015 70 356 373 10.1016/j.indcrop.2015.03.015
    [Google Scholar]
  19. Chahar V. Sharma B. Shukla G. Srivastava A. Bhatnagar A. Study of antimicrobial activity of silver nanoparticles synthesized using green and chemical approach. Colloids Surf. A Physicochem. Eng. Asp. 2018 554 149 155 10.1016/j.colsurfa.2018.06.012
    [Google Scholar]
  20. AlSalhi M.S. Elangovan K. Ranjitsingh A.J.A. Murali P. Devanesan S. Synthesis of silver nanoparticles using plant derived 4-N-methyl benzoic acid and evaluation of antimicrobial, antioxidant and antitumor activity. Saudi J. Biol. Sci. 2019 26 5 970 978 10.1016/j.sjbs.2019.04.001 31303827
    [Google Scholar]
  21. Das P.E. Abu-Yousef I.A. Majdalawieh A.F. Narasimhan S. Poltronieri P. Green synthesis of encapsulated copper nanoparticles using a hydroalcoholic extract of Moringa oleifera leaves and assessment of their antioxidant and antimicrobial activities. Molecules 2020 25 3 555 10.3390/molecules25030555 32012912
    [Google Scholar]
  22. Zayed M.F. Mahfoze R.A. El-kousy S.M. Al-Ashkar E.A. in-vitro antioxidant and antimicrobial activities of metal nanoparticles biosynthesized using optimized Pimpinella anisum extract. Colloids Surf. A Physicochem. Eng. Asp. 2020 585 124167 10.1016/j.colsurfa.2019.124167
    [Google Scholar]
  23. Erdemoglu N. Küpeli E. Yeşilada E. Anti-inflammatory and antinociceptive activity assessment of plants used as remedy in Turkish folk medicine. J. Ethnopharmacol. 2003 89 1 123 129 10.1016/S0378‑8741(03)00282‑4 14522443
    [Google Scholar]
  24. Latha R. Sarkar T. Jansi R.S. Agastian P. Evaluation of antimicrobial efficiency and alpha-glucosidase inhibition of Rubus ellipticus Smith. Leaf extracts and its phytochemical analysis. AJPCR 2015 8 422 426
    [Google Scholar]
  25. Li W. Fu H. Bai H. Sasaki T. Kato H. Koike K. Triterpenoid Saponins from Rubus ellipticus var. obcordatus. J. Nat. Prod. 2009 72 10 1755 1760 10.1021/np900237a 19795885
    [Google Scholar]
  26. Kumari A. Prakash V. Gupta D. Kashyap L. Goyal R. Chopra H. Gautam R.K. Chakraborty S. Chandran D. Dhama K. Identification and evaluation of antimicrobial and anti-arthritis activities of hydroethanolic extract of Rubus ellipticus leaves. Narra J. 2023 3 3 e152 e152 10.52225/narra.v3i3.152 38455614
    [Google Scholar]
  27. Gupta S. Mehla K. Chauhan D. Kumar S. Nair A. Morphological changes and Antihyperglycemic effect of M. champaca leaves extract on Beta-cell in alloxan induced diabetic rats. IJLRST 2010 3 81 87
    [Google Scholar]
  28. Monday O.M. Uzoma A.I. Histological changes and antidiabetic activities of Icacina trichantha tuber extract in beta-cells of alloxan induced diabetic rats. Asian Pac. J. Trop. Biomed. 2013 3 8 628 633 10.1016/S2221‑1691(13)60127‑6 23905020
    [Google Scholar]
  29. Ringmichon C.L. Gopalkrishnan B. Dixit A.P. Ethno-pharmacognostical Studies on Root Bark of Rubus ellipticus Smith. from Manipur. Int. J. Pharmacogn. Phytochem. 2013 2 2 223 228
    [Google Scholar]
  30. Prasanth S.C. Chandran P. Phytochemical and antimicrobial analysis of leaf samples of different Rubus species. Int. J. Chemtech Res. 2017 10 4 359 368
    [Google Scholar]
  31. Senthilkumar N. Nandhakumar E. Priya P. Soni D. Vimalan M. Vetha Potheher I. Synthesis of ZnO nanoparticles using leaf extract of Tectona grandis (L.) and their anti-bacterial, anti-arthritic, anti-oxidant and in vitro cytotoxicity activities. New J. Chem. 2017 41 18 10347 10356 10.1039/C7NJ02664A
    [Google Scholar]
  32. Rajendran N.K. George B.P. Houreld N.N. Abrahamse H. Synthesis of zinc oxide nanoparticles using Rubus fairholmianus root extract and their activity against pathogenic bacteria. Molecules 2021 26 10 3029 10.3390/molecules26103029 34069558
    [Google Scholar]
  33. Marslin G. Siram K. Maqbool Q. Selvakesavan R.K. Kruszka D. Kachlicki P. Franklin G. Secondary metabolites in the green synthesis of metallic nanoparticles. Materials (Basel) 2018 11 6 940 10.3390/ma11060940 29865278
    [Google Scholar]
  34. AlQahtani F.S. AlShebly M.M. Govindarajan M. Senthilmurugan S. Vijayan P. Benelli G. Green and facile biosynthesis of silver nanocomposites using the aqueous extract of Rubus ellipticus leaves: Toxicity and oviposition deterrent activity against Zika virus, malaria and filariasis mosquito vectors. J. Asia Pac. Entomol. 2017 20 1 157 164 10.1016/j.aspen.2016.12.004
    [Google Scholar]
  35. Zia R. Riaz M. Farooq N. Qamar A. Anjum S. Antibacterial activity of Ag and Cu nanoparticles synthesized by chemical reduction method: A comparative analysis. Mater. Res. Express 2018 5 7 075012 10.1088/2053‑1591/aacf70
    [Google Scholar]
  36. Kgatshe M. Aremu O.S. Katata-Seru L. Gopane R. Characterization and antibacterial activity of biosynthesized silver nanoparticles using the ethanolic extract of Pelargonium sidoides DC. J. Nanomater. 2019 2019 1 10 10.1155/2019/3501234
    [Google Scholar]
  37. Ahamed M. Alhadlaq H.A. Khan M.A.M. Karuppiah P. Al-Dhabi N.A. Synthesis, characterization, and antimicrobial activity of copper oxide nanoparticles. J. Nanomater. 2014 2014 1 637858 10.1155/2014/637858
    [Google Scholar]
  38. Padil V.V. Cernik M. Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application. Int J Nanomedicine 2013 8 889 898 10.2147/IJN.S40599 23467397
    [Google Scholar]
  39. Slavin Y.N. Asnis J. Häfeli U.O. Bach H. Metal nanoparticles: Understanding the mechanisms behind antibacterial activity. J. Nanobiotechnology 2017 15 1 65 10.1186/s12951‑017‑0308‑z 28974225
    [Google Scholar]
  40. Ruparelia J.P. Chatterjee A.K. Duttagupta S.P. Mukherji S. Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater. 2008 4 3 707 716 10.1016/j.actbio.2007.11.006 18248860
    [Google Scholar]
  41. Abboud Y. Saffaj T. Chagraoui A. El Bouari A. Brouzi K. Tanane O. Ihssane B. Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles (CONPs) produced using brown alga extract (Bifurcaria bifurcata). Appl. Nanosci. 2014 4 5 571 576 10.1007/s13204‑013‑0233‑x
    [Google Scholar]
  42. Renganathan S. Fatma S. P K. Renganathan S. Green synthesis of copper nanoparticle from Passiflora foetida leaf extract and its antibacterial activity. Asian J. Pharm. Clin. Res. 2017 10 4 79 83 10.22159/ajpcr.2017.v10i4.15744
    [Google Scholar]
  43. Eleazu C.O. Eleazu K.C. Ironkwe A. Iroaganachi M.A. Effect of Livingstone potato (Plectranthus esculenthus NE Br) on diabetes and its complications in streptozotocin induced diabetes in rats. Diabetes Metab. J. 2014 38 5 366 374 10.4093/dmj.2014.38.5.366 25349824
    [Google Scholar]
  44. Charbgoo F. Ahmad M. Darroudi M. Cerium oxide nanoparticles: Green synthesis and biological applications. Int. J. Nanomedicine 2017 12 1401 1413 10.2147/IJN.S124855 28260887
    [Google Scholar]
  45. Gylling H. Miettinen T.A. Cholesterol absorption, synthesis, and LDL metabolism in NIDDM. Diabetes Care 1997 20 1 90 95 10.2337/diacare.20.1.90 9028702
    [Google Scholar]
  46. Shaik A.H. Rasool S.N. Vikram Kumar Reddy A. Abdul Kareem M. Saayi Krushna G. Lakshmi Devi K. Cardioprotective effect of HPLC standardized ethanolic extract of Terminalia pallida fruits against isoproterenol-induced myocardial infarction in albino rats. J. Ethnopharmacol. 2012 141 1 33 40 10.1016/j.jep.2012.01.011 22366678
    [Google Scholar]
  47. Shanmugasundaram E.R.B. Rajeswari G. Baskaran K. Kumar B.R.R. Shanmugasundaram K.R. Ahmath B.K. Use of Gymnema sylvestre leaf extract in the control of blood glucose in insulin-dependent diabetes mellitus. J. Ethnopharmacol. 1990 30 3 281 294 10.1016/0378‑8741(90)90107‑5 2259216
    [Google Scholar]
  48. Taderera T. Gomo E. Shoriwa Chagonda L. The Antidiabetic activity of an aqueous root extract of Annona stenophylla engl. and diels in non-diabetic control and alloxan-induced diabetic rats. Journal of Biologically Active Products from Nature 2016 6 4 315 322 10.1080/22311866.2016.1234412
    [Google Scholar]
  49. OECD Organisation for Economic Cooperation and Development. OECD guidelines for testing of chemicals: 425 acute oral toxicity-up-and down procedure. Paris: Organisation for Economic Cooperation and Development 2001 Available from: http://www. oecd.org/chemicalsafety/risk-assessment/1948378.pdf [Accessed on3rd November, 2015]
  50. Szkudelski T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol. Res. 2001 50 6 537 546 10.33549/physiolres.930111 11829314
    [Google Scholar]
  51. El Omari N. Sayah K. Fettach S. El Blidi O. Bouyahya A. Faouzi M.E.A. Kamal R. Barkiyou M. Evaluation of in vitro antioxidant and antidiabetic activities of Aristolochia longa extracts. Evid. Based Complement. Alternat. Med. 2019 2019 1 9 10.1155/2019/7384735 31061671
    [Google Scholar]
  52. Ekambe P.S. Surwase B.S. Somkuwar A.P. Patil M.K. in vivo anti-inflammatory and antidiabetic potential of crude leaf extracts of Canthium coromandelicum (Burm. f.) Alston. Journal of Biologically Active Products from Nature 2016 6 3 195 208 10.1080/22311866.2016.1222917
    [Google Scholar]
/content/journals/cnanom/10.2174/0124681873341406241213183516
Loading
/content/journals/cnanom/10.2174/0124681873341406241213183516
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: EF-SEM ; Green synthesis ; Rubus ellipticus leaves extract ; HR-TEM ; antibacterial activity
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test